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We present a numerical method to solve the Vlasov–Maxwell equations for spin-1/2
particles, in a semiclassical approximation where the orbital motion is treated classically
while the spin variable is fully quantum. Unlike the spinless case, the phase-space
distribution function is a 2 × 2 matrix, which can also be represented, in the Pauli basis,
as one scalar function f0 and one three-component vector function f . The relationship
between this ‘vectorial’ representation and the fully scalar representation on an extended
phase space first proposed by Brodin et al. (Phys. Rev. Lett., vol. 101, 2008, p. 245002)
is analysed in detail. By means of suitable approximations and symmetries, the vectorial
spin-Vlasov–Maxwell model can be reduced to two-dimensions in the phase space, which
is amenable to numerical solutions using a high-order grid-based Eulerian method. The
vectorial model enjoys a Poisson structure that paves the way to accurate Hamiltonian
split-time integrators. As an example, we study the stimulated Raman scattering of
an electromagnetic wave interacting with an underdense plasma, and compare the
results with those obtained earlier with the scalar spin-Vlasov–Maxwell model and a
particle-in-cell code.
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1. Introduction

To study the interaction between electromagnetic fields and metallic (nano-)objects, it
is possible, as a first approximation, to model the conduction electrons as a free electron
plasma confined by the attractive Coulomb forces of the nuclei. However, the electrons
carry, besides an electric charge, also a half-integer spin, which can play a significant role
in their dynamics, most notably for intense and ultrashort laser pulses. Spin effects play
an important role through the Zeeman effect, the spin-orbit interaction (Hinschberger &
Hervieux 2012; Krieger et al. 2015, 2017) and spin currents (Choi et al. 2014; Schellekens
et al. 2014; Hurst, Hervieux & Manfredi 2018), and they are involved in the complex
mechanisms leading to the loss of magnetization on a femtosecond time scale (Beaurepaire
et al. 1996; Bigot, Vomir & Beaurepaire 2009; Bigot & Vomir 2013).
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Spin effects are usually described using standard approaches, such as the Hartree–Fock
equations and the time-dependent density functional theory (Krieger et al. 2015), or, more
recently, quantum hydrodynamic models (Moldabekov, Bonitz & Ramazanov 2018). In
recent years, phase-space approaches issued from plasma physics research have been
introduced as an alternative to the above models. These models make use of kinetic
equations similar to the standard Vlasov equation, which describes the evolution of a
probability distribution in the relevant phase space, and can be broadly grouped into two
families: (i) models that use a scalar distribution function defined on an extended phase
space (x, p, s), where x denotes the position, p the momentum and s the spin variable on
the unit sphere (Brodin et al. 2008, 2011; Marklund, Zamanian & Brodin 2010; Zamanian,
Marklund & Brodin 2010); (ii) models for which the distribution function is a 2 × 2 matrix
that evolves in the standard classical phase space (x, p) (Hurst et al. 2014; Manfredi,
Hervieux & Hurst 2019); this 2 × 2 distribution function can also be represented, in the
so-called Pauli basis, as one scalar function f0 and one three-component vector function f ,
for which reason we shall term these models ‘vectorial’. For both approaches, one assumes
that the orbital motion is classical (hence the use of a standard Vlasov-like probability
distribution), while the spin is treated as a fully quantum variable.

The relationship between the two types of models was not hitherto perfectly clear, in
particular under what assumptions they are exactly equivalent. The first part of the present
work will be devoted to clarify this important issue. Indeed, the vectorial distribution
functions can be seen as the zeroth- and first-order ‘moments’ (in spin space) of the scalar
distribution function f (x, p, s), and the vectorial equations as the evolution equations for
such moments. This is the same relationship that exists between the Vlasov distribution
function and its velocity moments, which obey a set of fluid equations. In the Vlasov/fluid
analogy, the velocity moment equations are not equivalent to the full kinetic model, except
if one prescribes a closure relation and this relation is preserved by the evolution of the
kinetic equation.1 In our spin case, the closure relation implies that the scalar distribution
function f (x, p, s) should be a linear function of s (Zamanian et al. 2010; Manfredi et al.
2019). When this relation is satisfied for all times, taking the zeroth- and first-order
moments of the scalar distribution leads to the evolution equations of the vectorial model
and guarantees the equivalence between the two approaches. This important point will be
discussed in detail in this work, in particular the role played by the quantum magnetic
dipole term in the scalar model (which contains derivatives in both real and spin space,
thus making particle-in-cell (PIC) methods much more involved).

From a numerical point of view, the two approaches are intrinsically different, and have
their own advantages and drawbacks with respect to the available numerical techniques.
Indeed, due to the high dimensionality of the extended phase space (three dimensions
for position, three for momentum, and two for the spin), the scalar model is not adapted
to grid-based (Eulerian) numerical methods. Instead, they are naturally adapted for PIC
methods (Crouseilles et al. 2021), for which the extra number of dimensions is not an
obstacle as it only represents two more (spin) labels for the trajectories. In contrast, the
vectorial approach is more easily amenable to Eulerian solvers, since it merely implies
the solution of four Vlasov equations instead of one for spinless particles. Moreover, the
presence of the quantum magnetic dipole term (involving cross-derivatives in both p and s)
makes the scalar model quite awkward to solve numerically, whereas the corresponding
term in the vector model does not raise any particular difficulty. For this reason, in our

1Such exact closure relations are known to exist. For instance, the Vlasov evolution of a ‘water-bag’ distribution
function (constant within a closed phase-space contour and zero outside) is exactly equivalent to a set of fluid equations.
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earlier work using a PIC code (Crouseilles et al. 2021) this additional term was not taken
into account.

We note that other PIC approaches (Brodin, Holkundkar & Marklund 2013) did not
employ the extended phase space mentioned above, but considered two separate spin-up
and spin-down populations for the electrons. Similarly, Tonge, Dauger & Decyk (2004)
and Dauger, Decyk & Dawson (2005) have extended classical PIC methods to the quantum
regime (without spin) using an approach based on Feynman path integrals. Very recently,
PIC simulation methods for particles with spin were developed and validated by (Li et al.
2021) for applications to laser–plasma interactions.

In the present work, we propose an Eulerian method to solve numerically the
self-consistent vectorial spin-Vlasov–Maxwell equations in the broad context of
laser–plasma interactions. As the full six-dimensional phase space is still very demanding
for Eulerian methods in terms of computational costs, we have considered a simpler
one-dimensional (1-D) problem (two-dimensional phase space) obtained by assuming that
the electrons are cold in the transverse plane with respect to the direction of propagation
of the incident electromagnetic field. This model is thus described by the distribution
functions ( f0, f )(t, x, p) ∈ R4, with t ≥ 0 and (x, p) ∈ R2.

The vectorial model enjoys a Poisson structure which paves the way to a suitable time
splitting integrator. Following the recent development of geometric numerical method for
Vlasov-type equations (Crouseilles, Einkemmer & Faou 2015; Li, Sun & Crouseilles 2020;
Crestetto et al. 2022), we first discretize in time by using a Hamiltonian splitting, which
leads to different subsystems to solve. It turns out that the Hamiltonian splitting leads
to very simple subsystems that can be solved exactly in time, and for which grid-based
methods (Fourier in space and finite volume in momentum) can be used to obtain a very
accurate solver.

In our earlier work (Crouseilles et al. 2021), we dealt with the same laser–plasma
problem, but used the scalar approach and a PIC numerical method. Even though
PIC methods are known to give good results for a moderate number of particles, the
convergence rate is slow, as it depends on the square root of the number of particles. By
studying the influence of several physical parameters (temperature, electromagnetic field
amplitude, quantum effects, etc.) on the Raman instability, we observed that an initially
polarized electron gas can lose its polarization through a combination of thermal effects
and the Raman instability.

Here, we perform the same study solving the vectorial spin-Vlasov–Maxwell equations
with a Eulerian numerical method. Even though the two models are not mathematically
equivalent (because in the PIC approach we neglected the quantum magnetic dipole
term involving cross-derivatives in p and s), it is interesting to compare the results for
various values of the physical parameters, such as the temperature and the effective Planck
constant. Indeed, the two models (scalar and vector) become equivalent in the classical
limit, although some differences can of course still arise because of the different numerical
methods used to solve the evolution equations.

All in all, the present work should provide some useful guidelines on the choice of
suitable numerical methods to simulate the semiclassical dynamics of a spin-polarized
electron gas.

2. Spin-Vlasov–Maxwell models

In this section, we recall the governing equations for the scalar spin Vlasov–Maxwell
system in the extended phase space (x, p, s) (see Marklund et al. 2010; Zamanian et al.
2010; Marklund & Morrison 2011; Manfredi et al. 2019) and the corresponding vector
system in the standard phase space (x, p) (see Hurst et al. 2014, 2017; Manfredi, Hervieux
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& Crouseilles 2022). Both models are semiclassical approximations, in the sense that the
orbital motion is treated with classical trajectories, whereas the spin degrees of freedom
are fully quantum. We shall discuss the equivalence between the two models and clarify
the role of the different terms in the equations. The general case (three dimensions in
space and momentum) will be considered first, after which we will focus on the reduced
model used for the forthcoming laser plasma application (one dimension in space and
momentum).

The models will be presented in a dimensionless form, where time is normalized to
the inverse of the plasma frequency ωp = √

n0e2/mε0, velocities are normalized to c, and
length to c/ωp. Here, e denotes the electron charge, c the speed of light, � the reduced
Planck constant, m the electron mass, ε0 the permittivity of vacuum and n0 the fixed ion
density. In these units, electric fields are normalized to mcωp/e, and the scaled Planck
constant is h = �ωp/2 mc2.

2.1. Scalar and vector models in three dimensions
2.1.1. Scalar model

The scalar model, which was put forward in several earlier works (Marklund et al. 2010;
Zamanian et al. 2010; Marklund & Morrison 2011; Manfredi et al. 2019), is described by
a scalar electron distribution function that depends on the extended phase space variable
plus time,

f : (t, x, p, s) ∈ R+×R
3 × R

3 × R
3 �→ f (t, x, p, s) ∈ R, (2.1)

together with the self-consistent electromagnetic fields (E, B) : (t, x) �→ (E, B)(t, x) ∈
R3 × R3. These quantities obey the following Vlasov–Maxwell system (Crouseilles et al.
2021):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f
∂t

+ p · ∇f +
[

E + p × B + βh∇(s · B) + γ h∇
(

B · ∂

∂s

)]
· ∂f

∂p
+ s × B · ∂f

∂s
= 0,

∂E
∂t

= ∇ × B −
∫

R6

pf dp ds − αh∇ ×
∫

R6

sf dp ds,

∂B
∂t

= −∇ × E,

∇ · E = ρ − 1, ρ =
∫

R6

f dp ds, ∇ · B = 0,

(2.2)

with initial conditions

f (t = 0) = f 0, ∇ · E0 =
∫

R6

f 0 dp ds − 1, B(t = 0) = B0 such that ∇ · B0 = 0,

(2.2a–c)
where we have introduced the artificial parameters α, β, γ in order to facilitate the
comparison with the vectorial model. Our earlier work (Crouseilles et al. 2021) used the
above equations with α = 1, β = 1 and γ = 0 (i.e. no cross-derivative in s and p).

2.1.2. Vector model
The vectorial model follows the standard representation of quantum mechanics in terms

of density matrices, which are 2 × 2 matrices for spin-1/2 fermions. The corresponding
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Wigner function is also a 2 × 2 matrix W(t, x, p) ∈ M2,2(C). The scalar distribution
function is related to this matrix Wigner function by the formula (Manfredi et al. 2019)

f (t, x, p, s) = 1
2π

2∑
j,k=1

1
2

[δj,k + s · σ j,k]Wk,j(t, x, p)

= 1
4π

(1 + s3)W1,1(t, x, p) + 1
4π

(s1 − is2)W2,1(t, x, p)

+ 1
4π

(s1 + is2)W1,2(t, x, p) + 1
4π

(1 − s3)W2,2(t, x, p), (2.3)

where σ = (σx, σy, σz) denote the Pauli matrices, s = (s1, s2, s3) ∈ S2 (S2 being the sphere
in R3), and Wβ,α are the components of the Wigner function matrix (Zamanian et al. 2010).
Note that the scalar distribution is a linear function of the spin variable s. Hence, one can
write

(
W1,1(t, x, p) W1,2(t, x, p)
W2,1(t, x, p) W2,2(t, x, p)

)
=

∫
S2

f (t, x, p, s)
1
2

(
1 + 3s3 3(s1 − is2)

3(s1 + is2) 1 − 3s3

)
ds. (2.4)

Transforming to spherical coordinates on S2, s1 = sin θ cos ϕ, s2 = sin θ sin ϕ, s3 = cos θ
with θ ∈ [0,π], ϕ ∈ [0, 2π], we have

∫
S2

si ds = 0,

∫
S2

sisj ds = δi,j
4π

3
,

∫
S2

sisjsk ds = 0,

∫
S2

ds = 4π. (2.5a–d)

Then, it is possible to make the link between the scalar function f (t, x, p, s) and its zeroth-
and first-order ‘spin moments’ ( f0, f )(t, x, p), defined by

f0 =
∫

S2

f ds, f = 3
∫

S2

sf ds. (2.6a,b)

Combining (2.3), (2.4) and (2.6a,b), we obtain the following relation between the scalar
and vector representations:

f (t, x, p, s) = 1
4π

( f0(t, x, p) + s · f (t, x, p)). (2.7)

Again, we note the linear relationship in the spin variable. We also note that ( f0, f ) are
nothing but the components of the Wigner function Wα,β written in the Pauli basis, i.e.
f0 = Tr(W), f = Tr(σW).

Then, the evolution equations for the vectorial model can be seen as the evolution
equations for the ‘spin moments’ of the scalar distribution f (t, x, p, s), which are obtained
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by integrating (2.2) in spin space and assuming the relationship (2.7). This yields⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f0

∂t
+ p · ∇f0 + (E + p × B) · ∂f0

∂p
+ (β + 2γ )h

3

3∑
j=1

∇Bj · ∇pfj = 0,

∂fj

∂t
+ p · ∇fj + (E + p × B) · ∂fj

∂p
+ βh∇Bj · ∇pf0 + (B × f )j = 0, j = 1, 2, 3,

∂E
∂t

= ∇ × B −
(∫

R3

pf0dp + αh

3
∇ ×

∫
R3

f dp
)

,

∂B
∂t

= −∇ × E,

∇ · E = ρ − 1, ρ =
∫

R3

f0 dp, ∇ · B = 0,

(2.8)
with initial conditions

( f0(t = 0), f (t = 0)) = ( f 0
0 , f 0), ∇ · E0 =

∫
R3

f 0
0 dp − 1,

B(t = 0) = B0 such that ∇ · B0 = 0.

⎫⎪⎬
⎪⎭ (2.9a–d)

However, as we shall see, the structure (2.7) is not satisfied for all times by the solution
of the scalar model (2.2) for any arbitrary choice of α, β, γ . When this structure is not
preserved by the time evolution, then the equivalence between the scalar model and its
spin moments (which constitute the vector model) is not satisfied. Only for a particular
choice of the parameters can one establish the equivalence, as stated in the following
Proposition.

PROPOSITION 1. ( f , E, B) is a solution of the scalar model (2.2) (with γ = β and α ∈ R)
with initial condition (2.2a–c) with f 0 = (1/4π)( f 0

0 + s · f 0) if and only if ( f0(t), f (t)) is
a solution of the vector model (2.8) with the initial condition (2.9a–d).

Proof. Assuming that the initial condition satisfies f (t = 0) = (1/4π)( f0(t = 0) + s ·
f (t = 0)), we check that f (t) = (1/4π)( f0(t) + s · f (t)) = (1/4π)( f0(t) + ∑

i sifi(t)) is
true for all time t > 0. To do so, we insert the decomposition f (t) = (1/4π)( f0(t) + s ·
f (t)) into the scalar equation (2.2). After some calculations detailed in Appendix A, we
obtain

0 = 1
4π

∂( f0 + s · f )

∂t
+ 1

4π
p · ∇( f0 + s · f ) + 1

4π
(s × B) · ∂( f0 + s · f )

∂s

+ 1
4π

[
(E + p × B) + βh∇(s · B) + βh∇

(
B · ∂

∂s

)]
· ∂( f0 + s · f )

∂p

= 1
4π

(
∂f0

∂t
+ p · ∇f0 + (E + p × B) · ∂f0

∂p
+ βh

∑
i

∇Bi · ∂fi

∂p

)

+ 1
4π

∑
i

si

(
∂fi

∂t
+ p · ∇fi + (E + p × B) · ∂fi

∂p
+ (B × f )i + βh∇Bi · ∂f0

∂p

)
.

(2.10)
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Since (1, s1, s2, s3) is a basis, we can identify the coefficients to be zero which leads to the
four equations of the vector model satisfied by ( f0, f1, f2, f3). Thus, since f and (1/4π)

( f0 + s · f ) share the same initial condition, we get that f = (1/4π)( f0 + s · f ) is a
solution of the scalar model if and only if ( f0, f1, f2, f3) is the solution of vector
model (2.8). �

This Proposition provides a link between the vector and the scalar models, which implies
that we can solve either a six-dimensional phase space vector model or an extended
nine-dimensional scalar model. Let us remark that the additional term (preceded by the
coefficient γ ) is not easy to approximate using PIC methods, since it is a second-order
cross-derivative term, whereas its counterpart in the vector model is a simple transport
term.

2.1.3. Poisson structure
It has been shown in (Marklund & Morrison 2011) (see also Qin et al. 2015; Xiao

et al. 2015) that the scalar model (2.2) with γ = 0, α = β enjoys a non-canonical Poisson
structure with the following Poisson bracket:

{F ,G} =
∫

f
[
δF
δf

,
δG
δf

]
xp

dx dp ds +
∫ (

δF
δE

· ∂f
∂p

δG
δf

− δG
δE

· ∂f
∂p

δF
δf

)
dx dp ds

+
∫ (

δF
δE

·
(
� × δG

δB

)
− δG

δE
·
(
� × δF

δB

))
dx

+
∫

f B ·
(

∂

∂p
δF
δf

× ∂

∂p
δG
δf

)
dx dp ds

+ 1
βh

∫
f s ·

(
∂

∂s
δF
δf

× ∂

∂s
δG
δf

)
dx dp ds, (2.11)

and the Hamiltonian functional

H( f , E, B) = 1
2

∫
|p|2f dx dp ds − βh

∫
s · Bf dx dp ds + 1

2

∫ (|E|2 + |B|2) dx,

(2.12)
so that the scalar model can be reformulated as ∂tZ = {Z,H}, with Z = ( f , E, B).

We can also construct a geometric Poisson structure for the vector model introduced in
Hurst et al. (2014, 2017). For that, we need β + 2γ = α in (2.8) and the Poisson bracket is

{F ,G} =
∫

f0

[
δF
δf0

,
δG
δf0

]
dx dp +

3∑
i=1

∫
fi

[
δF
δfi

,
δG
δf0

]
dx dp

+
3∑

i=1

∫
fi

[
δF
δf0

,
δG
δfi

]
dx dp +

3∑
i=1

3β

α

∫
f0

[
δF
δfi

,
δG
δfi

]
dx dp

+
3∑

i=0

∫ (
δF
δE

· ∂fi

∂p
δG
δfi

− δG
δE

· ∂fi

∂p
δF
δfi

)
dx dp

+
∫

f0B ·
(

∂

∂p
δF
δf0

× ∂

∂p
δG
δf0

)
dx dp
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+
3∑

i=1

∫
fiB ·

(
∂

∂p
δF
δfi

× ∂

∂p
δG
δf0

− ∂

∂p
δF
δf0

× ∂

∂p
δG
δfi

)
dx dp

+ 3
α

1
h

∫
f ·

(
δF
δf

× δG
δf

)
dx dp

+
∫ (

δF
δE

·
(
� × δG

δB

)
− δG

δE
·
(
� × δF

δB

))
dx, (2.13)

while the Hamiltonian functional is

H( f0, f , E, B) = 1
2

∫
|p|2f0 dx dp + 1

2

∫ (|E|2 + |B|2) dx − α

3
h

∫
B · f dx dp, (2.14)

so that the system can be written as ∂tZ = {Z,H}. It is easy to check that this bracket is
bilinear, skew-symmetric and verifies Leibniz’s rule, but it is not clear whether the Jacobi
identity is satisfied. Hence, this bracket is not strictly speaking a Poisson bracket such as
the one occurring in the scalar model; nevertheless, we will still refer to it as a Poisson
bracket for the sake of simplicity. We note that the case β = 1, γ = 1 and α = 3 yields
the vector model introduced in (Hurst et al. 2014, 2017; Manfredi et al. 2022) and ensures,
by Proposition 1, the equivalence between the two models.

2.1.4. Summary
In summary, we have found that, in order to ensure the equivalence between the

scalar model (2.2) and the vector model (2.8), one needs to take β = γ and arbitrary α.
Furthermore, the vector model enjoys a geometric (antisymmetric-bracket) structure when
β + 2γ = α. The choice β = 1, γ = 1 and α = 3 satisfies both conditions, and recovers
the ‘standard’ vector model commonly used in the literature (Hurst et al. 2014, 2017;
Manfredi et al. 2022). However, as the γ -term is difficult to implement in a PIC method
because of the double derivative, it has been common to take γ = 0 when simulating
the scalar model (Crouseilles et al. 2021). In that case, it is still possible to recover the
Poisson structure when α = β, but the equivalence with the standard vectorial model no
longer holds.

2.2. Reduced 1-D scalar and vector models
Here, we develop a reduced 1-D model that is relevant to study laser–plasma interactions.
Both scalar and vector models are considered.

2.2.1. The 1-D scalar model
Following Ghizzo et al. (1990), Crouseilles et al. (2021) and Manfredi et al.

(2022), one can derive a reduced 1-D spin-Vlasov–Maxwell model by considering
the case of a plasma interacting with an electromagnetic wave propagating in the
longitudinal x direction and assuming that all fields depend spatially on x only.
Choosing the Coulomb gauge ∇ · A = 0, the vector potential A lies in the perpendicular
(transverse) plane, i.e. A = (0, Ay, Az) = (0, A⊥). Using E = −∇φ − ∂tA, we obtain,
using the notation E = (Ex, Ey, Ez) = (Ex, E⊥): E⊥ = −∂tA⊥ and Ex = −∂xφ, and B =
∇ × A = (0,−∂xAz, ∂xAy). We then consider an electron distribution that is ‘cold’ in
the transverse plane, i.e. δ(p⊥ − A⊥)f (t, x, px, s), where p = ( px, py, pz) = ( px, p⊥) is the
linear momentum and p − A is the canonical momentum. After integration with respect
to p⊥, the relevant extended phase space is reduced to five dimensions, instead of nine
dimensions for the general case. in the following, the longitudinal variable px will be
simply denoted by p.
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The scalar spin-Vlasov–Maxwell system (2.2) becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f
∂t

+ p
∂f
∂x

+
[

Ex − A⊥ · ∂A⊥
∂x

− h
∂2Az

∂x2

(
βs2 + γ

∂

∂s2

)
+ h

∂2Ay

∂x2

(
βs3 + γ

∂

∂s3

)]
∂f
∂p

+
[

s3
∂Az

∂x
+ s2

∂Ay

∂x
,−s1

∂Ay

∂x
,−s1

∂Az

∂x

]
· ∂f
∂s

= 0,

∂Ex

∂t
= −

∫
R4

pf dp ds,

∂Ey

∂t
= −∂2Ay

∂x2
+ Ay

∫
R4

f dp ds + αh

∫
R4

s3
∂f
∂x

dp ds,

∂Ez

∂t
= −∂2Az

∂x2
+ Az

∫
R4

f dp ds − αh

∫
R4

s2
∂f
∂x

dp ds,

∂A⊥
∂t

= −E⊥,

∂Ex

∂x
=

∫
R4

f dp ds − 1,

(2.15)
with initial condition

f (t = 0) = f 0,
∂E0

x

∂x
=

∫
R4

f 0 dp ds − 1,

(Ey, Ez)(t = 0) = (E0
y , E0

z ), A⊥(t = 0) = A0
⊥.

⎫⎪⎬
⎪⎭ (2.16a–d)

Taking γ = 0 and α = β, the scalar spin-Vlasov–Maxwell system (2.15) can be
expressed with one Poisson bracket as follows. For any two functionals F , and G
depending on f , E and A⊥, we have

{F ,G} =
∫

f
[
δF
δf

,
δG
δf

]
xp

dx dp ds +
∫ (

δF
δEx

∂f
∂p

δG
δf

− δG
δEx

∂f
∂p

δF
δf

)
dx dp ds

+
∫ (

δG
δA⊥

· δF
δE⊥

− δF
δA⊥

· δG
δE⊥

)
dx

+ 1
βh

∫
f s ·

(
∂

∂s
δF
δf

× ∂

∂s
δG
δf

)
dx dp ds. (2.17)

With the Hamiltonian functional defined by

H( f , E, A⊥) = 1
2

∫
p2f dx dp ds + 1

2

∫
|A⊥|2f dx dp ds

+ 1
2

∫ (
|E|2 +

∣∣∣∣∂A⊥
∂x

∣∣∣∣2
)

dx + βh

∫ (
s2

∂Az

∂x
− s3

∂Ay

∂x

)
f dx dp ds,

(2.18)

the scalar spin Vlasov–Maxwell system of equations (2.15) can thus be reformulated
as ∂tZ = {Z,H}, where Z = ( f , Ex, Ey, Ez, Ay, Az) denotes the vector of the dynamical
variables.
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2.2.2. The 1-D vector model
Here, the goal is to derive an equivalent model of (2.15) satisfied by ( f0, f )(t, x, p). To

do so, we use Proposition 1 which states that the scalar model is equivalent to the vector
model whose unknown are given by some moments in the s variable. We now state the
following Proposition 2, which is adapted to the 1-D laser–plasma model we consider
here. Proposition 2 is a direct consequence of Proposition 1, hence the derivation of the
vector model is postponed to Appendix B.

PROPOSITION 2. Let f (t) the solution to the scalar model (2.15) (with γ = β and α ∈ R)
with initial conditions (2.16a–d) with f 0 = (1/4π)( f 0

0 + s · f 0). Then, ( f0(t), f (t)) is the
solution of the following vector model where B = (0,−∂xAz, ∂xAy):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f0

∂t
+ p

∂f0

∂x
+

(
Ex − A⊥ · ∂A⊥

∂x

)
∂f0

∂p
− (β + 2γ )

3
h
∂2Az

∂x2

∂f2

∂p
+ βh

∂2Ay

∂x2

∂f3

∂p
= 0,

∂f
∂t

+ p
∂f
∂x

+
(

Ex − A⊥ · ∂A⊥
∂x

)
∂f
∂p

+ B × f + βh
∂B
∂x

∂f0

∂p
= 0,

∂Ex

∂t
= −

∫
R

pf0 dp,

∂Ey

∂t
= −∂2Ay

∂x2
+ Ay

∫
R

f0 dp + αh

3

∫
R

∂f3

∂x
dp,

∂Ez

∂t
= −∂2Az

∂x2
+ Az

∫
R

f0 dp − αh

3

∫
R

∂f2

∂x
dp,

∂A⊥
∂t

= −E⊥,

∂Ex

∂x
=

∫
R

f0 dp − 1,

(2.19)

with the initial conditions ( f0(t = 0), f (t = 0)) = ( f 0
0 , f 0), ∂Ex/∂x = ∫

R
f 0
0 dp − 1,

(Ey, Ez)(t = 0) = (E0
y , E0

z ), A⊥(t = 0) = A0
⊥. Conversely, if ( f0(t), f (t)) is the solution of

(2.19), thus f (t) = (1/4π)( f0(t) + s · f (t)) is the solution of the scalar model (2.15) (with
γ = β, α ∈ R).

2.2.3. Poisson structure
The model (2.19) with α = β + 2γ enjoys a Poisson structure with the following

(antisymmetric) bracket:

{F ,G} =
∫

f0

[
δF
δf0

,
δG
δf0

]
xp

dx dp +
3∑

i=1

∫
fi

[
δF
δf0

,
δG
δfi

]
xp

dx dp

+
3∑

i=1

∫
fi

[
δF
δfi

,
δG
δf0

]
xp

dx dp

+ 3β

α

3∑
i=1

∫
f0

[
δF
δfi

,
δG
δfi

]
xp

dx dp
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+
3∑

i=0

∫ (
δF
δEx

∂fi

∂p
δG
δfi

− δG
δEx

∂fi

∂p
δF
δfi

)
dx dp

+ 3
αh

∫
f ·

(
δF
δf

× δG
δf

)
dx dp +

∫ (
δG
δA⊥

· δF
δE⊥

− δF
δA⊥

· δG
δE⊥

)
dx,

(2.20)

where f = ( f1, f2, f3). The Hamiltonian functional is given by

H( f0, f , E, A⊥) = 1
2

∫
p2f0 dx dp + 1

2

∫
|A⊥|2f0 dx dp

+ 1
2

∫ (
|E|2 +

∣∣∣∣∂A⊥
∂x

∣∣∣∣2
)

dx + αh

3

∫ (
f2

∂Az

∂x
− f3

∂Ay

∂x

)
dx dp,

(2.21)

so that the system can be written in a compact form as

∂Z
∂t

= {Z,H}, (2.22)

where Z = ( f0, f , Ex, Ey, Ez, Ay, Az) denotes the vector of the dynamical variables.

2.3. Discretization of the 1-D vector model
Here, we present the numerical method that we shall use to compute an approximate
solution of (2.19). Regarding the time discretization, we use a Hamiltonian splitting
method which provides a way to split the terms of the partial differential equation system
(2.19). For the phase-space discretization, spectral methods are used in space, while
finite-volume methods are used for the velocity direction.

For the system (2.19), the Hamiltonian (2.21) can be split into five parts,

H = Hp + HA + HE + H2 + H3, (2.23)

where

Hp = 1
2

∫
p2f0 dx dp, HA = 1

2

∫
|A⊥|2f0 dx dp + 1

2

∫ ∣∣∣∣∂A⊥
∂x

∣∣∣∣2

dx,

HE = 1
2

∫
|E|2 dx = 1

2

∫
(E2

x + |E⊥|2) dx,

H2 = αh

3

∫
f2

∂Az

∂x
dx dp, H3 = −αh

3

∫
f3

∂Ay

∂x
dx dp.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.24)

With (2.22) and (2.23), we split the Hamiltonian to get

∂Z
∂t

= {Z,Hp} + {Z,HA} + {Z,HE} + {Z,H2} + {Z,H3}, (2.25)

which induces five subsystems to solve: ∂tZ = {Z,H�} with � = p, A, E, 2, 3 according to
(2.23). Denoting ϕH�

t (Z(0)) the exact solution at time t of ∂tZ = {Z,H�} with the initial
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FIGURE 1. Schematic view of the geometry of the laser–plasma interaction during stimulated
Raman scattering. The electromagnetic vector potential lies in the transverse plane ( y, z),
whereas the electrostatic field is directed along the longitudinal direction x, which is the direction
of propagation of the electromagnetic wave. Here k0, ks and ke represent the wavenumbers for
the incident wave, the scattered wave and the electron plasma wave, respectively.

condition Z(0), the solution of the full model (2.22) is thus approximated by

Z(t) = (Π�=p,A,E,2,3 ϕH�

t )Z(0). (2.26)

This is a first-order splitting, but higher-order ones can also be derived. Since the splitting
involves here five steps, we will restrict ourselves to the Strang scheme

Z(t) = (ϕ
Hp

t/2 ◦ ϕ
HA
t/2 ◦ ϕ

HE
t/2 ◦ ϕ

H2
t/2 ◦ ϕH3

t ◦ ϕ
H2
t/2 ◦ ϕ

HE
t/2 ◦ ϕ

HA
t/2 ◦ ϕ

Hp

t/2 )Z(0). (2.27)

The details of the calculations of the subsystem solutions are given in Appendix C. It
turns out that each subsystem ∂tZ = {Z,H�} with � = p, A, E, 2, 3 can be solved exactly
in time so that the error in time only comes from the splitting itself, and can be controlled
by using high-order schemes.

3. Numerical experiments

This section is dedicated to numerical simulations of the laser–plasma models
presented above. Laser–plasma interactions are a broadly studied topic in plasma physics.
An important problem in this field is the acceleration of charged particles by large
amplitude plasma waves, which may be created, amongst others, through stimulated
Raman scattering (SRS) (Forslund, Kindel & Lindman 1975). During SRS, an incident
electromagnetic wave generates a scattered electromagnetic wave and a Langmuir plasma
wave that accelerates the electrons (see figure 1). Here, our goal is to investigate the
effect of the electron spin on the SRS instability through the simulation of the vectorial
spin-Vlasov–Maxwell model (2.19) by using the grid-based (Eulerian) time-splitting
method described in the preceding section.

Our analysis will proceed step by step. First, we consider the problem without spin,
which has been studied in several earlier works (Ghizzo et al. 1990; Huot et al. 2003; Li
et al. 2020) (§ 3.1). Second, we compare the results obtained with the scalar and vector
models at short times, for different values of the scaled Planck constant h (§ 3.2.1). Next,
we remove the effect of plasma self-consistency on the propagation of the electromagnetic
wave, in order to precisely validate the numerical simulations for long times (§ 3.2.2).
Finally, we simulate the general spin-dependent vector model for γ = 0 and 1 (which
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corresponds to α = 1 and 3, respectively) and check its conservation properties and other
physical issues (§ 3.2.3).

3.1. Stimulated Raman Scattering without spin
We consider the model corresponding to (2.19) with f = 0 and h = 0 (which is the model
studied in Ghizzo et al. 1990; Li et al. 2020). We use a perturbed Maxwellian as initial
condition for f0,

f0(t = 0, x, p) = (1 + ε cos(kex))
1√

2πvth

exp
(

− p2

2v2
th

)
, (3.1)

and the initial longitudinal electric field Ex(t = 0, x) = (ε/ke) sin(kex). Here, ε and ke
are the amplitude and the wavenumber of the perturbation, respectively, and vth is the
electron thermal speed (normalized to c). For the transverse fields, we consider an incident
electromagnetic wave with circular polarization,

Ey(t = 0, x) = E0 cos(k0x), Ez(t = 0, x) = E0 sin(k0x),

Ay(t = 0, x) = −E0

ω0
sin(k0x), Az(t = 0, x) = E0

ω0
cos(k0x),

⎫⎬
⎭ (3.2)

where k0, ω0 and E0 are the wavenumber, frequency and amplitude of the transverse
electric field, respectively. We consider periodic boundary conditions with spatial period
L = 4π/ke, and take pmax = 5 for the computational domain in momentum space. A
schematic view of the geometry is shown in figure 1.

The dispersion relation can be derived from the usual matching conditions for frequency
and wavenumber,

ω0 = ωs + ωe, k0 = ks + ke (3.3a,b)

and
ω2

0,s = 1 + k2
0,s, ω2

e = 1 + 3k2
ev

2
th, (3.4a,b)

where the subscript ‘0’ refers to the pump wave, ‘s’ to the scattered electromagnetic wave
and ‘e’ to the electron plasma wave. As in Ghizzo et al. (1990), we take the following
values for the above parameters:

ε = 0.02, ke = 1.223, k0 = 2ke, vth = 0.17. (3.5a–d)

Then, using the matching relations (3.3a,b) and (3.4a,b), we get

ω0 = 2.643, ks = ke, ωs = 1.58, ωe = 1.063. (3.6a–d)

Finally, we take the amplitude of the incident wave E0 = Eref = 0.325 as a reference value.
To check the accuracy of our code in the spinless regime, the grid parameters are taken

as Nx = 129, Np = 129, �t = 0.05 and a Strang splitting method is used for the time
discretization. As we can observe in figure 2(a,b), the code preserves the total energy to
very high precision (the relative error is less than 0.05 %).

We also consider the Poisson equation conservation; to do so, we define the quantity
Poi.err as

Poi.err(t) =
⎛
⎝∑

k

∣∣∣∣∣2πik
L

Êx,k(t) − �p
Np∑
l=1

f̂k,l(t)

∣∣∣∣∣
2⎞⎠

1/2

, (3.7)

where Êx,k(t) is the kth Fourier component of the longitudinal electric field Ex, and f̂k,l(t)
is the kth Fourier component of the distribution function f (x, p, t) computed at the lth grid
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(a) (b)

(c) (d)

FIGURE 2. The SRS simulations without spin. Time evolution of the relative energy |Etot(t) −
Etot(0)|/Etot(0) (a,b) and of the longitudinal electric field norm ‖Ex(t)‖ in semilog scale (c,d),
for E0 = Eref = 0.325 (a,c) and E0 = 2Eref = 0.65 (b,d). The red straight lines represent the
instability growth rate expected from linear theory.

point in momentum space. If Poisson’s equation is satisfied, the above quantity should
vanish. We observe, as expected, that the Poisson equation conservation is ensured at the
machine precision level. In figure 2(c,d), we also plot the time evolution of the longitudinal
electric field norm

‖Ex(t)‖ =
(

1
2

∫ L

0
E2

x(t, x) dx
)1/2

(3.8)

in semilog scale, for two values of the incident amplitude (E0 = Eref = 0.325 and E0 =
2Eref = 0.65). We observe that the instability growth rate (γinst ≈ 0.03 for E0 = Eref and
γinst ≈ 0.06 for E0 = 2Eref) is proportional to the amplitude E0 and close to the value
expected from the linear theory (Ghizzo et al. 1990).

3.2. Vector and scalar models with spin
Here, several comparisons are performed between the vector and scalar models in different
configurations, but always with α = β = 1 and γ = 0. Indeed, when γ �= 0 the PIC code
could not be used because of the double derivative in p and s in the Vlasov equation.
We recall that the other condition (α = β = 1) ensures the Poisson structure for the PIC
method. However, as pointed out earlier, with this choice the scalar and vector models
are not mathematically equivalent. Hence, any observed differences in the results may
originate from either this inequivalence or from the different numerical method employed
in the simulations (PIC or Eulerian).
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We use the following initial conditions for the scalar model:

f (t = 0, x, p, s) = 1
4π

(1 + ηsz)(1 + ε cos(kex))
1√

2πvth

exp
(

− p2

2v2
th

)
, (3.9)

and for the vector model

f0(t = 0, x, p) = (1 + ε cos(kex))
1√

2πvth

exp
(

− p2

2v2
th

)
,

f1(t = 0, x, p) = f2(t = 0, x, p) = 0,

f3(t = 0, x, p) = η

3
(1 + ε cos(kex))

1√
2πvth

exp
(

− p2

2v2
th

)
,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.10)

with x ∈ [0, 4π/ke], p ∈ R, s ∈ S2. The variable η represents the degree of spin
polarization of the electron gas (Manfredi et al. 2019): η = 0 for an unpolarized electron
gas and η = 1 for a fully polarized one. In the following, we use η = 0.5 and the
parameters for the electromagnetic fields are the same as in the spinless case of § 3.1
(circularly polarized wave).

We will first compare the full models for short times (§ 3.2.1), then we consider a
simplified model (neglecting self-consistency) for long times (§ 3.2.2), and finally we
compare results for the full models at long times (§ 3.2.3).

3.2.1. Full spin-dependent models at short times
In this part, we focus on the solutions for short times (approximately 100ω−1

p ), which
enables us to employ refined numerical parameters in order to compare as accurately as
possible the two models.

From Proposition 1, we proved the equivalence between the scalar and vector models.
However, this equivalence is only true for γ �= 0, so that the term γ h∇(B · ∂/∂s) · ∂f /∂p
is present in the scalar Vlasov equation (2.15). This term cannot be easily described
using standard PIC methods based on trajectories, hence, it is neglected most of the time.
However, when h = 0 this term disappears, so that the two models are again equivalent
for any value of γ . Then, by progressively increasing h, we can show how the results
of the scalar and vector models depart from each other. The numerical solutions are
obtained using the PIC code described in our earlier work (Crouseilles et al. 2021) and
the grid-based Eulerian code presented in the preceding section of the present paper.

To control the influence of the numerical error, we use a refined mesh for both
methods: Nx = 258 and Np = 103 for the grid-based method, and Nx = 258 with number
of particles Npart = 105 for the PIC method. The initial conditions are given by (3.10)
with η = 0.5, α = 0.02, vth = 0.17 and E0 = Eref. Finally, the time step is �t = 0.004 for
both cases (both methods use a Strang splitting) and we consider the following values
for the scaled Planck constant h = 0, 0.001, 0.1, 0.25, 0.5, 0.75 and 1. We note that,
strictly speaking, for such large values of h a relativistic treatment of the motion should be
adopted. However, here the purpose is simply to study the agreement between the scalar
and vector models, so that all considerations about relativistic corrections are ignored.

In figure 3, we study the difference (‘error’) between the scalar and vector models by
considering the perpendicular electric energy HE,⊥ = 1

2

∫
(E2

y + E2
z ) dx and the magnetic

energy HB = 1
2

∫
(B2

y + B2
z ) dx. We plot, on a log–log scale, the error (in the L∞ norm)

of these energies obtained from the scalar and vector models, for different values of h.
For both energies, the difference decreases with decreasing h in an approximately linear
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(a) (b)

FIGURE 3. Difference (L∞ norm) between the scalar (superscript S) and vector (superscript V)
models for the perpendicular electric energy (HE,⊥, a) and magnetic energy (HB, b), for different
values of the scaled Planck constant h. The horizontal dashed lines correspond to the numerical
error observed for h = 0. The green straight line has a slope equal to unity.

fashion. This is in agreement with the fact that, for γ = 0, the difference between two
models is expected to be O(h). For very small values of h, the difference between the
two models saturates to the numerical error due to the different numerical methods (PIC
and Eulerian). The horizontal dashed line in figure 3 corresponds to such numerical error
observed for h = 0.

3.2.2. Spin-dependent models without wave self-consistency at long times
Here, we study the propagation of a circularly polarized wave into a plasma that does

not retroact on the wave in the transverse direction, although the self-consistency along the
propagation direction is maintained through the Poisson equation (Crouseilles et al. 2021).
To simulate this, we consider a reduced model. Using the above notations, we remove the
term 1

2

∫
Ω

|A⊥|2f0 dx dp from the Hamiltonian H in (2.21), then through the Poisson bracket
representation (2.22) we can derive a reduce system similar to (2.19), but without the
terms A⊥ · (∂A⊥/∂x)(∂f0/∂p) and A⊥ · (∂A⊥/∂x)(∂ f /∂p) in the Vlasov equations, and
the terms Ay

∫
R

f0 dp and Az
∫

R
f0 dp in the sources of the Maxwell equations. In this case,

the electromagnetic wave is not coupled to the plasma and its evolution can be determined
exactly by solving the corresponding Maxwell equations for Ey and Ez. In contrast, the
longitudinal nonlinearity is kept in the model, hence, Ex is a solution of Poisson’s equation.

We consider the initial condition (3.10) for the distribution functions and we use
η = 0.5, α = 0.02, vth = 0.17 and h = 0.00022. The electromagnetic fields are initialized
as in the spinless case (see § 3.1), but here we have different matching conditions for the
circularly polarized wave, since the wave propagates in vacuum in this case. We still have
the relation (3.3a,b) together with the following ones:

ω0,s = k0,s, ω2
e = 1 + 3k2

ev
2
th. (3.11a,b)

We still consider k0 = 2ke, so that we obtain from the matching relations (3.3a,b) and
(3.11a,b),

ω0 = 2.0928, ks = ke = ωs = ωe = 1.0464. (3.12a,b)

The amplitude of the incident wave is E0 = Eref = 0.325.
Neglecting the spatial dependence and considering the following time dependent

magnetic field B = (0, B0 sin(ω0t),−B0 cos(ω0t)) with B0 = E0k0/ω0, one can obtain
an approximate closed equation for the dynamics of the macroscopic spin Sz(t) (with
Sz(t) = 1

3

∫
f3 dx dp for the vector case and Sz(t) = ∫

s3f dx dp ds for the scalar case). In
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the regime B0/ω0 
 1 (i.e. when the Larmor precession frequency eB0/m is much smaller
than the laser frequency), it can be shown that the spin Sz(t) oscillates with a frequency
ωspin = B2

0/(2ω0) (see Crouseilles et al. (2021) for more details).
On the numerical side, we use the same parameters as in § 3.1 (i.e. Nx = Np = 129 and

�t = 0.04) for the Eulerian method and Nx = 128, Npart = 2 × 104, �t = 0.04 for the
PIC method. Different values of the incident wave amplitude E0 are studied to compare the
numerical results with the analytic frequency ωspin = B2

0/(2ω0). Indeed, as the transverse
retroaction terms were removed from the Vlasov equation, we do not expect an instability
here, so that the amplitude of the incident wave should remain approximately constant,
which justifies the analytical calculations.

In figure 4, the time evolution of Sz obtained by the vector model (Eulerian method)
and scalar model (PIC method) are displayed for three values of the amplitude of the
incident electromagnetic wave E0. The corresponding spectrum, normalized to its peak
value, is also shown in figure 4(b,d, f ). We observe that Sz displays an oscillatory damped
behaviour for all cases, with a damping rate that is significantly higher when E0 increases.
The damping rate is slightly larger for the vector model at long times, but the agreement
between the two approaches is very good for short times (up to ≈1500ω−1

p ). In the
spectrum, the expected analytical frequencies ωspin = 0.0039, 0.0158 and 0.063 are also
recovered with good precision. In particular, the quadratic scaling between ωspin and B0 is
correctly reproduced.

3.2.3. Full spin-dependent models at long times
Here, we present numerical results corresponding to α = 1, β = 1, γ = 0 for the scalar

and vector models for large times (the short time behaviour was investigated in § 3.2.1).
In this case, the models are not equivalent as soon as h �= 0; however, the Poisson bracket
structure is ensured for both models, so that the Hamiltonian splitting can be used (Strang
splitting) to get a good total energy conservation for both codes. The initial condition for
the distribution functions is that of (3.10) and the electromagnetic waves are circularly
polarized, with the same parameters as in the spinless case of § 3.1.

Eulerian code results (vector model). First, we illustrate the general results obtained
with the Eulerian (vector approach), before proceeding to the systematic comparison with
the PIC code (scalar approach). The results, which were obtained with h = 0.00022, are
shown in figures 5 and 6.

The instability rate measured from the growth of the longitudinal electric field
amplitude ‖Ex(t)‖ is close to the one observed in the spinless simulations (γinst ≈ 0.03).
Moreover, the magnetic field energy strongly decreases during the linear phase (where
the longitudinal electric energy increases exponentially) to reach a plateau, before another
strong drop around t ≈ 2000ω−1

p . Finally, the spin component Sz(t) = 1
3

∫
f3 dx dp has a

damped oscillatory behaviour which is qualitatively similar to the results obtained with
the PIC approach (Crouseilles et al. 2021).

We also show, in figure 6, the phase space portraits of the distribution functions
f0, f1, f2, f3 at time t = 320ω−1

p . Two phase-space vortices can be clearly seen in these
figures thanks to the high-order numerical methods used for these Eulerian simulations.
As expected, the size of each vortex is close to the wavelength of the unstable plasma wave
2π/ke ≈ 5.15 (see § 3.1). We note that the statistical noise inherent to PIC codes would
have precluded such high-resolution diagnostics.

Comparison with PIC code (scalar model) for h = 0. In figure 7, we compare the vector
and scalar models with E0 = 2Eref and h = 0. When h = 0 and α = β = 1, γ = 0, the
scalar and vector models are mathematically equivalent, but the results may differ because
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 4. Spin-dependent reduced model without wave self-consistency. Time evolution of
Sz (a,c,e) and frequency spectrum of Sz (b,d, f ), for the scalar (red lines) and vector (blue
lines) models. We recall that Sz = ∫

s3f dx dp ds for the vector model (Eulerian code) and
Sz = 1

3

∫
f3 dx dp for the scalar model (PIC code). The amplitude of the incident wave is, from

top to bottom, E0 = 0.5Eref, E0 = Eref and E0 = 2Eref. The analytical predictions for the peak
frequency are ωspin = 0.0039, 0.0158 and 0.063, from top to bottom.

of the different numerical methods that are used. Therefore, this is a good comparative test
of the two numerical methods.

First, we observe that the instability rate on ‖Ex(t)‖ is similar for the two approaches,
and very close to the one observed in the spinless case (γinst ≈ 0.06). We also checked that
the growth rate is linear with respect to E0 by running the case E0 = Eref (twice as small as
in figure 7) and that the total energy is very well conserved (with an error ≈10−5 even for
long times, for both codes). Second, we can see that the spin frequencies obtained from
the PIC and Eulerian simulations are very similar (≈0.08ωp).
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(a) (b) (c)

FIGURE 5. Full spin-dependent vector model (Eulerian method with Nx = 259, Np = 512, p ∈
[−2.5, 2.5], �t = 0.02). (a) Longitudinal electric field norm ‖Ex‖ in semilog scale (the inset
shows a zoom on short times to highlight the linear instability phase with slope ≈0.03).
(b) Magnetic energy 1

2

∫ |B|2 dx. (c) Spin component Sz(t).

Generally speaking, the results of the two codes are in good agreement, particularly
during the initial linear phase. The remaining observed differences should be attributed to
the two numerical methods (PIC and Eulerian), which are intrinsically different in their
approaches.

Effect of the scaled Planck constant. In figures 8, 9 and 10, the influence of h (h =
0.01, 0.1 and 0.5) is studied for the vector and scalar models for E0 = 2Eref. The same
initial condition as before is used and α = β = 1, γ = 0. Let us recall that here, since
h �= 0, the two models are not mathematically equivalent. The linear phase becomes quite
different as h increases: in particular, the electric energies do not saturate at the same level.
However, the evolution of Sz is similar for both approaches: the oscillations are damped
more quickly as h increases. For both codes, the total energy is well preserved (the relative
error is approximately 10−4, not shown). Finally, the magnetic energies, even though they
both decrease in the two approaches, have rather different behaviours, with a bigger drop
observed for the vector model. Of course, the differences can be explained by the fact that
in this case the underlying models are not equivalent. We emphasize that the Eulerian code
has been tested on several meshes to ensure the numerical convergence, whereas the PIC
code would require, in order to achieve convergence, a large number of particles Np that
would lead to very time-consuming simulations.

Finally, we note, by comparing figures 8(e, f ), 9(e,f ) and 10(e, f ), that the spin
oscillations are more strongly damped for larger values of h.

Temperature effects. In figure 11, we study the influence of a higher electron temperature
by taking vth = 0.51 in the initial condition (3.10) for the Eulerian and PIC codes (instead
of vth = 0.17 in figure 5). The field amplitude is fixed to E0 = Eref and h = 0.00022.
For the present case vth = 0.51, the matching relations (3.3a,b) and (3.4a,b) yield the
wavenumbers ke = 1.46 and k0 = 2ke. In figure 11, we show the time evolution of the
electric energy and the spin component Sz for the Eulerian and PIC methods. These results
have to be compared with the case vth = 0.17 presented in figure 5.

Thanks to its superior resolution, the Eulerian code allows the initial longitudinal
electric field to be very small (figure 11a), in accordance with the initial condition
(3.10). Subsequently, this initial perturbation grows unstable and saturates nonlinerarly
at a certain (still rather small) value. The spikes observed on the figure correspond to the
well-known recurrences occurring at times multiple of 2π/(ke�p), where �p is the grid
step in momentum space. These recurrences are due to the discretization of momentum
space. In contrast, the PIC code (figure 11b) cannot resolve the initial small perturbation
because of its inherent noise, so the instability is lost. Indeed, the noise level of the PIC
code is even higher than the saturation level observed for the Eulerian code.
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(a)

(b)

(c)

(d)

FIGURE 6. Full spin-dependent vector model (Eulerian method with Nx = 129, Np = 256, p ∈
[−2.5, 2.5], �t = 0.04). From (a) to (d): contour plots of the four components of the electron
distribution function f0, f1, f2, f3 in the phase space (x, p), at time t = 320ω−1

p .
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(a) (b)

(c) (d )

(e) ( f )

(g) (h)

FIGURE 7. Comparison of the full spin-dependent vector and scalar models with h = 0.0
and E0 = 2Eref (Eulerian method with p ∈ [−5, 5] Nx = 259, Np = 512, �t = 0.02 and PIC
method with Nx = 259, Npart = 105, �t = 0.02). (a,c,e,g) Vector model with Eulerian method;
(b,d, f,h) scalar model with PIC method. From top to bottom are shown (a,b) the longitudinal
electric field, (c,d) the magnetic energy, (e, f ) the spin component Sz, and (g,h) its frequency
spectrum.
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 8. Comparison of the full spin-dependent vector and scalar models for h = 0.01
and E0 = 2Eref (Eulerian method with p ∈ [−5, 5] Nx = 259, Np = 512, �t = 0.02 and PIC
method with Nx = 259, Npart = 105, �t = 0.02). (a,c,e) Vector model with Eulerian method;
(b,d, f ) scalar model with PIC method. From top to bottom, we show (a,b) the time evolution of
the longitudinal electric field, (c,d) the magnetic energy, and (e, f ) the spin component Sz.

In spite of these limitations, the spin component Sz decreases in a similar fashion for
both methods, and becomes almost zero after ωpt = 1000.

By comparing the results of figure 11 (vth = 0.17) and figure 5 (vth = 0.51), we also note
that the spin component Sz is more strongly damped for the case at higher temperature, as
should be expected.

Full vector model with γ �= 0. In this last part, we simulate the full spin-Vlasov–Maxwell
vector model introduced in Hurst et al. (2014, 2017) and Manfredi et al. (2022), i.e. for
γ = 1, α = 3, β = 1, for which we cannot perform simulations for the scalar model, since
the cross-derivative term is not implemented in our PIC code. In particular, we compare
the results of the Eulerian code for this set of parameters (with γ �= 0) with those obtained
with the same code but γ = 0 and α = β = 1 (see figure 9).
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 9. Same as figure 8 for h = 0.1.

In figure 12, we show the comparison for a typical case with E0 = 2Eref and h = 0.1.
The results are in reasonable agreement: in particular, the longitudinal electric fields and
the magnetic energies saturate nonlinearly at similar levels. The z component of the spin
appears to decay faster and with fewer oscillations in the γ �= 0 case. For both cases, the
total energy is very well preserved (around 10−4, not shown).

4. Conclusion

Here, we implemented and analysed the results of an Eulerian code that solves the
self-consistent Vlasov–Maxwell equations for particles with spin 1/2. In this case, the
phase-space distribution function has actually four components, which can be rearranged
as one scalar and one vector distribution. This model was termed ‘vectorial model’ in the
present work. We also compared the results with those obtained (using a PIC code) with
a fully scalar model in an extended phase space that includes the spin variable – see our
recent work (Crouseilles et al. 2021).

In order to make systematic comparisons, we appended some artificial coefficients, α, β
and γ to the equations, and checked the equivalence between the scalar and vector models.
In particular, the scalar model includes a peculiar term that contains a double derivative
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(a) (b)

(c) (d )

(e) ( f )

FIGURE 10. Same as figure 8 for h = 0.5.

in the momentum and spin variables. Due to this term, it is impossible to write the Vlasov
equation in characteristic form, and, hence, to use a standard PIC code base on particle
trajectories. Therefore, this term was neglected in earlier simulations (Crouseilles et al.
2021), which amounts to taking γ = 0 in our notation. However, we stress that this is a
quantum term, and its absence may bring into question the fully quantum nature of the
scalar model, see Zamanian et al. (2010) for a discussion on this point.

A second issue is the existence of a Poisson structure, which is important to construct
efficient numerical methods that preserve the Hamiltonian structure of the equations
(Kraus et al. 2017) and, hence, avoid numerical dissipation. For the scalar model with
γ = 0, a non-canonical Poisson structure exists when α = β, which was used in our earlier
work using a PIC code (Crouseilles et al. 2021). For the vector model, the structure exists
when α = β + 2γ , which reduces to the same relationship as for the scalar model when
γ = 0.

Therefore, we compared systematically the two approaches in the case α = β = 1
and γ = 0, for a standard plasma problem, namely the Raman instability. However,
it must be stressed that the two models are not mathematically equivalent in this
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(a) (b)

(c) (d)

FIGURE 11. Influence of the electron temperature using vth = 0.51. (a,b) Time evolution of the
electric energy (semilog scale). (c,d) Time evolution of the spin Sz. (a,c) Full spin-dependent
vector model (Eulerian method with Nx = Np = 129, �t = 0.04). (b,d) Full spin-dependent
scalar model (PIC method with Nx = 129, Npart = 2 × 104, �t = 0.04).

case, so that the observed discrepancies may come from either the models themselves
or from the different numerical methods. Moreover, in the classical limit h = 0, the
scalar and vector models are again equivalent (because the double-derivative term is
a quantum one, as pointed out above), so in this case a meaningful test of the two
codes was possible. The results were encouraging, particularly on the initial linear phase
of the Raman instability and on the damping of the spin amplitude. Comparisons for
h > 0 also showed a reasonable accordance between the two approaches, and revealed
that the discrepancies progressively disappear with decreasing scaled Planck constant,
as expected.

For the full model (γ = 1) it is not possible to use the PIC code because of the double
derivative problem. Hence, we compared results obtained with the vector model and the
Eulerian code for the cases γ = 0 and γ = 1. Even though the behaviour is similar, we
observed that the spin is damped faster in the case γ = 1.

In summary, the Eulerian code described here is able to simulate the quantum dynamics
of a spin polarized electron plasma. Contrarily to the scalar model, no simplifications
need to be made to implement the corresponding numerical code. Hence, the dynamics
is fully quantum, at least for the spin variable, whereas, as usual, the orbital motion is
treated classically. In addition, the well-known high-resolution properties of grid-based
Eulerian codes outperform their PIC counterparts in many respects, particularly for
subtle effects that occur at low particle density, such as the formation of phase-space
vortices. The present Eulerian code is thus a valuable tool for further studies in
this domain.
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(a) (b)

(c) (d)

(e) ( f )

FIGURE 12. Eulerian method for the vector model with α = β = 1, γ = 0 (a,c,e) and
α = 3, β = γ = 1 (b,d, f ) with h = 0.1. Nx = 259, Np = 103, �t = 0.02, E0 = 2Eref. From top
to bottom, we show (a,b) the norm of the longitudinal electric field, (c,d) the magnetic energy,
and (e, f ) the z component of the spin.
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Appendix A. Proof of Proposition 1

First of all, we give some calculations concerning the spherical coordinates
transformation,

∂si sj = −sisj, i, j = 1, 2, 3 i �= j, and ∂si si = 1 − s2
i

∂s1 s1 = s2
1s2

3 + s2
2

s2
1 + s2

2
= 1 − s2

1,

∂s2 s2 = s2
2s2

3 + s2
1

s2
1 + s2

2
= 1 − s2

2,

∂s3 s3 = s2
1 + s2

2 = 1 − s2
3.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A1)

Now, assuming that the initial condition satisfies f (t = 0) = (1/4π)( f0(t = 0) + s ·
f (t = 0)), we check that f (t) = (1/4π)( f0(t) + s · f (t)) = (1/4π)( f0(t) + ∑

i sifi(t)) is
true for all times t > 0. To do so, we insert the decomposition f (t) = (1/4π)( f0(t) + s ·
f (t)) into the scalar equation (2.2). Of course, the terms ∂f /∂t, p · ∇f and [E + p × B] ·
∂f /∂p satisfy this property. Let us focus on the other terms (s × B) · ∂f /∂s, h∇(s · B) ·
∂f /∂p and h∇(B · ∂/∂s) · ∂f /∂p by using the relations (A1).

For the first term, we have

(s × B) · ∂f
∂s

= 1
4π

(s × B) · ∂( f0 + s · f )

∂s
= 1

4π
(s × B) · ∂(s · f )

∂s

= 1
4π

(
∂(s · f )

∂s
× s

)
· B

= 1
4π

⎛
⎝ 3∑

j=1

fj
∂sj

∂s
× s

⎞
⎠ · B = 1

4π
( f × s) · B = 1

4π
s · (B × f ). (A2)

Regarding the second term βh∇(s · B) · ∂f /∂p, we have

h∇(s · B) · ∂f
∂p

= h

4π
∇(s · B) · ∂( f0 + s · f )

∂p

= h

4π
∇(s · B) · ∂f0

∂p
+ h

4π
∇(s · B) · ∂(s · f )

∂p

= h

4π
∇(s · B) · ∂f0

∂p
+ h

4π

∑
i,j

sisj(∇Bi) · ∂fj

∂p

= h

4π
∇(s · B) · ∂f0

∂p
+ h

4π

∑
i�=j

sisj(∇Bi) · ∂fj

∂p
+ h

4π

∑
i

s2
i (∇Bi) · ∂fi

∂p

= h

4π

[∑
i

si(∇Bi) · ∂f0

∂p
+

∑
i�=j

sisj(∇Bi) · ∂fj

∂p
+

∑
i

s2
i (∇Bi) · ∂fi

∂p

]
.

(A3)

Finally, the third term γ h∇(B · ∂/∂s) · ∂f /∂p becomes

h∇
(

B · ∂

∂s

)
· ∂f

∂p
= h

4π
∇

(
B · ∂

∂s

)
· ∂( f0 + s · f )

∂p
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= h

4π
∇

(
B · ∂

∂s

)
· ∂f0

∂p
+ h

4π
∇

(
B · ∂

∂s

)
· ∂(s · f )

∂p

= h

4π

∑
i,j

(∇Bi) · ∂fj

∂p

(
∂

∂si
sj

)

= h

4π

[∑
i�=j

(−sisj)(∇Bi) · ∂fj

∂p
+

∑
i

(1 − s2
i )(∇Bi) · ∂fi

∂p

]

= h

4π

[
−

∑
i�=j

sisj(∇Bi) · ∂fj

∂p
+

∑
i

(∇Bi) · ∂fi

∂p
−

∑
i

s2
i (∇Bi) · ∂fi

∂p

]
.

(A4)

Then, adding the contributions of these last three terms, we observe that the quadratic
terms cancel out for β = γ and we finally get for this case

(s × B) · ∂f
∂s

+ βh∇(s · B) · ∂f
∂p

+ βh∇
(

B · ∂

∂s

)
· ∂f

∂p

= 1
4π

[∑
i

si(B × f )i + βh
∑

i

si(∇Bi) · ∂f0

∂p
+ βh

∑
i

(∇Bi) · ∂fj

∂p

]
. (A5)

Gathering all the terms of the scalar equation enables us to get

0 = 1
4π

∂( f0 + s · f )

∂t
+ 1

4π
p · ∇( f0 + s · f ) + 1

4π
(s × B) · ∂( f0 + s · f )

∂s

+ 1
4π

[
(E + p × B) + βh∇(s · B) + βh∇

(
B · ∂

∂s

)]
· ∂( f0 + s · f )

∂p

= 1
4π

(
∂f0

∂t
+ p · ∇f0 + (E + p × B) · ∂f0

∂p
+ βh

∑
i

∇Bi · ∂fi

∂p

)

+ 1
4π

∑
i

si

(
∂fi

∂t
+ p · ∇fi + (E + p × B) · ∂fi

∂p
+ (B × f )i + βh∇Bi · ∂f0

∂p

)
. (A6)

Since (1, s1, s2, s3) is a basis, we can identify the coefficients to be zero, which leads
to the four equations of the vector model satisfied by ( f0, f1, f2, f3). Thus, since f and
(1/4π)( f0 + s · f ) share the same initial condition, we get that f = (1/4π)( f0 + s · f )
is a solution of the scalar model if and only if ( f0, f1, f2, f3) is the solution of vector
model (2.8).

Appendix B. Derivation of the 1-D vector model (Proposition 2)

To derive the vector model from the scalar one in the laser–plasma context considered in
the main text, we will take the moments with respect to the variable s of the scalar model
(2.15). Thus, we first multiply (2.15) by (1, 3s), thus integrate with respect to s and finally,
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use the representation

f (t, x, p, s) = 1
4π

( f0(t, x, p) + s · f (t, x, p)). (B1)

We shall use the following identities which can be calculated from the spherical
coordinates transformation using (B1):∫

f ds = f0,

∫
sf ds = 1

3
f ,∫

∂f
∂si

ds = 2
3

fi,

∫
si

∂f
∂sj

ds = 0,∫
s2

i
∂f
∂si

ds = 2
15

fi,

∫
s2

i
∂f
∂sj

ds = 4
15

fj,∫
sisj

∂f
∂sk

ds = 0,

∫
sisj

∂f
∂si

ds = − 1
15

fj.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B2)

We integrate the first equation in (2.15) with respect to s on S2 and use (B1) and (B2) to
get the following equation on f0:

∂f0

∂t
+ p

∂f0

∂x
+

(
Ex − A⊥ · ∂A⊥

∂x

)
∂f0

∂p
− (β + 2γ )

3
h
∂2Az

∂x2

∂f2

∂p
+ (β + 2γ )

3
h
∂2Ay

∂x2

∂f3

∂p
= 0.

(B3)
With our magnetic field (B = (0,−∂xAz, ∂xAy)), this equation can be reformulated as

∂f0

∂t
+ p

∂f0

∂x
+

(
Ex − A⊥ · ∂A⊥

∂x

)
∂f0

∂p
+ (β + 2γ )

3
h

3∑
j=1

∂Bj

∂x
∂fj

∂p
= 0. (B4)

Thus, we multiply the first equation in (2.15) multiplied by 3s, integrate with respect to s
on R3 and use (B1) to get the equations on f = ( f1, f2, f3). Let us detail the calculations
to derive the equation on f1. First, multiplying (2.15) by 3s1 and integrating with respect
to s leads to the following equation for f1:

∂f1

∂t
+ p

∂f1

∂x
+

(
Ex − A⊥ · ∂A⊥

∂x

)
∂f1

∂p

− βh
∂2Az

∂x2

∂

∂p

∫
(s1s2f + s1∂s2 f ) ds︸ ︷︷ ︸

1

+βh
∂2Ay

∂x2

∂

∂p

∫
(s1s3f + s1∂s3 f ) ds︸ ︷︷ ︸

2

+ ∂Az

∂x

∫
3s1s3

∂f
∂s1

ds︸ ︷︷ ︸
3

+∂Ay

∂x

∫
3s1s2

∂f
∂s1

ds︸ ︷︷ ︸
4

+ ∂Ay

∂x

∫
−3s2

1
∂f
∂s2

ds︸ ︷︷ ︸
5

+∂Az

∂x

∫
−3s2

1
∂f
∂s3

ds︸ ︷︷ ︸
6

= 0. (B5)

Using the relations (B1) and (B2), we get that terms one and two are equal to zero, term
three is equal to −f3/5, term four is equal to −f2/5, term five is equal to −4f2/5, term six
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is equal to −4f3/5. Finally, we get the following equation for f1:

∂f1

∂t
+ p

∂f1

∂x
+

(
Ex − A⊥ · ∂A⊥

∂x

)
∂f1

∂p
− ∂Az

∂x
f3 − ∂Ay

∂x
f2 = 0. (B6)

Similar calculations lead to the equations for f2 and f3. Using the vector notation
f = ( f1, f2, f3), the vector system satisfied by f can be reformulated as

∂f
∂t

+ p
∂f
∂x

+
(

Ex − A⊥ · ∂A⊥
∂x

)
∂f
∂p

+ B × f + βh
∂B
∂x

∂f0

∂p
= 0. (B7)

It remains to be considered the coupling with the Maxwell equations, which involves
integral with respect to s and p of the scalar unknown f . The Ampère equation simply
becomes

∂Ex

∂t
= −

∫
R

pf0 dp, (B8)

whereas the equations on Ey and Ez can be rewritten as function of f , recalling that
fj = 3

∫
S2 sjf , ds

∂Ey

∂t
= −∂2Ay

∂x2
+ Ay

∫
R

f0 dp + αh

3

∫
R

∂f3

∂x
dp,

∂Ez

∂t
= −∂2Az

∂x2
+ Az

∫
R

f0 dp − αh

3

∫
R

∂f2

∂x
dp.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (B9)

Appendix C. Solution of the subsystems involved in the Hamiltonian splitting

In this appendix, we detail the calculations of the solution of the five subsystems
involved in the splitting, as described in § 2.3.

C.1. Subsystem for Hp

The subsystem ∂Z/∂t = {Z,Hp} associated with Hp = 1
2

∫
p2f0 dx dp is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f0

∂t
= {f0,Hp} = −p

∂f0

∂x
,

∂f
∂t

= {f ,Hp} = −p
∂f
∂x

,

∂Ex

∂t
= {Ex,Hp} = −

∫
R

pf0 dp,

∂E⊥
∂t

= ∂A⊥
∂t

= 0.

(C1)

We denote the initial datum as ( f 0
0 (x, p), f 0(x, p), E0

x(x), E0
⊥(x), A0

⊥(x)) at time t = 0. The
solution at time t of this subsystem can be written explicitly as⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f0(x, p, t) = f 0
0 (x − pt, p), f (x, p, t) = f 0(x − pt, p),

Ex(x, t) = E0
x(x) −

∫ t

0

∫
R

pf0(x, p, τ ) dp dτ = E0
x(x) −

∫ t

0

∫
R

pf 0
0 (x − pτ, p) dp dτ,

E⊥(x, t) = E0
⊥(x), A⊥(x, t) = A0

⊥(x).
(C2)
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Next, we check that this solution correctly propagates the Poisson equation. To do so, we
assume that the Poisson equation holds initially, i.e. ∂E0

x/∂x = ∫
R

f 0
0 dp − 1. Then we have,

by differentiating the expression of Ex(t, x) with respect to x,

∂Ex(x, t)
∂x

= ∂E0
x

∂x
−

∫ t

0

∫
R

p
∂f 0

0 (x − pτ, p)

∂x
dp dτ = ∂E0

x

∂x
+

∫ t

0

∫
R

∂f 0
0 (x − pτ, p)

∂τ
dp dτ

= ∂E0
x

∂x
+

∫
R

f 0
0 (x − pt, p) dp −

∫
R

f 0
0 (x, p) dp =

∫
R

f0(x, p, t) dp − 1, (C3)

which proves that the Poisson equation is satisfied at time t.

C.2. Subsystem for HA

The subsystem ∂Z/∂t = {Z,HA} associated with the subhamiltonianHA = 1
2

∫ |A⊥|2f0 dx
dp + 1

2

∫ |∂A⊥/∂x|2 dx is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f0

∂t
= {f0,HA} = A⊥ · ∂A⊥

∂x
∂f0

∂p
,

∂f
∂t

= {f ,HA} = A⊥ · ∂A⊥
∂x

∂f
∂p

,

∂E⊥
∂t

= {E⊥,HA} = −∂2A⊥
∂x2

+ A⊥

∫
R

f0 dp,

∂Ex

∂t
= ∂A⊥

∂t
= 0.

(C4)

We denote by ( f 0
0 (x, p), f 0(x, p), E0

x(x), E0
⊥(x), A0

⊥(x)) the initial value at time t = 0. The
exact solution at time t is

f0(x, p, t) = f 0
0

(
x, p + tA0

⊥(x) · ∂A0
⊥(x)
∂x

)
,

f (x, p, t) = f 0
(

x, p + tA0
⊥(x) · ∂A0

⊥(x)
∂x

)
,

E⊥(x, t) = E0
⊥(x) − t

∂2A0
⊥(x)

∂x2
+ tA0

⊥(x)
∫

R

f 0
0 (x, p) dp,

Ex(x, t) = E0
x(x), A⊥(x, t) = A0

⊥(x).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C5)

Let us remark that the third equation uses the fact that
∫

R
f0(x, p, t) dp = ∫

R
f 0
0 (x, p) dp,

which can be obtained by integrating the first of (C4) with respect to p, i.e.
∂t(

∫
R

f0(x, p, t) dp) = 0.
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C.3. Subsystem for HE

The subsystem ∂Z/∂t = {Z,HE} associated with the subhamiltonian HE = 1
2

∫ |E|2 dx is⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f0

∂t
= {f0,HE} = −Ex

∂f0

∂p
,

∂f
∂t

= {f ,HE} = −Ex
∂f
∂p

,

∂Ex

∂t
= {Ex,HE} = 0,

∂E⊥
∂t

= {E⊥,HE} = 0,

∂A⊥
∂t

= {A⊥,HE} = −E⊥.

(C6)

With the initial value ( f 0
0 (x, p), f 0(x, p), E0

x(x), E0
⊥(x), A0

⊥(x)) at time t = 0, the solution
at time t is as follows:

f0(x, p, t) = f 0
0 (x, p − tE0

x(x)), f (x, p, t) = f 0(x, p − tE0
x(x)),

Ex(x, t) = E0
x(x), E⊥(x, t) = E0

⊥(x), A⊥(x, t) = A0
⊥(x) − tE0

⊥(x).

}
(C7)

C.4. Subsystem for H2

The subsystem ∂Z/∂t = {Z,H2} associated with the subhamiltonian H2 = (αh/3)∫
f2(∂Az/∂x) dx dp is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f0

∂t
= {f0,H2} = αh

3
∂2Az

∂x2

∂f2

∂p
,

∂f1

∂t
= {f1,H2} = ∂Az

∂x
f3,

∂f2

∂t
= {f2,H2} = βh

∂2Az

∂x2

∂f0

∂p
,

∂f3

∂t
= {f3,H2} = −∂Az

∂x
f1,

∂Ez

∂t
= {Ez,H2} = −αh

3

∫
R

∂f2

∂x
dp,

∂Ex

∂t
= ∂Ey

∂t
= ∂A⊥

∂t
= 0.

(C8)

In this subsystem, we observe some coupling between the distribution functions. To write
down the exact solution, we reformulate the equations for ( f0, f ), using Az(x, t) = A0

z (x),
as follows:

∂t

(
f1
f3

)
− ∂A0

z

∂x
J
(

f1
f3

)
= 0,

∂t

(
f0
f2

)
− h

∂2A0
z

∂x2

(
0

α

3
β 0

)
∂p

(
f0
f2

)
= 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(C9)
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where J denotes the symplectic matrix

J =
(

0 1
−1 0

)
. (C10)

With the initial data ( f 0
0 (x, p), f 0(x, p), E0

x(x), E0
⊥(x), A0

⊥(x)) at time t = 0, the exact
solution for the first system is

(
f1
f3

)
(x, p, t) = exp

(
∂A0

z (x)
∂x

Jt
)(

f 0
1 (x, p)

f 0
3 (x, p)

)
, with exp (Js) =

(
cos(s) sin(s)

− sin(s) cos(s)

)
.

(C11)
Let us now focus on the second system

∂t

(
f0
f2

)
− h

∂2A0
z

∂x2

(
0

α

3
β 0

)
∂p

(
f0
f2

)
= 0. (C12)

By the eigen-decomposition (to simplify, we assume α > 0, β > 0 here)

⎛
⎜⎜⎝−1

2

√
3β

α

1
2

1
2

√
3β

α

1
2

⎞
⎟⎟⎠

(
0

α

3
β 0

)⎛
⎝−

√
α

3β

√
α

3β
1 1

⎞
⎠ =

⎛
⎜⎜⎝−

√
αβ

3
0

0

√
αβ

3

⎞
⎟⎟⎠ , (C13)

then, one can diagonalize the transport equation to get

∂t

⎛
⎜⎜⎝−1

2

√
3β

α
f0 + 1

2
f2

1
2

√
3β

α
f0 + 1

2
f2

⎞
⎟⎟⎠ − h

∂2A0
z

∂x2

⎛
⎜⎜⎝−

√
αβ

3
0

0

√
αβ

3

⎞
⎟⎟⎠ ∂p

⎛
⎜⎜⎝−1

2

√
3β

α
f0 + 1

2
f2

1
2

√
3β

α
f0 + 1

2
f2

⎞
⎟⎟⎠ = 0.

(C14)
Finally, we can solve the transport equation

(
∓1

2

√
3β

α
f0 + 1

2
f2

)
(x, p, t) =

(
∓1

2

√
3β

α
f 0
0 + 1

2
f 0
2

)(
x, p ∓ t

√
αβ

3
h
∂2A0

z

∂x2
(x)

)
,

(C15)
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and compute the exact solution at time t as follows:

f1(x, p, t) = cos
(

t
∂A0

z (x)
∂x

)
f 0
1 (x, p) + sin

(
t
∂A0

z (x)
∂x

)
f 0
3 (x, p),

f3(x, p, t) = − sin
(

t
∂A0

z (x)
∂x

)
f 0
1 (x, p) + cos

(
t
∂A0

z (x)
∂x

)
f 0
3 (x, p)

f0(x, p, t) = −
√

α

3β

(
−1

2

√
3β

α
f 0
0 + 1

2
f 0
2

)(
x, p − t

√
αβ

3
h
∂2A0

z

∂x2
(x)

)

+
√

α

3β

(
1
2

√
3β

α
f 0
0 + 1

2
f 0
2

)(
x, p + t

√
αβ

3
h
∂2A0

z

∂x2
(x)

)
,

f2(x, p, t) =
(

−1
2

√
3β

α
f 0
0 + 1

2
f 0
2

)(
x, p − t

√
αβ

3
h
∂2A0

z

∂x2
(x)

)

+
(

1
2

√
3β

α
f 0
0 + 1

2
f 0
2

)(
x, p + t

√
αβ

3
h
∂2A0

z

∂x2
(x)

)
,

Ez(x, t) = E0
z (x) − t

αh

3

∫
R

∂f 0
2

∂x
dp.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C16)

The last equation can easily obtained by verifying that
∫

R
f2(x, p, t) dp = ∫

R
f 0
2 (x, p, t) dp.

C.5. Subsystem for H3

The subsystem ∂Z/∂t = {Z,H3} associated with the subhamiltonian H3 = − ∫
Ω
(αh/3)

f3(∂Ay/∂x) dx dp is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f0

∂t
= {f0,H3} = −αh

3
∂2Ay

∂x2

∂f3

∂p
,

∂f1

∂t
= {f1,H3} = ∂Ay

∂x
f2,

∂f2

∂t
= {f2,H3} = −∂Ay

∂x
f1,

∂f3

∂t
= −{f3,H3} = −βh

∂2Ay

∂x2

∂f0

∂p
,

∂Ey

∂t
= {Ey,H3} = αh

3

∫
R

∂f3

∂x
dp,

∂Ex

∂t
= ∂Ez

∂t
= ∂A⊥

∂t
= 0.

(C17)
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This subsystem is very similar to the H2 one, hence, as previously, we reformulate the
equations on the distribution functions as

∂t

(
f1
f2

)
− ∂A0

y

∂x
J
(

f1
f2

)
= 0,

∂t

(
f0
f3

)
+ h

∂2A0
y

∂x2

(
0

α

3
β 0

)
∂p

(
f0
f3

)
= 0,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(C18)

with initial data ( f 0
0 (x, p), f 0(x, p), E0

x(x), E0
⊥(x), A0

⊥(x)) at time t = 0. We derive similar
formulae with H2 for the exact solution at time t

f1(x, p, t) = cos

(
t
∂A0

y(x)

∂x

)
f 0
1 (x, p) + sin

(
t
∂A0

y(x)

∂x

)
f 0
2 (x, p),

f2(x, p, t) = − sin

(
t
∂A0

y(x)

∂x

)
f 0
1 (x, p) + cos

(
t
∂A0

y(x)

∂x

)
f 0
2 (x, p),

f0(x, p, t) = −
√

α

3β

(
−1

2

√
3β

α
f 0
0 + 1

2
f 0
3

)(
x, p + t

√
αβ

3
h
∂2A0

y

∂x2
(x)

)

+
√

α

3β

(
1
2

√
3β

α
f 0
0 + 1

2
f 0
3

)(
x, p − t

√
αβ

3
h
∂2A0

y

∂x2
(x)

)
,

f3(x, p, t) =
(

−1
2

√
3β

α
f 0
0 + 1

2
f 0
3

)(
x, p + t

√
αβ

3
h
∂2A0

y

∂x2
(x)

)

+
(

1
2

√
3β

α
f 0
0 + 1

2
f 0
3

)(
x, p − t

√
αβ

3
h
∂2A0

y

∂x2
(x)

)
,

Ey(x, t) = E0
y(x) + t

αh

3

∫
R

∂f 0
3

∂x
dp,

A⊥(x, t) = A0
⊥(x), Ex(x, t) = E0

x(x), Ez(x, t) = E0
z (x).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C19)

To compute the solution Ey(x, t), we use the fact that
∫

R
f3(x, p, t) dp = ∫

R
f 0
3 (x, p)dp.

C.6. Fully discrete numerical scheme
Finally, we consider the phase space and time discretization to get the full discretization
for above vectorial model.

We assume that the computational domain is [0, L] × [−pmax, pmax] for x and p.
The system is periodic in the x direction with period L and has compact support on
[−pmax, pmax] in p direction. The mesh is as follows:

xj = (j − 1)�x, j = 1, . . . , Nx, �x = L/Nx, (Nxis odd) (C20)

p�−1 = (� − 1)�p − pmax, � = 1, . . . , Np, �p = 2pmax/Np. (C21)
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C.6.1. Phase space representation
Here we use the same discretization method as in Li et al. (2020). We first present the

spatial discretization of Ex in detail, the same strategy can be used to E⊥ and A⊥. Denoting
Ex,j = Ex(xj, t), we use the spectral Fourier expansion to approximate Ex as it is periodic
in the x direction,

Ex,j =
(Nx−1)/2∑

k=−(Nx−1)/2

Êx,k(t) exp(2πijk/Nx), for j = 1, . . . , Nx. (C22)

For the distribution functions ( f0, f ), we use a spectral Fourier expansion for the x
direction and a finite-volume method for the p direction. For simplicity, we only show the
representation for f0, the notations for f being the same. Here f0,j,�(t) denotes the average of
f0(xj, p, t) over a cell C� = [p�−1/2, pl+1/2] with the midpoint p�−1/2 = (� − 1/2)�p − PL,
that is

f0,j,�(t) = 1
�p

∫
C�

f0(xj, p, t) dp, (C23)

and also by Fourier expansion in x direction, then

f0,j,�(t) =
(Nx−1)/2∑

k=−(Nx−1)/2

f̂0,k,�(t) exp(2πijk/Nx), j = 1, . . . , Nx. (C24)

To evaluate the value of f0 off-grid in p direction, we need to reconstruct a continuous
function by using the cell average quantity f0,j,�. We refer to Crouseilles, Mehrenberger &
Sonnendrücker (2010) and Zerroukat, Wood & Staniforth (2006) for a presentation of the
parabolic spline method to construct a second-order polynomial approximation. To present
the main idea, we consider a linear advection problem in the p direction

∂f
∂t

+ a
∂f
∂x

= 0. (C25)

From the conservation of the volume, we have the following identity:

fj,�(t) = 1
�p

∫ p�+1/2

p�−1/2

f (xj, p, t) dp = 1
�p

∫ p�+1/2−at

p�−1/2−at
f (xj, p, 0) dp. (C26)

For simplicity, we denote q ∈ [1, Np] the index such that p�+1/2 − at ∈ [pq−1/2, pq+1/2]
i.e. p�+1/2 − at ∈ Cq, then we have

fj,�(t) = 1
�p

∫ pq−1/2

pq−1/2−at
f (xj, p, 0) dp + fj,q(0) − 1

�p

∫ pq+1/2−at

pq+1/2

f (xj, p, 0) dp. (C27)

Here, we need to reconstruct a polynomial function f (xj, p, 0) using the averages fj,l(0)
with the parabolic spline method approach. The full discretization of the different
subsystems uses the tools described in Li et al. (2020).
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