Centralizers involving Mathieu groups

M.J. Curran

A simple group G cannot contain a central involution t with $C_G(t) = \langle t \rangle \times M$, where M is isomorphic to a simple Mathieu group.

There have been investigations of groups G which contain a central involution t such that C(t) has the form $\langle t \rangle \times M$ where M is a simple non-abelian group ([1], [4], [5]). In this note, the case where M is isomorphic to a Mathieu group is considered.

THEOREM. Let G be a finite group with a central involution t such that $C(t) = \langle t \rangle \times M$ where M is isomorphic to any one of the simple Mathieu groups. Then G = O(G).C(t).

Proof. Since t is central, C(t) contains an S_2 -subgroup S of G with $t \in Z(S)$. We show t is not conjugate in G to any other involution in S and the result then follows by Glauberman's Z^* -theorem ([2]).

(a) First suppose M is isomorphic to M_{11}, M_{22} , or M_{23} . Then M has only one class of involutions with representative z say. Since z is the square of an element of order 4 in M, it follows from the structure of C(t) that t cannot be conjugate to z in G. If $t \sim tz$ in G, say $(tz)^a = t$ for some $a \in G$, then $t \in C(tz)$. So $t^a \in C(t)$ and without loss of generality we may suppose $t^a = tz$. Thus a

Received 1 July 1975.

normalizes C(t, z) with $a^2 \in C(t, z)$, so $|\langle C(t, z), a \rangle| = 2|C(t, z)|$. This contradicts the fact that C(t, z) contains a S_2 -subgroup of G. Thus t is not conjugate to tz in G.

(b) Suppose *M* is isomorphic to M_{12} or M_{24} . Then *M* has two classes of involutions; a central class with representative *z* say (which is again the square of an element of order 4 in *M*), and a non-central class with representative *y* say. (When $M \approx M_{12}$ take $z = \pi$ and $y = \tau$ in [6], and when $M \approx M_{24}$ take $z = z_1$ and $y = z_3\pi$ in [3].)

(i) As in (a) above, t cannot be conjugate to z or tz.

(ii) Suppose $y \sim t$ in G, say $y^b = t$ for $b \in G$. Then $t^b \in C(t)$ and we may suppose $t^b = y$ or ty. In either case, b centralizes C(t, y).

Now $C(t, y) = \langle t \rangle \times C_M(y)$ and $S = \langle t \rangle \times C_M(y, z)$ is an S_2 -subgroup of C(t, y) (see [3], [6]). Since S^b is also an S_2 -subgroup of C(t, y), $S^b = S^g$ for some $g \in C(t, y)$.

Thus $S^{b} = \langle t \rangle \times C_{M}(y, z^{m})$ where $g = t^{\alpha}m$; $\alpha = 0$ or $\alpha = 1$ and $m \in M$. However $S' = \langle z \rangle$ when $M \approx M_{12}$, and $S'' = \langle z \rangle$ when $M \approx M_{24}$ (Lemma 1 in [6], Lemma 2.3 in [3]); so b conjugates $\langle z \rangle$ to $\langle z^{m} \rangle$. Replacing b by $c = bm^{-1}$ we have $y^{c} = t$ and $z^{c} = z$.

However a calculation shows $yz \sim y$ in M. Conjugating this relation by c we have $tz \sim t$ in G, which contradicts (i) above. Thus y is not conjugate to t in G.

(iii) Finally suppose $ty \sim t$ in G, say $(ty)^d = t$ for some $d \in G$. Then, as above, we may assume $t^d = ty$ and further, as in (ii), we may find an $e \in G$ such that $t^e = ty$ and $z^e = z$. Thus $(tz)^e = tyz \sim ty$ in G, again contradicting (i). So t is not conjugate to ty in G and the result now follows from Glauberman's Z^* -theorem.

References

- [1] M.J. Curran, "Groups with decomposable involution centralizers", submitted.
- [2] George Glauberman, "Central elements in core-free groups", J. Algebra
 4 (1966), 403-420.
- [3] Dieter Held, "The simple groups related to M₂₄", J. Algebra 13 (1969), 253-296.
- [4] Zvonimir Janko, "A new finite simple group with abelian Sylow 2-subgroups and its characterization", J. Algebra 3 (1966), 147-186.
- [5] Zvonimir Janko and John G. Thompson, "On a class of finite simple groups of Ree", J. Algebra 4 (1966), 274-292.
- [6] W.J. Wong, "A characterization of the Mathieu group M_{12} ", Math. Z. 84 (1964), 378-388.

Department of Mathematics, University of Auckland, Auckland, New Zealand.