ON THE DISTRIBUTION OF INTEGER SOLUTIONS

> OF $f(x, y)=z^{2}$ FOR A DEFINITE BINARY QUADRATIC FORM f

Nobuo Nobusawa

Let f be a positive definite binary quadratic form with rational coefficients. We shall call a point (x, y) in E^{2} with integers x and y a Pythagorean point of f when $f(x, y)=z^{2}$ is satisfied with some integer z, and shall prove the following theorem.

THEOREM. Inside a region in E^{2} bounded by two parallel lines one of which passes through the origin and a Pythagorean point of f, there are at most a finite number of Pythagorean points.

First of all, we shall reduce the general form to a simple one. It is well known that by a linear transformation $x^{\prime}=a_{11} \mathrm{x}+\mathrm{a}_{12} \mathrm{y}$ and $\mathrm{y}^{\prime}=\mathrm{a}_{21} \mathrm{x}+\mathrm{a}_{22} \mathrm{y}$ a form $\mathrm{f}(\mathrm{x}, \mathrm{y})$ can be changed to a form $F\left(x^{\prime}, y^{\prime}\right)=r x^{\prime 2}+s y^{\prime 2}$ with positive rational numbers r and s. Here we may assume that all $a_{i j}$ are integers. Then a Pythagorean point of f is changed to a Pythagorean point of F. We also note that the region stated in Theorem is changed to a region of the same type. Here r and s are not necessarily integers. In that case, we multiply F by t^{2} where t is a suitable integer such that $t^{2} F$ has integer coefficients. A Pythagorean point of F is naturally a Pythagorean point of $t^{2} F$. Thus, it is sufficient to prove the theorem under the assumption $f(x, y)=r x^{2}+s y^{2}$ where r and s are positive integers. Then consider a linear transformation $X=r^{1 / 2} x$ and $Y=s^{1 / 2} y . f(x, y)$ is changed to a form $X^{2}+Y^{2}$.

A Pythagorean point (x, y) of f is changed to a point $\left(r^{1 / 2} x, s^{1 / 2} y\right)$ in the $X-Y$ plane, the distance from which to the origin is an integer. So, we consider such points.

LEMMA. Let a, b, c and d be real numbers and put $l=\left(a^{2}+b^{2}\right)^{1 / 2}, \quad m=\left(c^{2}+d^{2}\right)^{1 / 2}, \quad A=a c+b d$ and $B=a d-b c$. If ℓ, m and A are integers and $B \neq 0$, then $B^{2} \geq 2 \ell m-1$.

Proof. From $(\ell m)^{2}=A^{2}+B^{2}$ and $B \neq 0$, it follows that $A^{2}<(\ell m)^{2}$. Now suppose $B^{2}<2 \ell m-1$. Then $A^{2}=(\ell m)^{2^{2}}-B^{2}$ $>(\ell m-1)^{2}$, which is impossible since A is an integer.

PROPOSITION. Let (a, b) and (c, d) be two points such that all assumptions in Lemma are satisfied. Denote by D the distance from (c, d) to a line passing through the origin and (a, b). Then $D^{2} \geq 2 m / l-1 / l^{2}$.

Proof. Clearly $D=|B| / \ell$. Hence, by Lemma, we have the result immediately.

The proof of Theorem is now almost clear. We take $\left(r^{1 / 2} x_{1}, \quad s^{1 / 2} y_{1}\right)$ and $\left(r^{1 / 2} x_{2}, \quad s^{1 / 2} y_{2}\right)$ for (a, b) and (c, d) where $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ are two Pythagorean points not lying on the same line passing through the origin. Then by Proposition $m \leq \ell\left(D^{2}+1 / \ell^{2}\right) / 2$, which implies m cannot be big if we restrict the distance D and fix ℓ. This proves Theorem.

Lastly, there are some questions arising from what we have discussed. In Theorem, we assumed that a line passes through a Pythagorean point. What can we say if we drop this condition? We also assumed f is definite. Can we discuss the problem without this condition? Is it possible to generalize the result to a case of a quadratic form with more than two variables?

University of Calgary and
University of Rhode Island

