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Abstract
We present novel methods for detecting lexical entailment in a fully rule-based and explainable fashion,
by automatic construction of semantic graphs, in any language for which a crowd-sourced dictionary
with sufficient coverage and a dependency parser of sufficient accuracy are available. We experiment
and evaluate on both the Semeval-2020 lexical entailment task (Glavaš et al. (2020). Proceedings of the
Fourteenth Workshop on Semantic Evaluation, pp. 24–35) and the SherLIiC lexical inference dataset of
typed predicates (Schmitt and Schütze (2019). Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pp. 902–914). Combined with top-performing systems, our method achieves
improvements over the previous state-of-the-art on both benchmarks. As a standalone system, it offers
a fully interpretable model of lexical entailment that makes detailed error analysis possible, uncovering
future directions for improving both the semantic parsing method and the inference process on semantic
graphs. We release all components of our system as open source software.

Keywords: Semantics; Textual entailment

1. Introduction
The ability to model lexical entailment is a test of the adequacy of any theory of lexical semantics.
We study lexical entailment not merely as another engineering task in the field of natural language
processing (NLP), but as a central goal of our efforts towards building generic and actionable
representations of natural language semantics. We present a rule-based, language-independent
system for detecting entailment between pairs of words using 4lang semantic graphs (Kornai
et al. 2015; Recski 2018) built from dependency parses of dictionary definitions. We also present a
novel architecture for constructing andmanipulating graphs with synchronous grammars and use
it to implement improvements of previous methods for building and expanding concept graphs
from dictionaries. Our goal is to establish symbolic representations of lexical semantics that allow
us to model entailment stragihtforwardly, as overlaps between premise and hypothesis graphs.

Stopping conditions of our system can be adjusted to multiple formulations of the entail-
ment task. We present experiments on two substantially different datasets, the Semeval-2020 task
“Predicting Multilingual and Cross-lingual (graded) Lexical Entailment’’ (Glavaš et al. 2020) and
the SherLIiC benchmark for context aware-typed lexical inference (Schmitt and Schütze 2019).
On the Semeval task of detecting binary lexical entailment, we achieve new state-of-the- art results
on three languages, two of which were held by our earlier system (Kovács et al. 2020). On the
second, more challenging benchmark, our method outperforms all rule-based baselines and also
allows for a slight improvement over the top-performing system. Perhaps more importantly, the
high precision of our method makes it possible to combine it with a neural NLI system based on
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RoBERTa (Zhuang et al. 2021), improving its overall performance. As our grounds for establishing
entailment between a pair of lexical entries is always some overlap between two concept graphs,
predictions made by our system are all directly explainable as common subgraphs of premise
and hypothesis definitions, providing an example of transparent, trustworthy, and explainable
AI (xAI).

The article is structured as follows. Section 2.1 reviews the formulations of the lexical entail-
ment task and corresponding datasets, with special emphasis on the two datasets used in our work.
Then in Section 2.2, we survey recent approaches to entailment and inference tasks. We then
provide a short overview of common approaches to semantic parsing in Section 2.3 and review
approaches to modeling entailment with semantic graphs in Section 2.4. Section 3 describes our
pipeline for building 4lang semantic graphs from Wiktionary entries and for obtaining addi-
tional synonyms both from Wiktionary and WordNet. The section also provides an overview of
our method of using graph grammars to transform dependency trees to 4lang graphs, and finally
describes our method for establishing entailment over pairs of 4lang graphs. Section 4 evaluates
our method on two recent benchmarks and compares their performance to previous systems, also
experimenting with simple strategies for combining them with the output of state-of-the art NLI
systems for improved performance. Finally, Section 5 presents the results of manual error anal-
ysis on both datasets, providing insight about the differences between the two formulations of
the entailment task and identifying current shortcomings of our approach, along with possible
solutions. All software described in this article is open-source, released under an MIT license.a,b,c

2. Related work
2.1 Tasks and datasets
Entailment between pairs of words has been studied extensively both as one of the fundamen-
tal relationships in the lexicon and as an essential building block of models of natural language
inference. Several recent task formulations equate lexical entailment with hypernymy/hyponymy
or the IS_A relationship (Vulić et al. 2017; Vulić, Ponzetto, and Glavaš 2019), treating it as a
relationship between two entries in a lexicon and creating datasets of labeled pairs of words
such as Hyperlex (Vulić et al. 2017). Other works are concerned with the entailment relationship
between two words in their respective contexts. Pointing out that eliminate entails treat in Aspirin
eliminates headaches but not in Aspirin eliminates patients, Levy and Dagan (2016) introduce a
dataset of annotated relation pairs. This dataset uses question–answer pairs as context for lexical
entailment, other approaches involve providing context as pairs of arguments (Zeichner, Berant,
and Dagan 2012) or pairs of argument types (Berant, Dagan, and Goldberger 2011; Schmitt and
Schütze 2019). Lexical entailment can also be viewed as a special case of natural language infer-
ence (NLI), modern systems for this task are commonly trained and evaluated on the Stanford
Natural Language Inference (SNLI) (Bowman et al. 2015) dataset and the Multi-Genre NLI
Corpus (MultiNLI) (Williams, Nangia, and Bowman 2018) dataset.

The approach taken in this article, outlined in Section 3.2, is based on the 4lang formalism
for representing (lexical) semantics and is capable of inspecting the relationship between the
meaning of any two utterance fragments. We will evaluate our system on two recent benchmarks.
The datasets used in the 2020 Semeval task “Predicting Multilingual and Cross-lingual (graded)
Lexical Entailment’’ (Glavaš et al. 2020) are derived fromHyperLex (Vulić et al. 2017), a dataset of
monolingual and cross-lingual–graded lexical entailment. Candidate word pairs for human anno-
tation were gathered from the USF (Nelson, McEvoy, and Schreiber 2004) and WordNet (Miller
1995) databases. For our experiments, we will use the binary labels of the monolingual subsets
for English, German, and Italian. Some examples for each language are shown in Table 1. On

ahttps://github.com/adaamko/wikt2def/tree/nle.
bhttps://github.com/adaamko/wikt2def/tree/nle_semeval.
chttps://github.com/recski/tuw-nlp.
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Table 1. Example entries of the monolingual binary portion of the Semeval lexical
entailment dataset (Glavaš et al. 2020)

Premise Hypothesis Label

sandwich food True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

morning intelligence False
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Sohn ‘son’ Kind ‘child’ True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Küche ‘kitchen’ Schlafzimmer ‘bedroom’ False
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ciliegia ‘cherry’ frutto ‘fruit’ True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

formaggio ‘cheese’ burro ‘butter’ False

Table 2. Example entries of the SherLlic dataset (Schmitt and Schütze 2019). Argument labels
indicate entity types: PER – person, LOC – location, ORGF – organization_founder, EMPL –
employer, AUTH – book_author

Premise Hypothesis Label

ORGF[A] is granting to EMPL[B] ORGF[A] is giving to EMPL[B] True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

PER[A] is interviewing AUTH[B] PER[A] is asking AUTH[B] True
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LOC[A] is fighting with ORGF[B] LOC[A] is allied with ORGF[B] False
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LOC[A] is city of LOC[B] LOC[A] is capital of LOC[B] False

this dataset, we will compare our method to the GLEN system for measuring multilingual and
cross-lingual lexical entailment using specialized word embeddings (Vulić et al. 2019), which out-
performs previous baselines in Upadhyay et al. (2018), and also to the other systems participating
in the shared task, including our own earlier system presented in Kovács et al. (2020).

A more challenging task formulation is provided by the SherLlic dataset of lexical inference in
context (Schmitt and Schütze 2019), which was built by extracting inference candidates from an
entity-linked portion of the ClueWeb corpus (Gabrilovich, Ringgaard, and Subramanya 2013) and
using them as input to human annotation. Because annotation candidates were chosen based on
distributional evidence, many entailment pairs in the final dataset are completely novel, missing
from existing knowledge bases such as WordNet. Argument types for event pairs are neces-
sary to disambiguate between word senses. For example, run entails lead if its arguments are of
type PERSON and COMPANY (e.g., Bezos runs Amazon) but not if they are COMPUTER and
SOFTWARE, as inmy mac runs macOS. Table 2 shows further examples of entries in the SherLlic
dataset. An extensive evaluation of various LE systems on this dataset presented in Schmitt and
Schütze (2019) will serve as the starting point for our evaluations in Section 4.

The need for such novel datasets has been made clear by several recent experiments that point
out the biases of deep learning based models of NLI. Glockner, Shwartz, and Goldberg (2018)
constructed a newNLI test set from SNLI by replacing a single word in sentences from the training
set, and used this new benchmark to expose top NLI systems’ inability to perform true lexical
inference. The only model in their evaluation not showing a major drop in performance was the
one incorporating lexical knowledge (Chen et al. 2018). The inability of deep learning based NLI
models to generalize across datasets was also shown in a more recent study across six systems
and three datasets (Talman and Chatzikyriakidis 2019). These findings call into question whether
black box models trained for high performance on any single NLI benchmark can be regarded as
truemodels of inference.We believe that rule-basedmodels such as the one proposed in this paper
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can facilitate further qualitative analysis of deep learning models by providing strong explainable
baselines on multiple tasks and datasets.

2.2 Approaches to entailment and inference
When seen as a task of detecting hypernymy, lexical entailment is most often addressed using
distributional methods. Hypernymy candidates are encoded using word embeddings and classi-
fied by either neural networks (Nguyen et al. 2017; Shwartz, Goldberg, and Dagan 2016; Yu et al.
2015) or non-neural classifiers such as Support Vector Machines (SVMs) and logistic regression
(Baroni et al. 2012; Levy et al. 2015; Roller, Erk, and Boleda 2014). Yu et al. (2015) proposes a
neural model for supervised learning of hypernymy-specific embeddings. Nguyen et al. (2017)
argues that standard distributional models cannot account for the asymmetric property of hyper-
nymy, and introducesHyperVec, a hierarchical approach to learning hypernymy embeddings that
allowed for significant improvement over the state-of-the-art on the HyperLex dataset. Glavaš and
Ponzetto (2017) proposes Dual Tensor, an approach based on neural models to explicitly model
the asymmetric nature of the hypernymy relation. Dual Tensor transforms generic embeddings
into specialized vectors for scoring concept pairs based on whether the asymmetric relation holds.
A different approach is taken by HypeNET (Shwartz et al. 2016), a method based on extract-
ing paths between premise and hypothesis from dependency trees and using them as inputs to
Long Short-term Memory Networks (LSTMs). Fine-tuning generic word vectors using external
knowledge such as WordNet (Miller 1995) has improved performance on a range of language
understanding tasks (Glavaš and Vulić 2018). To extend this method to unseen words, Kamath
et al. (2019) introduced POSTLE (post-specialization for LE), a model that learns an explicit global
specialization function captured with feed forward neural networks.

Inference systems trained on the SNLI andMultiNLI datasets mostly use neural language mod-
els based on the Transformer architecture (Vaswani et al. 2017), in particular BERT (Devlin et al.
2019). SemBERT (Zhang et al. 2020) uses a BERT backbone enhanced with a Semantic Role
Labeler (SRL), MT-DNN (Liu et al. 2019) enhances the system presented in Liu et al. (2015) with
BERT. Top results on the MultiNLI benchmark were achieved by optimized, pretrained, and fine-
tuned versions of BERT, RoBERTa (Zhuang et al. 2021), and ALBERT (Lan et al. 2020). Using
rule-based models in NLI and combining them with deep learning based language models (BERT,
ALBERT, RoBERTa) has recently also led to competitive results (Haruta, Mineshima, and Bekki
2020; Kalouli, Crouch, and de Paiva 2020). In this article, we will also present an improvement
over such a model using our fully rule-based method for detecting entailment between pairs of
words.

2.3 Semantic parsing
Semantic parsing is the task of mapping natural language text to some model of its meaning, and
as a language processing step it can only be defined with respect to a particular system of semantic
representation. As interest in symbolic representations has increased, so has the variety of such
systems. Most practical frameworks link to lexical databases, including the graph of synonym sets
in WordNet (Miller 1995), the semantic role inventory in VerbNet (Kipper et al. 2008), or the
ontology of semantic frames in FrameNet (Ruppenhofer et al. 2006). Abstract meaning represen-
tations (AMR) (Banarescu et al. 2013), which became one of the most widely used representations
in semantic parsing, is based on the PropBank database (Palmer, Gildea, and Kingsbury 2005).
AMR handles a range of phenomena in the semantics of English but does not provide any treat-
ment of word meaning and is also not intended as a universal representation of natural language
semantics, despite some early efforts in Xue et al. (2014) and the release of a Chinese AMR bank
(Li et al. 2016). Automatic construction of AMR graphs from text is usually performed using
deep neural models (Konstas et al. 2017; Lyu and Titov 2018; Zhang et al. 2019) trained on AMR
banks. A language-agnostic approach tomeaning representation is taken by Universal Conceptual
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Figure 1. Dependency parse of the definition of jewel.

Figure 2. 4lang definition graph of jewel.

Cognitive Annotation (UCCA) (Abend and Rappoport 2013), which abstracts away from syntax
by representing words of a sentence as leaf nodes of directed acyclic graphs (DAGs) representing
scenes evoked by predicates. As in the case of AMRs, top-performing parsers for UCCA all employ
neural networks trained on manually annotated sentences (Hershcovich, Abend, and Rappoport
2017, 2018; Ozaki et al. 2020; Samuel and Straka 2020). Not only are these formalisms often depen-
dent on large manually built databases, existing parsing systems also rely on large datasets of
hand-crafted representations (sembanks) for training. Transferring such systems across domains
and languages therefore requires a considerable amount of expert human labor. In this article, we
will use a meaning representation formalism designed to enable robust rule-based parsing and
relying only on language-agnostic resources. Here we provide an overview only, our extensions
and modifications shall be presented in Section 3.

4lang is a theory and formalism for representing the semantics of natural language, developed
in Kornai (2012, 2019), Kornai et al. (2015), and partially implemented in Recski (2016, 2018).
4lang concept graphs represent meaning as directed graphs of language-independent concepts.
Edges connecting concepts have one of three labels. Predicates are connected to their arguments
via edges labeled 1 and 2, for example, cat 1←− catch 2−→ mouse, while 0-edges represent all
relationships involving inheritance, including not only hypernymy (dog 0−→ mammal) but also
attribution (dog 0−→ four-legged), and unary predication (dog 0−→ bark). This implies a broad
definition of lexical entailment: unless explicitly overridden, dog entails not only mammal, but
also bark and four-legged. In its current implementations, 4lang concepts have no grammatical
attributes and no event structure, for example, the phrases water freezes and frozen water would
both be represented as water 0−→ freeze. Figure 2 shows the 4lang definition of the concept jewel
obtained by processing the dependency parse in Figure 1 of the Wiktionary definition A precious
or semi-precious stone; gem, gemstone.

Optionally, the 4lang system allows us to expand graphs, a process which unifies one graph
with the definition graphs of the concepts within that graph. For example, a graph containing the
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node jewel will be expanded to include as a subgraph the entire definition graph in Figure 2.
This step will be essential to our method presented in Section 3.2. 4lang graphs can be built auto-
matically from Universal Dependencies (Nivre et al. 2018) using the rule-based dep_to_4lang
module, which we extend to improve performance across languages. Section 3 will describe these
changes, as well as our reimplementation of the parsing algorithm using Interpreted Regular Tree
Grammars (IRTGs) (Koller 2015). While in the present work this method is used to map nat-
ural language definitions to concept graphs representing the meaning of individual words, the
system is capable of processing any UD graph and can be used to construct the 4lang semantic
representation of any text.

2.4 Entailment in semantic graphs
Lexical entailment is explicitly encoded by several semantic formalisms. The hyponymy/ hyper-
nymy relation, the narrow interpretation of lexical entailment used for example in the Semeval
2020 shared task, is represented directly by WordNet. The 0-edge in 4lang graphs is a more
generic relation that subsumes the hypernymy relation along with all other types of predication,
and accessibility of one concept from another in a 4lang graph can be seen as a broad defini-
tion of lexical entailment. Recently, we have shown (Kovács et al. 2020) the direct applicability
of such semantic graphs to hypernymy detection task by using them in a competitive system at
the Semeval entailment task (Glavaš et al. 2020). When using 4lang definition graphs, we defined
entailment to hold between a pair of premise and hypothesis words if and only if in the twice-
expanded definition graph of the premise there is a directed path of 0-edges leading from the
premise word to the hypothesis word (the maximum number of expansions was chosen arbitrar-
ily). Because entailment does not flow through locative and negative modifier clauses, inference
had to be blocked explicitly where the path would go through prepositions (e.g. English in, of, on,
German in, auf , Italian di, su, il) or words conveying negation (English not, German keine, etc.).
For example, where nose is defined as “a protuberance on the face’’, 4lang graphs would contain
a path of 0-edges from nose to face, falsely representing entailment. One of the modifications of
the parsing algorithm to be presented in this article will ensure that subgraphs representing such
relations do not contain 0-paths.

On the Semeval dataset of word-level entailment, the above method detected only about
one-third of all true entailments in the dev dataset but achieved nearly perfect precision. On
well-resourced languages such as English, WordNet was shown to be a very strong baseline both
in terms of precision and recall, and the main contribution of 4lang was its ability to increase
recall without hurting precision, increasing the performance of strong WordNet-based baselines
on three languages, ranking first in English and Italian and second-best on German, see Table 3.
For English and Italian official WordNet releases were accessed via the nltkd package. In Kovács
et al. (2020) for German, we did not have access to a high-coverage WordNet release, word pairs
were therefore translated from German to English using the wikt2dict system (ács, Pajkossy, and
Kornai 2013) to enable the use of EnglishWordNet on the German task. In Section 4, when evalu-
ating the methods presented in this article and comparing them to previous methods, we include
a variant of this system using a recent German WordNet release, GermaNet (Hamp and Feldweg
1997; Henrich and Hinrichs 2010).

3. Semantic parsing and representation
Our method for establishing entailment between pairs of words requires that we create 4lang
semantic graphs for each word. Using a modified version of the pipeline described in Recski

dhttps://www.nltk.org/howto/wordwet.html.
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Table 3. Official monolingual LE results on the ANY track (F-scores)

System en de it

GLEN baseline (Glavaš and Vulíc 2019) 79.87 59.88 66.27
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BMEAUT (Kovács et al. 2020) 91.77 67.00 81.41
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SHIKEBLCU (Wang and Kuo 2020) 87.90 71.43 75.94

Bold values represents best scores.

Figure 3. Example of an IRTG rule.

(2016), we process dictionary definitions with Universal Dependency (UD) (Nivre et al. 2018)
using the stanza library (Qi et al. 2020) and transform the resulting dependency trees using rules
from the dep_to_4lang (Recski 2018) module. In this section, we present our modified version
of this pipeline, for which we reimplement the transformation of dependency trees into 4lang
graphs using Interpreted Regular Tree Grammars (IRTGs) (Koller 2015) generated dynamically
using a lexicon of rule templates. Then we present our method for detecting entailment over pairs
of semantic graphs corresponding to premise and hypothesis.

3.1 Semantic parsing with Interpreted Regular Tree Grammars
ManyNLP tasks involve constructing or transforming graphs that represent syntax and/or seman-
tics. Interpreted Regular Tree Grammars (IRTGs) (Koller 2015) can be used to encode the
correspondence between sets of such structures and have in recent years been used to perform syn-
tactic parsing (Koller andKuhlmann 2012), generation (Koller and Engonopoulos 2017), semantic
parsing (Groschwitz, Koller, and Teichmann 2015; Groschwitz et al. 2018), and surface realiza-
tion (Kovács et al. 2019; Recski et al. 2020). The system presented in this article uses an IRTG for
transforming UD trees into 4lang graphs.

An IRTG rule is a (possibly weighted) rewrite rule of a Regular Tree Grammar that is mapped
to an arbitrary number of named interpretations, each of which are operations of an algebra with
the same arity as the RTG rule. Thereby any particular derivation of an IRTG grammar determin-
istically maps to a sequence of operations in each of the interpretation algebras. Parsing an object
of one algebra involves finding the IRTG derivation(s) of the highest likelihood that would gener-
ate this object, while decoding is the subsequent construction of an object in another algebra using
this sequence. The grammars used by our system establish a mapping between operations of two
algebras of directed graphs, one for constructing UD representations and another for constructing
4lang graphs. The overall structure of an IRTG rule with two interpretations is shown in Figure 3.
The graph operations used in this example will now be introduced.

Following the practice of Koller and Kuhlmann (2011), we use s-graph algebras. We give an
informal overview of its operations, see Courcelle and Engelfriet (2012) for a more formal expla-
nation. S-graphs are graphs whose vertices may be labeled by one of a countable set of sources,
which are essentially special node labels accessible by operations of the algebra. The binary merge
operation creates an s-graph by taking the union of its argument graphs and merging nodes with
identical sources. In other words, when two s-graphs G1 and G2 are merged, the resulting s-graph
G’ will contain all nodes of G1 and G2, and when a pair of nodes (v1, v2) ∈V(G1)×V(G2) have
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Figure 4. Graph representation of sample rule in Figure 3.

the same source name, they will be mapped to a single node v’ inG’ that has all adjacent edges of v1
and v2. Sources can be manipulated by the rename and forget operations for changing or deleting
a given source label from all nodes of an s-graph.

We illustrate the algebra operations and the structure of an IRTG using a simple example.
Figure 3 shows an IRTG rule encoding the correspondence between two operations: one that
adds a directed amod edge between the root nodes of two UD graphs, and another that adds a
directed 0 edge between the root nodes of two 4lang graphs. The first line in the example is
the IRTG rule, specifying that an operation called NOUN_AMOD_ADJ takes as its arguments two
objects of type NOUN and ADJ. The second and third lines are the interpretations, each specifying
the same sequence of operations: the first argument is merged with a graph consisting of a single
directed edge, the second argument is merged with the resulting graph after its root source has
been changed to dep1 using the rename operation. Finally, the dep1 source is deleted, using
the forget operation. This sequence of operations is equivalent to adding a single directed edge
between the root nodes of the two argument graphs, ensuring that the root of the first becomes
the root of the new graph. The syntax used in this example is specified by the Algebraic Language
Toolkit, or altoe (Gontrum et al. 2017), an open-source parser for IRTGs that implements a
variety of algebras, including the s-graph algebras used in this article. Graph literals in each
interpretation are given using the PENMAN notation,f in this simple case the only difference
between the two strings is the edge label. The correspondence expressed by the rule in Figure 3
can also be represented by the pair of graph templates in Figure 4, we will use this simplified
format in future examples.

ParsingUD graphs and transforming them into 4lang graphs on a large scale would be possible
using a single grammar with terminal rules corresponding to each word of the input graph. But
since building and continuously extending such a large set of rules would be inefficient, we instead
chose to dynamically generate individual grammars for each input UD graph, a process that makes
it possible to use sets of rule templates for generating similar rules, and to organize them into
configurable, application-specific rule lexica. We then construct IRTG grammars for individual
UD trees by looking up their edges in such lexica, for example, the UD edge NOUN amod−−−→ ADJ

will always warrant an IRTG rule that maps this edge to the 4lang edge NOUN 0−→ ADJ. Other
patterns require the lexicon to reference additional nodes in the input graph, we discuss some
examples below. Terminal rules that map POS-tags to words in both interpretations are added to
each grammar in a trivial step. The grammar generation framework described here is available as
open-source software as part of the tuw-nlpg Python package, and is a core dependency of the
system presented in this article, which is also available as part of an open-source library.h

ehttps://github.com/coli-saar/alto.
fhttps://penman.readthedocs.io/en/latest/notation.html.
ghttps://github.com/recski/tuw-nlp.
hhttps://github.com/adaamko/wikt2def/tree/nle.
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Figure 5. Obliques in UD and 4lang.

Figure 6. 4lang definition graph of John is supported by Bill and Bill is supporting John.

The starting point for creating rule lexica was the mapping of the original dep_to_4lang
paper (Recski 2018), which establishes all trivial 1-to-1 mappings between pairs of UD and 4lang
relations. For example, all UD relations representing modification (amod, advmod, nummod)
are mapped to 0-edges, while relations between predicates and their objects (obj, nsubj:pass)
become 2-edges. Subjects relations (nsubj, csubj) are mapped to a pair of 0- and 1-edges; in the

sentence John is supporting Bill, the UD relation support
nsubj−−−→ John becomes support

1
�
0

John.
Clausal modifiers (acl, advcl) are generally also mapped to 0-edges, some newly introduced
exceptions will be discussed below. Additionally, we introduce a new mechanism for non-core
(oblique) arguments marked by the obl relation.

Consider the Wiktionary definition of teacher: someone who teaches, especially in a school. The
UD edge teach obl−→ school does not in itself reveal the semantic relationship between the two
concepts, thus we introduce a pattern that will also take into account the case relation marking
the argument: the full UD analysis of this sentence contains the subgraph teach obl−→ school case−−→
in, allowing us to build the 4lang graph teach 1←− in 2−→ school using an IRTG rule represented
in Figure 5. We also implemented an English-specific exception to this rule: the preposition by
will trigger the configuration for the predicate–subject relation, so that the UD analyses of the
sentences John is supported by Bill and Bill is supporting John shall both be mapped to the same
4lang graph (see Figure 6).

Another shortcoming of the original algorithm for mapping dependency graphs to 4lang rep-
resentations is its treatment of coordination. The strategy introduced in Section 3.4.1 of Recski
(2018) simply copied all semantic relations between all elements of coordinating constructions,
which has proved practical for downstream applications despite introducing some erroneous
edges. Our system replicates this behavior in its mapping from UD to 4lang. Some simple pat-
terns over specific conjunctions (and, or, etc.) could be used to differentiate between occurrences
of the conj dependency, similar to the approach of Enhanced Universal Dependencies (Schuster
and Manning 2016), but modeling the semantics of coordinating conjunctions would neverthe-
less require considerable language-specific effort (see Gerdes and Kahane 2015; Kanayama et al.
2018).
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Figure 7. Relative clause modifier of a noun in UD and 4lang.

Perhaps the most significant limitation of the original system was its lack of treatment for rela-
tionships between clauses. This is partly due to the fact that the type of the UD relation connecting
the heads of two clauses often reveals very little about the semantic function of the dependent
clause. The UD relation acl is definedi as clausal modifier of noun (adjectival clause), and indeed
the general case can be handled by 0-edges, but this rule will currently create erroneous edges for
sentences such as I have a parakeet named Cookie, since there is no mechanism to detect that in
this case parakeet is the object of named. Another issue is posed by the UD relation acl:relcl
(relative clause modifier of a noun), which is used both in an animal that moves and the man you
love, constructions that would warrant the edges animal 0−→ move and man 2←− love, respectively.
The first of these two examples can receive the correct treatment based on the presence of the
nsubj edge betweenmove and that, thus we introduce a rule that implements the correspondence
in Figure 7. Other occurrences of acl:relcl are currently not processed. For the full mapping
between UD and 4lang structures see Table 4.

While some of these newly introduced mechanisms are still rudimentary, improving the gen-
eral mechanisms of building task-independent semantic representations is a central goal of our
work—we present our error analysis in Section 5. The pipeline for building 4lang definition
graphs from Wiktionary is currently implemented for three languages: English, German, and
Italian. Extending it to additional languages requires the existence of an accurate UD parser
and a machine-readable monolingual dictionary of sufficient coverage. Once the UD parses of
definitions are available, the remainder of the pipeline is language-independent, although for some
languages it might be necessary to extend the dep_to_4lang mapping to include reference to
morphological features, as done in Recski, Borbély, and Bolevácz (2016). We apply this pipeline
to dictionary definitions extracted from data dumps of Wiktionary, a large crowd-sourced dictio-
nary containing more than 100,000 entries for 40+ languages (and more than 10,000 entries for
about twice as many). Section 3.2 will describe our method for detecting entailment between pairs
of words or predicates using their corresponding 4lang graphs. Entailment relations extracted
using this method may be of lower quality than those encoded by manually built databases such
as WordNet, but cover larger vocabularies and thus improve performance even for languages
with large WordNets (see Section 4 for details). While in our current experiments we chose to
build pipelines for three relatively well-resourced languages (English, German, Italian), both a
large Wiktionary and an UD parser model are available for many more.

3.2 Modeling lexical entailment
A Wiktionary page for a given word form typically contains several definitions corresponding to
multiple word senses and/or parts-of-speech, but, given the crowd-sourced nature of the dataset,
without adhering to any particular lexicographic principles. After identifying individual entries

ihttps://universaldependencies.org/u/dep/all.html.
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Table 4. Mapping from UD relations to 4lang subgraphs

Dependency Edge

advcl

advmod

amod w1
0−→w2

nmod

nummod

obl:npmod

nsubj w1
1�
0
w2

csubj

obj

ccomp w1
2−→w2

xcomp

appos w1
0�
0
w2

nmod:poss w2
1←− HAS 2−→w1

nmod:npmod w1
1←− NPMOD 2−→w2

nmod:tmod w1
1←− AT 2−→w2

obl:tmod

w1
obl−→w2

case−−→w3 w1
1←−w3 2−→w2

w1
acl:relcl−−−−→w2

nsubj−−−→w3 w1
0−→w2

on each Wiktionary page using simple language-specific templates, our approach is to pick the
first definition of each word unless it is explicitly marked by editors as obsolete, archaic,
historical, or rare. Based on manual analysis of a small sample, we estimate that for over
98% of words in the Semeval dataset this method chooses the sense that is apparently intended
in the dataset. For example, for the word pair letter–mail in the Semeval dataset, we assume that
the intended sense is that defined as a written or printed communication and not a symbol in an
alphabet.

The entailment candidates in the SherLliC dataset pose a greater challenge. Predicates are
implicitly disambiguated by their type signatures, yet we do not attempt to select some subset
of the available definitions based on this information, instead we establish entailment between a
pair of predicates iff there is any pair of definitions for which the conditions of entailment, to be
defined in this section, are fulfilled. In Section 4, we shall see that this does not lead to a drastic
decrease of precision as it would on the Semeval dataset, likely because of the relatively higher bar
of matching an argument-predicate structure as opposed to a single word. Meanwhile this enables
detecting entailment based on any listed definition of predicates; for example, we correctly detect
that the premise “A is releasing update for B’’ entails the hypothesis “A is releasing version of B’’
based on the third Wiktionary definition of update: “A modification of something to a more recent,
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Figure 8. 4lang representations of A is nation in B and A is country in B.

up-to-date version; (in software) a minor upgrade”. We shall discuss the issue of polysemy in more
detail in Section 5.

Our core method for modeling entailment is based on the intuition that all semantic rela-
tionships marked by 0-edges in 4lang graphs constitute entailment, that is dog entails not only
mammal but also four-legged and bark, and that this relation is transitive, that is if dog entails bark
and bark entails sound then dog must also entail sound. In other words, we equate entailment with
inheritance and consequently with accessibility via a directed path of 0-edges in a 4lang concept
graph. Here, we shall not discuss whether the relationship between for example the concepts dog
and bark are an example of entailment, causation, correlation, or something else; this compre-
hensive definition is rooted in our view that modeling lexical entailment should be an enabler of
the modeling of natural language inference (NLI). We note that this view on entailment may be
incompatible with task formulations involving statements about specific events or scenes, such as
the SNLI dataset that is largely based on image captions, since in such descriptions A dog is there
should not entail A dog is barking. It can be argued, however, that it is precisely the omission of
such type-theoretic details that gives the 4lang system its flexibility. Where there is a dog, there
can be a bark(ing). Kornai (2010) further argues that the episodic readings that have occupied
Montague Grammarians ever since the inception of MG are practically nonexistent in natural
language.

Implementing the above definition as a function over pairs of semantic graphs involves the
recursive expansion of the premise graph based on the definitions of its defining words. This,
after only a small number of iterations, leads to the proliferation of errors and ambiguities, caused
primarily by imperfections of the dep_to_4lang mapping and the inherent ambiguity of def-
initions (see Section 5 for more details). We found it practical in our experiments to limit the
depth of expansion to 2 (although in certain cases 3 would lead to a higher F-score, see Section 4
for details). On the Semeval dataset of word pairs, we then establish entailment iff the hypothesis
word is present in the expanded premise graph. The depth of recursive expansion is themajor tun-
able parameter of our method, set to 2 for both tasks based on early experimental results, but recall
can be increased considerably by allowing our system to establish entailment without full cover-
age, requiring only some percentage of edges in the hypothesis graph to be covered by the premise
graph. Optimal values for this threshold were obtained by optimizing on the development por-
tion of the dataset. For the high-precision configurations, we set the threshold to 0.8 while for the
highest F-score required a value of 0.2. Such tweaking admittedly weakens full explainability, since
one has to justify a partial overlap of premise and hypothesis graphs. Still, the interpretability of
our representation remains, enabling deep error analysis (see Section 5) and further development
of our semantic parsing methods.

On the SherLlic task, we use 4lang graphs built from the example sentences associated with
each predicate in the dataset. For example, the pair of premise and hypothesis predicates “A is
nation in B” and “A is country in B” will be represented by the graphs in Figure 8. We define
entailment to hold iff all edges of the hypothesis graph are found in the expanded premise graph,
which requires us to refine the expansion process to also allows nodes to inherit relations along
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Figure 9. Appending zero edges to premise.

Figure 10. Expanded 4lang representations of A is nation in B.

Figure 11. 4lang definition graphs of expanding and reducing A is heart of B.

paths of 0-edges. After a graph has been extended with the definition graphs of its nodes, we
allow relations to be inherited along directed paths of 0-edges using the algorithm in Figure 9 and
exemplified in Figure 10, representing the modus ponens reasoning that if A is a nation in B and
nation is a type of country, then A is a country in B.

Let us now consider the premise “A is center of B” and the hypothesis “A is heart of B”. The
concept heart is not accessible from the premise, but one of its definitions is The centre. In this
case, we can detect entailment via the reduction mechanism, which substitutes a concept with
its definition graph (while still allowing relations to be inherited by defining concepts, as in the
case of expansion). In other words, reduction is equivalent to expansion followed by removal of
the original concept, as shown in Figure 11. This mechanism represents the intuition that if all
defining properties of some concept can be inferred then the concept itself is also entailed.

On the simpler word-level task, we increase our overall performance by incorporating addi-
tional lexical resources: we extract for all premise words lists of synonyms from their Wiktionary
pages as well as a list of synonyms and all their hypernyms from WordNet (Miller 1995). We use
such additional resources in two ways. First, we can choose to establish entailment if the hypothe-
sis word is present in the set of hypernyms for any WordNet synset containing the premise word.
Second, we may use synonyms of the premise word from both WordNet synsets and Wiktionary
to extend the 4lang definition graph of the premise with additional concepts before performing
expansion. In Section 4, we shall quantify the contribution of these additions. On the SherLlic
dataset, we decided not to use these extensions as they appeared to introduce too much noise.
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Our method for detecting entailment described in this section produces decisions that are
directly explainable due to the presence of at least one path of 0-edges leading from the premise
word to the hypothesis word, and these paths can be further explained by the dictionary defini-
tions on which they were based. For example, the decision in the above example that “A is center
of B” entails “A is heart of B” could be explained by citing the originalWiktionary definition heart:
12. (figuratively) The centre, essence, or core. Although we have not observed it during our manual
error analysis (see Section 5), it is possible for our method to make a correct decision based on
edges that were introduced in error, which would ultimately result in an incorrect explanation.

Our approach treats lexical entailment detection as a binary classification task and in this work
we shall not attempt to give an account of entailment as a graded phenomenon, even though
the Semeval dataset (see Section 2.1) provides evaluation data also for graded lexical entailment.
While this dataset is validated by high agreement among annotators answering the question To
what degree is X a type of Y and represents common intuitions such as that chess is a sport to
a lesser degree than basketball (Vulić et al. 2017), we consider such distinctions more an issue of
prototypicality than of implicature as such. Basketball may be uniformly viewed as more of a sport
than chess, but the implications we want to employ, for example that it is a contest, a fight between
participants with a winner and a loser, and that the winner is proven stronger by this outcome in
the sport at hand, are the same, and they operate in a 0-1, rather than a gradient, fashion.

4. Evaluation
In this section, we present the results of experiments on both the Semeval and SherLlic datasets.
On the Semeval dataset, we compare our system to the previous state-of-the-art and some strong
baselines, while on the SherLlic task we use for comparison both the set of baselines published by
Schmitt and Schütze (2019) and a recent SOTA NLI system. We also evaluate the effect of some
of the processing steps discussed in Section 3 by comparing various configurations of our method
on both benchmarks.

For the word-level entailment task, we evaluate on the English, German, and Italian portions of
the Semeval 2020 dataset. We used the development portion of each dataset for experimentation
and for determining the optimal value of the single tunable parameter of our system, the depth
of recursion when expanding 4lang graphs. We set this value to 2 in all configurations and on
both datasets. It was also based on these experiments that we made the determination to limit
expansion to nodes connected to each word by 0-paths, as opposed to expanding all nodes in the
definition graphs, as we have done for the SherLlic task.

Performance of various configurations on the Semeval development data is presented in
Table 5. Our core method, using expanded 4lang definition graphs built from Wiktionary
definitions, achieves high precision on all three languages and recall values in the 0.25–0.35
range. Extending our definition graphs with additional synonyms fromWordNet andWiktionary
improves recall at the cost of some precision, on all languages. On the German data, we also com-
pare the contribution of the translation-based method EN_WordNet that uses English Wordnet
to the high-quality German WordNet release GermaNet (Hamp and Feldweg 1997; Henrich and
Hinrichs 2010). Since WordNet graphs explicitly encode the hypernymy–hyponymy relationship
between synsets, they can be evaluated as standalone baselines and achieve strong precision and
recall scores on all languages. Our method, however, can be used to improve their recall further,
thus the top-performing system for all three languages is that which labels word pairs as entail-
ment if either our system or the WordNet baseline labeled it as such. On the English dataset,
we also illustrate the negative effect of including all Wiktionary definitions. On the SherLlic task
the effect is reversed, using multiple definitions increases performance (4lang_multidef). In
Table 6, we list some examples of entailment pairs that have been detected by our method but
not by WordNet, along with their Wiktionary definition of the premise that was used for building
4lang representations.
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Table 5. Performanceon the Semeval development set.4lang and4lang_syn is our
method without and with additional synonym nodes fromWordNet and Wiktionary.
WordNet is the baseline using WordNet hypernyms, 4lang_syn+WordNet is the
union of 4lang+syn and WordNet

Lang Method P R F

EN always yes 56.33 100.0 72.07
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WordNet 95.75 88.76 92.12
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang 96.30 29.21 44.83
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_multidef 81.16 62.92 70.89
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_syn 92.85 36.51 52.41
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_syn+WordNet 93.22 92.69 92.95
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RoBERTa 83.25 94.94 88.71

DE always yes 37.11 100.0 54.13
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

EN_WordNet 61.61 79.22 69.31
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GermaNet 90.83 70.77 79.56
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang 88.88 36.36 51.61
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_syn 87.87 37.66 52.72
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_syn+EN_WordNet 61.86 86.36 72.08
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_syn+WordNet 87.23 79.87 83.33

IT always yes 41.67 100.0 58.82
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WordNet 88.96 75.88 81.90
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang 93.47 25.29 39.81
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_syn 81.17 40.58 54.11
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_syn+WordNet 83.92 82.94 83.43

Bold values represents best scores.

Table 6. Examples of entailment pairs not in WordNet but detected by our system

Premise Hypothesis Premise definition

graph chart a data chart (graphical representation of data) intended to
illustrate the relationship between a set (or sets) of numbers

Saturn Planet sechster und zweitgröter Planet unseres Sonnensystem
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

‘sixth and second-largest planet of our solar system’

test esame esame per verificare qualcosa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

‘exam to check something’
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Table 7. Performance on the Semeval test set. 4lang and 4lang_syn is
our method without and with additional synonym nodes from WordNet and
Wiktionary. WordNet is the baseline using WordNet hypernyms, all is the
union of 4lang+syn and WordNet. Previous top-scoring systems on each task
are BMEAUT (Kovács et al. 2020) and SHIKEBLCU (Wang et al. 2020)

Lang Method P R F

EN always yes 56.33 100.0 72.07
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WordNet 94.40 89.29 91.77
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_syn 94.40 38.74 54.94
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BMEAUT 91.77
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

all 93.02 94.70 93.85
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RoBERTa 85.66 91.33 88.41

DE GermaNet 89.57 67.25 76.82
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_syn 81.02 28.11 41.74
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

SHIKEBLCU 71.43
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

all 84.12 72.59 77.93

IT always yes 41.67 100.0 58.82
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WordNet 87.08 76.43 81.41
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_syn 88.58 28.57 43.20
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

BMEAUT 81.41
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

all 84.88 79.38 82.03

Bold values represents best scores.

We also evaluate our system on the Semeval test set, figures are presented in Table 7. We com-
pare our current configuration with the top-scoring system from the 2020 Semeval competition
(Glavaš et al. 2020). On English and Italian, the previous top system is our own BMEAUT submis-
sion (Kovács et al. 2020) and on German it is the SHIKEBLCU (Wang et al. 2020) system, which
specializes distributional word vectors for lexical relations. The results on the test dataset shows
that after improving 4lang with additional methods and synonyms we achieve state-of-the-art
results in all three languages. For German, the greatest improvement is clearly brought about by
the new, high-quality German WordNet release GermaNet. Finally, we also evaluate a state-of-
the-art neural NLI system on the Semeval datasets. RoBERTa (Zhuang et al. 2021) was trained on
a dataset with three labels: entailment, neutral, and contradiction. We interpret its predictions by
merging the latter two labels into a single label “not entailment”. In absence of sufficient training
data, we tuned the model to the dataset by setting the threshold of the output weights for optimal
performance on the development set. The resultingmodel was evaluated on both the development
and test portions of the dataset.

Next we performed evaluation on the SherLlic dataset, comparing several configurations of
our method to both the RoBERTa system and a wide variety of baselines published alongside the
dataset (Schmitt and Schütze 2019). Figures are presented in Table 8. We experimented with two
configurations of our current system, tuned to high F-score and to high precision respectively. The
trivial “always yes” baseline yields F= 49.9 on this dataset, and tellingly, the best earlier rule-based
systems, Berant II (Berant 2012) and PPDB (Pavlick et al. 2015), achieved only F= 30.0 and
F= 34.7. In the high F-score configuration (using the method described in Section 3.2 complete
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Table 8. Performance on the SherLlic test set. WordNet is the baseline using
WordNet hypernyms, ESIM (Chen et al. 2017) is the strongest systemevaluated
thatwasn’t tunedonSherLlic’s held-out portion andw2v+tsg_rel_emb is the
overall strongest system of Schmitt and Schütze (2019). 4lang_high_prec
and 4lang_high_fscore are the configurations of our system tuned for high
precision and high F-score, respectively

Method P R F

always yes 33.3 100 49.9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

WordNet 38.8 35.7 37.2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_high_prec 89.06 11.46 20.32
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4lang_high_fscore 44.65 52.51 48.26
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ESIM 39.0 83.3 53.1
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

w2v + tsg_rel_emb 51.8 72.7 60.5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

RoBERTa 70.0 76.35 73.0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ 4lang_high_prec 69.79 76.96 73.20
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

+ 4lang_high_fscore 51.00 85.00 64.00

Bold values represents best scores.

with all postprocessing steps (expansion, reduction) and using all Wiktionary definitions), 4lang,
though clearly better than the earlier systems and WordNet, is still below the trivial baseline. The
high-precision configuration, obtained by blocking the inheritence of relations in the premise
graph after expansion and also the reduction of the hypothesis graphs, is worse than the earlier
rule-based systems, but proves its usefulness in the hybrid configuration with RoBERTa, where it
improves not just over the high-F variant but also over RoBERTa used alone, which defined the
state-of-the-art before this work.

5. Error analysis
The graph-based method presented in previous sections is an example of eXplainable AI (XAI).
Decisions taken by any variant of our algorithm can be represented as paths of concepts between
premise and hypothesis in a concept graph, or lack thereof, making qualitative error analysis
straightforward. Our method is high-precision by design, and on the simpler word-level task its
false positives are limited to a small number of unique accidents, such asWiktionary defining video
as television. Therefore, in this section, we focus on tracing the reasons behind false negatives, a
task that simply cannot be performed outside the XAI context.

We begin with the simpler, word-level task, where our standalone method achieves consider-
ably lower recall and F-score than what is already possible by including another lexical resource
with an explicit model of hypernymy. We manually inspected 60 positive entailment pairs in the
English Semeval dev dataset that were missed by our core method, that is the system without
additional synonyms.

By far the most common, and in our opinion, the most interesting, source of false negatives
is when the expanded premise graph correctly contains most or even all of the semantic content
of the hypothesis word, yet there is no direct match, the hypothesis word cannot be accessed. An
example is the word pair lettuce → food. Lettuce is defined in Wiktionary as “an edible plant,
Lactuca sativa and its close relatives, having a head of green and/or purple leaves”, edible means
“can be eaten without harm” and finally eat is simply defined as “to ingest”. Since this is as far as
our iterative expansion goes, we are missing the word food altogether.
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The main issue here is that the default object of eating is food, a fact well represented in the
definition of eat in dictionaries such as LDOCE (Bullon 2003) “to put food in your mouth and
chew and swallow it”; Webster’s New World (Guralnik 1958) “to chew and swallow (food)”; The
Concise Oxford (McIntosh 1951) “masticate and swallow (solid food)”;Webster’s 3rd (Gove 1961)
“to take in through the mouth as food”. The connection with the object is so strong that it is also
regularly present in the definition of edible: “fit to eat, food” (Collins); “suitable by nature for
use as food” (Webster’s 3rd); etc. Even ingest, a word that can be appropriately used for drinks,
poison, etc. that are clearly not fit to be eaten, will generally include the default: “to take food or
other substances into your body” (LDOCE); “to take (food) to the stomach” (Concise Oxford);
“consume food or drink” (FrameNet) etc.

Since the association between eating and food is direct, we simply need to enhance the defi-
nition base further. A more interesting case is presented by mussel and seafood, where we do not
believe that any reasonable lexical resource can help. This is because dictionaries are not at all good
sources for plants, animals, minerals, and common encyclopedic knowledge about them: basically
every dictionary we consulted defines mussel as a kind of mollusc (often using the technical term
“bivalvate”), but gives up on defining mollusc by shunting the reader to the encyclopedia “ani-
mal belonging toMollusca, a subkingdom of soft-bodied and usually hard-shelled animals”. As we
learn for example from the Concise Oxford, this subkingdom includes limpets, snails, cuttlefish,
etc, and most of these (with the exception of oysters) are actually not considered as seafood. All of
this points to the conclusion that for these cases a different, encyclopedic knowledge source should
be consulted and hereWikipedia works well: the article en.wikipedia.org/wiki/Mussel actually has
a heading As food.

A further error class comprises words for which the first definition in Wiktionary does not
correspond to the sense intended in the entailment pair, most often because it is in fact not the
most common sense of the word. An example is submarine, whose first sense in Wiktionary is
defined as “underwater”. Quite often, there is no clear “main sense” of the word and it is only the
entailment candidate that allows us to disambiguate between multiple senses. Examples are letter
→ mail which is labeled as entailment but simply is not if we choose the definition “symbol in
an alphabet”, or mole→ animal, which fails for the sense “pigmented skin” the same way. When
constructing the Hyperlex dataset (Vulić et al. 2017), which later became the basis of the Semeval
dataset used in this paper, annotators were instructed that “two words stand in a type-of relation if
any of their senses stand in a type-of relation.”(Vulić et al. 2017, p. 797). This might suggest that we
consider the union of all definitions of a word for our method, but our early experiments showed
that (because of the crowd-sourced nature of Wiktionary entries) such an approach would very
often lead to the proliferation of erroneous representations built from low-quality and/or unwar-
ranted definitions. Alternative solutions might include disambiguating among definitions based
on context and/or buildingmeaning representations from groups of definitions that describe mul-
tiple uses of the same abstract word sense. For a discussion of the difficulties of such approaches,
the reader is referred to Section 4.4.3 of Recski (2018).

In Table 9, we highlight some cases where the predictions of 4lang and RoBERTa differ. In the
first case, 4lang misses the meaning “support, protect” for the verb back (also seen in the multi-
word expression have the back of ), but we simply do not know why RoBERTa is getting this right,
and have no performance guarantees that further training or other improvements to F will pre-
serve this particular instance. The second example is more subtle: ambassadors always represent
their country but presidents do this much more rarely. Under a strict logical reading the implica-
tion fails, but as a practical matter, we should accept it, since representing their country is a typical
activity of their presidents. While 4lang has the means of expressing typicality (defaults), and
some dictionaries such as Guralnik (1958) make reference to “formal head”, it is again the more
encyclopedic sources that must be consulted to find formal or ceremonial from which eventually
represent(ative) can be inferred.
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Table 9. Comparing our system to RoBERTa. Examples from Schmitt and Schütze (2019)

Example 4lang RoBERTa

ORGF[A] is supporter of ORGF[B]⇒ ORGF[A] is backing ORGF[B] False True


AUTH[A] is president of LOC[B]⇒ AUTH[A] is representing LOC[B] False True


PERSON[A] is REGION[B]’s ruler⇒ PERSON[A] is dictator of REGION[B] False True


LOCATION[A] is winning war against LOCATION[B]⇒ LOCATION[A] is declaring war on LOCATION[B] False True

That such inference is fraught with difficulties is clear from the third and fourth examples,
where RoBERTa has false positives, we think precisely because dictator often appears in text suf-
ficiently close to president, and war-winning to declaring war. While in principle this hypothesis
could be tested by retraining RoBERTa on its original training set minus these sentences, and
rerunning the experiment with the RoBERTa’ so obtained, devising a less CPU-intense experiment
seems warranted.

False positives of our system are considerably easier to track: for example, we lack a rule for han-
dling modally subordinated predicates. Therefore, we conclude invade from planning to invade
and worse yet,win from failing to win. Short and too generic definitions inWiktionary are another
main source of our false positives: we conclude A is selling to B from A is leaving to B because sell
and leave both contain act in their definition.

In some cases, valuable information is lost when we prune the contents of prepositional phrases
from our premise graph (to avoid false positive entailments such as nose→ face, as discussed in
Section 3.2). For example, our system does not detect the entailment husband→ spouse because
Wiktionary defines husband as “a man in a marriage or marital relationship, especially in relation
to his spouse”. In dictionaries that are built on stronger lexicographic principles, this is avoided
by reliance on a strict defining vocabulary, a limited set of concepts capable of defining all other
concepts. For example in LDOCE, spouse is defined as “a husband or wife’’ which avoids any
complication. Following Webster’s 3rd, modern lexicographic practice avoids defining the simple
by the more complex, and the idea of defining eat by means of “masticate” or “ingest’’ is seen as
useless, as the language learner who does not know eat is quite unlikely to know these other verbs.
Wiktionary, however, has not fully incorporated modern lexicographic principles.

Replacing Wiktionary with modern explanatory dictionaries would make it possible to extract
higher quality representations, but only at the cost of broad applicability to the ever-increasing set
of languages that already have significant Wiktionaries. That said, high-quality data sources can
significantly reduce the inherent difficulty of polysemous words. For example, English does not
mark causativization on the verb, so that run can express both “go fast” and “make go fast”. If we
consider the 50+ senses that Wiktionary provides for the verb run, there is little chance of finding
the one appropriate for the type signature (PERSON, COMPANY), which is meaning 22 “to control
or manage, be in charge of’’ or the one appropriate for (COMPUTER, SOFTWARE) (meaning 26)
“to execute or carry out a plan, procedure or program’’. Yet this level of disambiguation, between
plain and causative forms, seems quite feasible, especially using dynamic embeddings earlier in
the analysis process.

6. Conclusion
The value of a well-constructed dataset is that it leads to interesting problems. In this regard,
SherLIiC is truly valuable, as it inspires us to think more deeply about synonymy, polysemy, dis-
ambiguation, definitional economy, prepositional linkers, modal subordination, causativization,
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and a host of other questions that are traditionally considered central to natural language
semantics.

We are fortunate to have WordNet, with its extensive hypernym links, tailor-made for entail-
ment detection. Yet as we have seen, even WordNet can be profitably combined with other
resources, dictionaries in particular. But for other relationals, such as causation, possession, mere-
ological implications, spatiotemporal reasoning, etc, we would need similar datasets that highlight
these very real problems. Since WordNet is less helpful there, we could expect considerably worse
results, but it is unclear how progress could be made on grand semantic challenges in the absence
of such new datasets.

In this article, we presented an explainable, multilingual method for detecting lexical entail-
ment using a pipeline for the automatic construction of semantic graphs from dictionary
definitions and a simple rule-based method for detecting entailment between pairs of such graphs.
Ourmethod presents a strong, high-precision baseline on the simpler task of detecting hypernymy
and lets us improve over the performance of a manually created resource like WordNet. On the
more complex task presented by the SherLlic dataset, our method outperforms all known rule-
based baselines and is outperformed only by systems that have been adapted to the dataset. We
also presented a baseline using a pretrained version of RoBERTa trained on MultiNLI, achieving
even better results then the previously published distributional baselines, but combining it with
our rule-based method further increases its performance eventually achieving state-of-the-art
performance.

In future work, we hope to address several of the issues exemplified in our error analysis. One
particularly promising avenue is to invoke a more explicit disambiguation process before, or in
parallel to, the modeling of lexical entailment.
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Vulić I., Gerz D., Kiela D.,Hill F. and Korhonen A. (2017). Hyperlex: A large-scale evaluation of graded lexical entailment.
Computational Linguistics 43(4), 781–835.
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