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Throughout, suppose that K is a number field such that K � Q with ring of integers
OK, degree nK and discriminant ΔK. Moreover, let a ⊂ OK denote integral ideals,
p ⊂ OK denote prime ideals, N(p) be the norm of p and κK be the residue of the simple
pole at s = 1 of the Dedekind zeta-function ζK(s) associated to K. In what follows, we
summarise the contributions of the author’s PhD thesis [8].

To study the distribution of prime ideals in a number field, it is desirable to
study the asymptotic behaviour of certain counting functions. In particular, we
need the prime ideal theorem and Mertens’ theorems for number fields; these are
natural generalisations of the famous prime number theorem and Mertens’ theorems.
Landau originally proved the former in [7] and Rosen originally proved the latter
in [11]. In what follows, we introduce all five of the results that this thesis proves;
a conditional version (assuming the generalised Riemann hypothesis) of each result is
also established to complement these unconditional results.

Explicit results. Das established the latest explicit prime ideal theorem in [1] by
building upon earlier work from Lagarias and Odlyzko [6]. Throughout, an explicit
result completely describes the order of growth of the error term therein and the
associated implied constants. Without assuming conditions, there are significant
technicalities in their results; the result only holds for an impractical range and an
exceptional (or Landau–Siegel) zero may be present. Moreover, one can use the explicit
prime ideal theorem to obtain explicit Mertens’ theorems for number fields, although
this approach would embed the same technical obstructions into the outcome. On the
other hand, we were able to prove explicit Mertens’ theorems for number fields with no
technical obstructions, by making the steps in [11] completely explicit; this was joint
work with Garcia (see [2]) and the main result of the thesis.
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THEOREM 1. If x ≥ 2 and K � Q, then there is a computable constant ΥK depending
on nK and ΔK only, such that∑

N(p)≤x

log N(p)
N(p)

= log x + AK(x), (M1)

∑
N(p)≤x

1
N(p)

= log log x +MK + BK(x), (M2)

∏
N(p)≤x

(
1 − 1

N(p)

)
=

e−γ

κK log x
(1 + CK(x)), (M3)

in which we have |AK(x)| ≤ ΥK, |BK(x)| ≤ 2ΥK/log x, |CK(x)| ≤ |EK(x)|e|EK(x)|, |EK(x)| ≤
nK/2(x − 1) + |BK(x)| and

MK = γ + log κK +
∑
p

[ 1
N(p)

+ log
(
1 − 1

N(p)

)]

satisfies −nK ≤ MK − γ − log κK ≤ 0.

Arguably the most important ingredient in our proof of Theorem 1 is the following
explicit estimate for the ideal-counting function IK(x) = #{a : N(a) ≤ x}, which is the
number fields generalisation of the floor function. This result was by far the most
technical result in the thesis to prove, requiring an entire chapter, and it was adapted
from the content of the author’s published paper [9].

THEOREM 2. If x > 0 and K � Q, then there is a computable constant ΛK(nK)
depending on nK only, such that

|IK(x) − κKx| < ΛK(nK)|ΔK|1/(nK+1)(log |ΔK|)nK−1x(nK−1)/(nK+1).

To prove Theorem 1, we applied Theorem 2, so the definition ofΥK will also depend
on ΛK(nK). The explicit description for the constant ΛK(nK) in Theorem 2 that we
obtain significantly refines the previous best, which was established by Sunley in her
thesis [12, Theorem 3.3.5]. To see the margin of our improvement, refer to Table 1.
Further, Theorem 2 is independently interesting, because it has potential applications
in studying the zeros, size and value-distribution of L-functions defined over number
fields.

Applications. By circumventing the technical issues that would be present in an
explicit prime ideal theorem, Theorem 1 unlocks three new applications, which are
presented below. Note that Corollary 3 is an explicit version of Bertrand’s postulate
for number fields (which was originally established inexplicitly in [5, Section 3]),
Corollary 4 gives explicit versions of a result Nagell originally proved in [10] and
Corollary 5 was jointly established with Garcia, Suh and Yu in [3].

COROLLARY 3. For x ≥ 2, there exists at least one prime ideal p inK such that N(p) ∈
[x, Ax] when log A ≥ 2ΥK.
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TABLE 1. Comparison between values of ΛK(nK) using the explicit definitions proved in [12, Theorem
3.3.5] and Theorem 2 for several choices of nK.

ΛK(nK)
nK [12, Theorem 3.3.5] Theorem 2

2 1.75425 × 1030 2.49133 × 1010

3 8.57799 × 1044 8.45088 × 1011

4 7.88887 × 1059 9.84482 × 1013

5 1.20023 × 1075 1.41763 × 1016

10 1.90904 × 10153 9.65555 × 1026

15 1.10367 × 10234 5.27930 × 1038

COROLLARY 4. Let g ∈ Z[X] be irreducible with degree d ≥ 1, leading coefficient c,
discriminant Dg and weighted discriminant Dg = |c|(d−1)(d−2)|Dg|. If x ≥ max{2,

√
Dg},

then there are computable constants Qg = O(1) and Q̃g(x) = o(1) which depend on c,
d and Dg such that∣∣∣∣∣

∑
p≤x

ωg(p) log p

p
− log x

∣∣∣∣∣ ≤ Qg and
∣∣∣∣∣
∑
p≤x

ωg(p)
p
− log log x

∣∣∣∣∣ ≤ Q̃g(x),

where ωg(p) denotes the number of solutions to the congruence g(X) ≡ 0 (mod p).

COROLLARY 5. Let f = f1 f2 · · · fk ∈ Z[X] be a product of distinct, irreducible
non-constant polynomials f1, f2, . . . , fk ∈ Z[X] such that f has degree d ≥ 1, leading
coefficient c and discriminant D f . If x ≥ max{2, |D f |,

√
D f }, then there exist com-

putable constants A f = O(1) and B f (x) = o(1) which depend on c, d and D f such that∣∣∣∣∣ 1
log log x

∑
p≤x

ω f (p)
p
− k
∣∣∣∣∣ ≤ A f + B f (x)

log log x
.

The broad-strokes description of our proof of Corollary 4 is that we observed that
each of the objective sums is approximately equal to one of the sums in (M1) or (M2),
then applied Theorem 1. The significance of Corollary 4 is that ωg is an important
multiplicative function that arises in sieve methods. In particular, Halberstam and
Richert tell us how to use the sums in Corollary 4 to give upper bounds on the number
of primes representable by a polynomial in [4]. Corollary 5 is another consequence
of Corollary 4; this result tells us that there is a finite list of primes that certifies the
number of irreducible factors of a polynomial f ∈ Z[X].
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