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We studied the effect of including genomic data for cows in the reference population of single-step evaluations. Deregressed
individual cow genetic evaluations (DRP) from milk production evaluations of Nordic Red Dairy cattle were used to estimate the
single-step breeding values. Validation reliability and bias of the evaluations were calculated with four data sets including different
amount of DRP record information from genotyped cows in the reference population. The gain in reliability was from 2% to 4%
units for the production traits, depending on the used DRP data and the amount of genomic data. Moreover, inclusion of
genotyped bull dams and their genotyped daughters seemed to create some bias in the single-step evaluation. Still, genotyping
cows and their inclusion in the reference population is advantageous and should be encouraged.
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Implications

Our results indicated that validation reliability of genomic
breeding values increases when evaluations include geno-
typed cows with records in the reference population. The
results also indicated that if cow genotypes are included in
the analyses then also their phenotypes should be included in
order to increase genetic gain and validation reliability, and
decrease bias.

Introduction

Accurate genomic evaluations require large reference popula-
tions with reliable performance information such as estimated
breeding values (EBVs) (Goddard and Hayes, 2009). The first
dairy cattle genomic evaluations relied on reference popula-
tions having only progeny-tested bulls, and were based only on
averaged performances of bull’s daughters. Small dairy cattle
populations are often restricted by small reference populations
of progeny-tested bulls. These populations, therefore, have low
reliabilities of genomic-enhanced breeding values (GEBVs)
(Thomasen et al., 2012). By including genotyped cows in the
reference population, the size of the reference group can be
easily increased (Bapst et al., 2013; Dassonneville et al., 2012).
For example, in the United States, cow genotypes have been
included in the US genomic evaluations since their beginning
(Wiggans et al., 2011).

In the DFS countries (Denmark, Finland and Sweden),
validation reliabilities for the genomic evaluations of Red
Dairy Cattle (RDC) and Jersey have not been as high as for
the Holstein breed. One important reason could be the
smaller effective population size of the Holstein population
(Su et al., 2012a). Goddard (2009) has shown that effective
population size is an important factor influencing the accu-
racy of genomic evaluation. However, another important
factor is that smaller populations cannot provide as many
accurately evaluated bulls to be included into the reference
population. To overcome this problem, the DFS breeding and
AI companies started in 2014 a cow genotyping project
called LD-project (Langdahl, 2014), where a low-cost
low-density chip was offered for the breeders in aim for
voluntary genotyping of all young animals in their herds.
Most genomic evaluations are based on a multi-step

approach that requires (1) calculation of traditional EBVs
without genomic information, (2) extraction of pseudo-
observations, typically either daughter yield deviations (DYD)
or deregressed EBVs (DRP) and (3) application of a genomic
model for prediction of direct genomic values (DGV)
(VanRaden, 2008; VanRaden et al., 2009). The multi-step
genomic evaluations can be further improved by blending the
DGVs and information from traditional EBV (e.g. VanRaden,
2008) yielding GEBVs. The multi-step approach is a complex
system and includes several approximations. Each approx-
imation reduces accuracy and can increase the bias in GEBVs,
for example, by increasing standard deviation of GEBVs.† E-mail: minna.koivula@luke.fi
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Single-step evaluation (ssGBLUP by Misztal et al., 2009;
Aguilar et al., 2010; Christensen and Lund, 2010) is a unified
approach to calculate GEBVs. The ssGBLUP combines the phe-
notypic records, pedigree information and genomic information
in calculation of GEBV. Although the usual multi-step genomic
evaluations mostly rely on highly reliable AI sires as reference
population, the single-step approach includes genomic data into
the traditional EBV analysis that has all the phenotyped animals,
and, thus, can be rated computationally demanding with large
data sets and multi-trait analysis (Su et al., 2012b). However,
including cow genotypes and phenotypes in the single-step
evaluation is much easier than in the multi-step estimation,
because in the multi-step the phenotypes need to be carefully
constructed in order to avoid double-counting information from
genotyped daughters to their sires. The single-step method by
Aguilar et al. (2010) and Christensen and Lund (2010) does not
explicitly divide the population into training group (reference
population) and prediction group (validation population), but
instead the genomic data are included along the phenotypic
data and pedigree relationship information. Consequently,
estimation of gains from including daughter genotype data into
single-step evaluation is more complicated, particularly in
multiple trait evaluations that include records from several years
for a cow. When observations in the single-step evaluation are
from cows, all records from several years or parities of a young
genotyped cow cannot be included into evaluation unless
records produced the same year(s) by daughters to the valida-
tion bulls are also included. Alternatively, ssGBLUP can be
computed using DRPs instead of original phenotypic records.
This allows including the information of genotyped females into
evaluation even if some production data are from the same
years as omitted records by daughters of validation bulls.
Wiggans et al. (2011) and Dassonneville et al. (2012) found

that the inclusion of cow genotypes can even result in a
decrease in the reliability of bull genomic evaluations. The
reason for this decrease was assumed to be bias due to pre-
selection of cows, where cows have been selected for geno-
typing based on their genetic merit or expectation for a high
genetic evaluation. Thus, potential bull dams have been the
first cows to be genotyped. This has been the case also in DFS
countries for the older genotyped cows. In order to avoid the
pre-selection bias, the particular aim in the Nordic LD-project
was to genotype all younger cows from the participating herds.
The main objectives of this study were to estimate (1) the

effects of including different sets of phenotypes and geno-
types of females into the reference population in single-step
evaluations, and (2) how much single-step evaluation based
on individual cow DRPs can improve the validation reliability
of GEBVs. We also wanted to estimate amount of bias in the
evaluations due to inclusion of genotyped bull dams and
their genotyped daughters.

Material and methods

Marker data
Genotype data included 15 148 RDC animals of which 5534
were bulls and 9614 cows. Bulls were genotyped using the

Illumina BovineSNP50 and cows with BovineLD Bead Chips
imputed to the 50K chip (Illumina, San Diego, CA, USA). After
applying editing criteria, 46 914 markers on the 29 bovine
autosomes were used in the analysis. The used genotype
markers were the same as in the official genomic evaluation
of NAV (Nordic Cattle Genetic Evaluation) in June 2014.

Phenotypic data
We obtained EBVs and corresponding individual cow reli-
abilities from NAV for the 3.2 million cows with records in the
May 2014 RDC evaluations for milk, protein and fat. These
were used to derive the phenotypes for the cows. First, the
cow reliabilities were used to derive the effective record
contributions (ERC) (Taskinen et al., 2014). Second, the ERCs
and the EBVs were used to calculate DRPs for all cows with
ERC> 0. The variance parameters in ERC approximation
were h2milk = 0.48, h2protein = 0.48 and h2fat = 0.49, and
the same values were used throughout the study. Deregression
(Strandén and Mäntysaari, 2010) used the full pedigree of 5.1
million animals in the NAV evaluation. The three traits were
deregressed simultaneously, but assuming genetic and residual
correlations to be 0.
Validation candidate bulls were chosen from genotyped

bulls born 2006-10 and having ERC⩾ 3 (corresponds to
roughly 20 daughters with records) in the full cow DRP data.
This gave 746 candidate bulls for the validation. All evaluations
used 4413 genotyped bulls in the reference. Two different
options for the number of genotyped reference animals were
considered: only genotyped bulls or both genotyped bulls and
cows. The full cow DRP data were used to make four different
reduced data sets which differed in the amount of DRP
information for the genotyped reference cows. DRP records of
daughters of validation bulls and the non-genotyped daughters
of reference bulls born after 2009 were removed from the
data sets. Table 1 describes the four reduced data sets named
AllG, nonBdG, nonBdDG and Control.
The Control data (1) included all DRPs of non-genotyped

cows until 2008 but no DRPs from the genotyped cows. In
the AllG data (2), DRP records of the genotyped cows were
added into the Control data set. The nonBDG data (3) were
made by removing the DRPs of 52 genotyped bull dams from
the AllG data. The nonBdDG data (4) were also made by

Table 1 Numbers of animals and deregressed proofs (DRP) in the
reduced data sets

Control AllG nonBdG nonBdDG

Nb 4413 4413 4413 4413
Nc 0 7143 7091 6987
NDRP 2 913 766 2 920 909 2 920 857 2 920 753

Control = DRPs of all genotyped cows excluded; AllG = 7143 genotyped cows
included; nonBdG = DRPs of genotyped bull dams excluded; nonBdDG = DRPs
of genotyped bull dams and their genotyped daughters excluded from the
reference population.
All data sets had the same number of reference bulls (Nb) but number of gen-
otyped cows with DRP in the reduced data set (Nc) varied. Total number of DRPs
(NDRP) gives the total number of cows having DRP in the data set.
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removing the DRPs of the 104 genotyped daughters of bull
dams from the nonBdG data.

Statistical analyses
Breeding values were estimated using the ssGBLUP model.
Different reduced data sets and the two alternative genotype
sets were used to solve GEBVs and EBVs for all animals in the
pedigree. For the validation reliability calculation, full animal
model EBVs were estimated using the full cow DRP data,
and then DYDs were calculated for the validation bulls. For
the validation bulls, the EBVs from the reduced data are
hereinafter called parent averages (PA).
Single-step method, for example, Aguilar et al. (2010) and

Christensen and Lund (2010), was based on model:

y= 1μ +Wa + e

where y is a vector of cow DRPs, a the vector of random
additive genetic effects and W an incidence matrix relating
breeding values a to appropriate DRP records in y, and e a
vector of random residuals. The co-variance matrices for the
random effects were varðaÞ=Hσ2a and varðeÞ=D�1σ2e,
where the diagonal matrix D consists of ERC of the animals.
The unified relationship matrix H in the single-step method
defines the relationships between all animals using pedigree
and genotype information. Inverse of H is needed in the
mixed model equations and has a simple structure (Aguilar
et al., 2010; Christensen and Lund, 2010),

H�1 =A�1 +
0 0
0 G�1�A�1

22

� �

where A22 is the sub matrix of pedigree-based numerator
relationship matrix A for the genotyped animals and G the
relationship matrix constructed using genomic information.
The genotypes of 15 148 RDC animals, including animals
without offspring or records, were used to form the raw
G matrix with the method 1 in VanRaden (2008). Aguilar
et al. (2010) and Christensen and Lund (2010) noted that if
not all the genetic variance is accounted by the single
nucleotide polymorphisms markers, the residual polygenic
effects can be included into the model by replacing the
genomic matrix G by Gw = (1−w )G+wA22, where the
constant w represents the proportion of polygenic variance
unaccounted by markers. Before the matrices G and A22
were combined into Gw, the raw G matrix was scaled by
scalar t = trðA22Þ

trðGÞ where tr denotes trace of matrix. Thus,
average of diagonals of G, as well as Gw, is the same as the
average of diagonals of the A22 matrix.
When the mixed model equations for the single-step

method is considered, the difference to normal animal model
is the matrix block H22 = A22+G− 1−A22

− 1 between the
genotyped animals. Here, the superscript 22 in H22 and A22

refers to a sub matrix block of genotyped animals, and
superscript indicates that the block is sub matrix in the full
inverse (H− 1 or A− 1) of the matrix. To improve the proper-
ties of the single-step evaluation, different weights can be

used for the component matrices in the H22 matrix. In Misztal
(2010) and Tsuruta et al. (2011), the H22 matrix was scaled
as H22 = A22+ τGw

− 1−ωA22
− 1. Misztal et al. (2013) sug-

gested that optimal weights τ for Gw
− 1 and ω for A22

− 1

decrease the possible inflation of GEBVs. The parameters τ
and ω scale the size of the genomic and pedigree relation-
ships. The larger the τ is the less weight is given to G,
whereas larger ω decreases the importance of pedigree
relationships and increases the importance of genomic rela-
tionships. According to our preliminary analyses (Koivula
et al., 2015), the highest prediction accuracy was achieved
when we used a combination of τ = 1.6 and ω = 0.5, and
the proportion of polygenic variance in Gw was fixed to
w = 0.10. This combination was found to give least inflation
for genomic predictions also in Koivula et al. (2014) and Koivula
et al. (2015). Two different H22 matrix blocks were constructed.
One with all genotyped animals included in the genomic rela-
tionship matrix (GEBVa), the second with only bull genotypes
included in the genomic relationship matrix (GEBVb).
The GEBVs of the validation bulls were used to predict the

DYDs as specified in the Interbull validation protocol
(Mäntysaari et al., 2010)

y= 1b0 +b1
^a + e

where y is a vector with DYDs of the validation bulls from the
full data, b0 and b1 are regression coefficients, â contains
GEBVs for these bulls from the analysis based on the reduced
data and e the vector of residuals. The validation reliability of
the model was obtained from the R 2 (coefficient of deter-
mination) of the model (R 2

model), after adjusting it by the
average reliability of DYDs ðr2

DYD
Þ of the candidate bulls, that

is, R2
validation =R2

model = r
2
DYD. Reliability of each individual

DYDi was calculated as r2DYDi
=ERCi = ðERCi + λÞ, where

λ = (1− h 2)/h 2. In order to estimate the further gain from
the genomic information over the PA (VanRaden et al., 2009;
Mäntysaari et al., 2010) the same validation tests were also
applied to PA.
The EBVs and GEBVs were solved by pre-conditioned con-

jugate gradient iteration using MiX99 software (Strandén and
Lidauer, 1999). Confidence intervals (CIs) were estimated for
the regression coefficients (b1) and the validation reliabilities
(R2

validation) using non-parametric bootstrap (Koivula et al.,
2015). The boot and boot.ci functions of the R package (R core
team, 2012) were used to calculate 95% bootstrap CIs for
candidate bulls. Number of bootstrap samples was 10 000.
Bootstrap CIs were calculated using three methods: ‘basic’,
‘norm’ and ‘perc’. CIs by the ‘basic’ method are given because
all methods gave about the same values.

Results and discussion

Number of iterations to convergence by the pre-conditioned
conjugate gradient method was different by model and data.
Number of iterations was 1070 for the EBVs from the full
data animal model, and varied from 1143 to 1145 iterations
for the EBVs from the reduced data, and from 874 to 884
rounds for the single-step method, depending on which

Effect of cow reference group

1063

https://doi.org/10.1017/S1751731115002864 Published online by Cambridge University Press

https://doi.org/10.1017/S1751731115002864


reduced data set and H22 were used. Computing time to
solve the mixed model equations for the animal model was
on average 58min, which increased for the single-step
method by 6min when using only bull genotypes or by
57min when using both bull and cow genotypes. Thus,
process time per iteration was doubled for the single-step
evaluation, when cow genotypes were included into the H22

matrix. The main reason for the increase was the need to
read and process the large H22 matrix in ssGBLUP.
The model validation results are in Table 2. The table has

regression coefficients (b1) and validation reliabilities (R 2)
with 95% bootstrap CIs with 10 000 bootstrap resampling.
The improvement in R 2 due to inclusion of genotyped refer-
ence cows was from 3% to 4% units for milk, from 2% to 3%
units for protein and from 3% to 4% units for fat (Table 2). In
Koivula et al. (2014), genotyped reference cows increased
the R2 from 0.8% to 2.6% units for the production traits but
the study had less data. Our results indicate that genotyping
cows and subsequent inclusion in the reference population is
advantageous and is expected to further increase the reli-
abilities. This is in agreement, for example, with Thomasen
et al. (2014) who found that the annual genetic gain and the
reliability of genomic predictions were slightly higher when
including more cows in the reference population. Current
study used individual cow DRPs as phenotypes. However,
this was done only to evaluate the value of cow genotype
data. In practical single-step evaluations, the genotyped
cows can be included along with all their contemporaries,
and the gain from the information is most likely larger.
In general, the effect of genotyped cows was positive for

the validation reliability of GEBV, but at the same time the
inclusion of DRP information from genotyped cows seemed

to create some bias. The degree of inflation is indicated by the
coefficient of regression (b1) of DYDs on GEBV. In the validation
test, DYDs are considered as unbiased estimates of genetic
values and, thus, optimal prediction of genetic merit of young
individuals should give 1 as the regression coefficient b1. When
b1 is <1, the predictions are inflated and the differences in
estimated genetic merit of young individuals are exaggerated
compared with their future performance. Wiggans et al. (2011)
and Dassonneville et al. (2012) found that, the inclusion of cow
genotypes can result in a decrease in the reliability of bull
genomic evaluations. The reason for this was assumed to be
in pre-selection of cows, because selection of cows for geno-
typing is based on high EBVs or potential for a high genetic
evaluation. Thus, potential bull dams have been the first cows
to be genotyped. Indeed, genotyped bull dams and their
genotyped daughters seemed to have some effect on bias and
reliability. Although differences were small, it appeared that for
milk and protein the exclusion of DRP data from both the
genotyped bull dams and their genotyped daughters gave
better validation results when the bias (b1) and validation
reliability (R2) are considered. However, for fat, exclusion of
genotyped bull dams was enough to overcome bias (Table 2).
Still, the regression coefficients deviated from 1. The 95%
bootstrap CIs for the regression coefficients of the GEBVs
included always 1.0 in milk, in fat with GEBVa and protein with
GEBVa using either the Control or the nonBdDG data.
The regression coefficients for the PAs indicated large bias

(b1 varied from 0.69 to 0.90). Preferential treatment of the
potential bull dams has been assumed to be one reason to this
(Kuhn et al., 1994). In our case, this is unlikely the source of the
bias as also with data sets nonBdG and nonBdDG, the regression
coefficients for PA deviated from 1. However, only small

Table 2 Model validation results

Milk Protein Fat

b1+ CI R 2+ CI b1+ CI R 2+ CI b1+ CI R 2+ CI

Control data
PA 0.90 (0.81 to 1.00) 0.36 (0.30 to 0.42) 0.81 (0.71 to 0.91) 0.27 (0.21 to 0.33) 0.76 (0.66 to 0.85) 0.25 (0.18 to 0.30)
GEBVa 1.01 (0.94 to 1.09) 0.49 (0.44 to 0.55) 0.92 (0.84 to 1.00) 0.41 (0.35 to 0.48) 0.95 (0.87 to 1.03) 0.43 (0.37 to 0.49)
GEBVb 0.95 (0.87 to 1.02) 0.48 (0.43 to 0.54) 0.85 (0.77 to 0.93) 0.40 (0.36 to 0.49) 0.91 (0.82 to 0.90) 0.43 (0.37 to 0.49)

AllG
PA 0.89 (0.79 to 0.98) 0.35 (0.29 to 0.41) 0.78 (0.68 to 0.87) 0.27 (0.20 to 0.33) 0.69 (0.60 to 0.79) 0.24 (0.19 to 0.31)
GEBVa 1.00 (0.92 to 1.07) 0.52 (0.46 to 0.58) 0.90 (0.82 to 0.97) 0.43 (0.36 to 0.49) 0.92 (0.84 to 1.00) 0.46 (0.40 to 0.52)
GEBVb 0.94 (0.87 to 1.01) 0.48 (0.42 to 0.54) 0.84 (0.76 to 0.91) 0.40 (0.34 to 0.47) 0.88 (0.81 to 0.96) 0.44 (0.38 to 0.50)

NonBdG
PA 0.89 (0.79 to 0.99) 0.36 (0.29 to 0.41) 0.80 (0.71 to 0.90) 0.28 (0.21 to 0.34) 0.75 (0.65 to 0.85) 0.25 (0.19 to 0.31)
GEBVa 1.00 (0.93 to 1.08) 0.52 (0.47 to 0.58) 0.91 (0.83 to 0.99) 0.44 (0.37 to 0.50) 0.96 (0.88 to 1.03) 0.47 (0.41 to 0.53)
GEBVb 0.94 (0.87 to 1.02) 0.48 (0.42 to 0.54) 0.85 (0.77 to 0.92) 0.41 (0.34 to 0.47) 0.90 (0.82 to 0.98) 0.44 (0.38 to 0.50)

NonBdDG
PA 0.89 (0.79 to 0.99) 0.35 (0.29 to 0.41) 0.81 (0.71 to 0.90) 0.27 (0.21 to 0.34) 0.75 (0.66 to 0.85) 0.25 (0.19 to 0.31)
GEBVa 1.01 (0.93 to 1.08) 0.53 (0.47 to 0.58) 0.92 (0.84 to 1.00) 0.44 (0.37 to 0.50) 0.96 (0.88 to 1.04) 0.46 (0.41 to 0.52)
GEBVb 0.94 (0.87 to 1.01) 0.48 (0.42 to 0.54) 0.85 (0.77 to 0.93) 0.41 (0.34 to 0.47) 0.90 (0.83 to 0.98) 0.44 (0.38 to 0.49)

Control = deregressed proofs of all genotyped cows excluded; AllG = deregressed proofs of 7143 genotyped cows included; nonBdG = deregressed proofs of
genotyped bull dams excluded; nonBdDG = deregressed proofs of genotyped bull dams and their genotyped daughters excluded from the reference population.
Regression coefficients (b1) and validation reliabilities (R

2 in %) and their 95% bootstrap confidence intervals (CIs) from the parent average (PA), and genomic-enhanced
breeding values (GEBV). GEBVa with all genotyped animals and GEBVb including only bull genotypes in the genomic relationship matrix.
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proportions of bull dams were genotyped. Thus, removing DRPs
of genotyped bull dams might not be enough to overcome the
preferential treatment. However, we were unable to reduce the
bias by removing DRPs of all dams of the validation bulls (b1 of
PA increased only for fat to 0.79, but decreased for milk and
protein to 0.81 and 0.75, respectively). If the heritabilities used in
the animal model were incorrect it could also lead to bias.
Therefore, we tested the animal model also using average
test-day heritabilities given in Lidauer et al. (2015). This
decreased the bias about 3% in milk, 5% in protein and 10% in
fat, but still regression coefficients deviated from 1.
The official Nordic RDC milk production evaluation includes

test-day records from milk, fat and protein production. Pro-
duction records from the first three lactations are in the same
multiple traits model. Each trait has a random regression func-
tion for random genetic and permanent environmental effects
(Lidauer et al., 2015). The original test-day model using the real
phenotypic observations is very complicated. In this study, we
used 305-day yields combined over three lactations to calculate
cow DRPs. This process includes several approximations that
may reduce accuracy and can inflate the resulted (G)EBVs. In
the validation, we were in principle comparing first lactation
result of validation bulls with DYDs based on multi-lactations.
As DYDs are based on much more information than the (G)
EBVs, bias was expected to be larger in GEBVs. However, our
results indicated that bias is smaller for GEBVs. This indicates
that moving from the traditional pedigree-based evaluation to
genomic evaluations improves the breeding value estimation.
Validation results of bulls did not gain from inclusion of

DRPs of genotyped cows (Table 2) when the genotypes of the
cows were not included in the H matrix. Both validation reli-
abilities and variance inflation b1 were lower compared with
results from analyses using cow genomic and DRP informa-
tion. Inclusion of cow genomic information seems to give
higher reliability and lower bias independent of the amount of
cow DRP data. This supports results that cow genotypes are a
valuable addition in the genomic evaluation (Tsuruta et al.,
2013). In our case, cow genotypes lessened particularly the
bias. The expected increase in validation reliability due to
increased reference population can be estimated by non-linear
equations suggested by Daetwyler et al. (2010) or Meuwissen
et al. (2013). In these, the information content of reference
population is a product of number of animals phenotyped and
genotyped and their corresponding evaluation accuracy.
Therefore, according to the formulas by Daetwyler et al. (2010)
and Meuwissen et al. (2013), with given model reliabilities of
bull and cow DRPs, each bull should not contribute much
more information than three to four cows, because bull DRP
reliability is high due to progeny information but cow DRP
reliability is mostly due to own record information and accu-
rate sire information. However, the value of added information
depends on amount of already available information, and the
relationships among bulls and cows.
The trends in GEBVs for milk, protein and fat (Figure 1)

show no difference whether DRPs of genotyped cows were
included in the data or not. Trends are presented for GEBV
from ssGBLUP using both cow and bull genotypes. Especially

in reference bulls the trend lines go side by side. For the
candidate bulls, trends seem to be a little higher if genotyped
cows are in the reference compared with situation where
DRPs of genotyped cows are excluded. The GEBV trends also
follow nicely the EBVs calculated from the full cow DRP data.
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Figure 1 Genetic trends for (a) milk, (b) protein and (c) fat production
using genomic-enhanced breeding values (GEBVas) and estimated breeding
values (EBVs) of reference and candidate bulls from different reduced data.
For the candidate bulls, the EBV from reduced data are parent average (PA).
Control = no deregressed proofs (DRP) of genotyped cows in the reference
data and AllG = DRPs of 7143 genotyped cows in the reference
population. EBVs (black solid line) were calculated from the full cow DRP
data. Solid lines are for the reference bulls and dashed lines for the
candidate bulls. EBVs and GEBVas are expressed as standardized breeding
values with SD of 10 units for bulls born between the years 2003 and 2005.
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Thus, including information of genotyped cows seems not to
induce any problems in genetic trends.
Koivula et al. (2015) presented that standard deviations of

the EBV and GEBV for reference and candidate bulls differ
depending on the method used to make the H22 matrix. The
impact of changing τ andωwas an important one that affected
standard deviations of both candidate and reference animals,
whereas changes in polygenic effect, w, affected in larger
degree candidate animals (Koivula et al. 2015). Although,
GEBVs by the single-step method are less biased than PA, it is
essential to consider the whole picture before choosing the
method for use. Moreover, for different traits, different amount
of polygenic proportion can be optimal. Use of genomic
relationship matrix that weights markers according to analysed
trait (e.g. VanRaden, 2008; Makgahlela et al., 2013) may better
account for differences in genetic architecture. Therefore, there
is still a need to study the most appropriate method to build the
H22 matrix for the single-step evaluation.
In conclusion, we observed consistent increase in validation

reliability and smaller bias when cow genomic and record
information were included in the reference population. Still, the
number of genotyped cows was probably too small to produce
much higher improvement in validation reliability. However,
genotyping cows and subsequent inclusion in the reference
population is advantageous and the number of genotyped
cows should be increased in the Nordic RDC population. There
is some evidence for small bias due to records of genotyped
bull dams and their daughters. This should be studied further
when more cow genotype information becomes available.
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