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Abstract
We characterize when a set of simple closed curves in an orientable surface forms a bouquet, in terms of relations
between the corresponding Dehn twists.

1. Introduction

The mapping class group of an oriented compact surface is the set of isotopy classes of its orientation-
preserving self-diffeomorphisms with group law induced by composition. The mapping class group of
an oriented closed surface is generated by Dehn twists along simple closed curves. This is due to the
fact that a mapping class is essentially determined by its action on the set of simple closed curves; see
Paragraph 10 in [5] and Chapter 4 in [3]. Dehn twists store a lot of information about curves; most
importantly, the isotopy type of their defining curves. Two positive Dehn twists with non-isotopic defin-
ing curves detect low intersection numbers: they commute or satisfy the braid relation, if and only if
their defining curves have intersection number 0 or 1, respectively; see Chapter 3 in [6]. Here, two group
elements g and h are said to satisfy the braid relation if ghg = hgh.

A bouquet in a surface is a union of n simple closed curves that have precisely one common inter-
section point in which all curves intersect pairwise transversally (i.e., with n different tangent lines). We
say a set of pairwise non-isotopic simple closed curves in a surface forms a bouquet, if their union is a
bouquet after an individual isotopy of the curves involved, and a set of curves indexed by Z/nZ forms an
oriented bouquet if they form a bouquet such that the cyclic order of the tangent vectors at the common
intersection point agrees with the one induced by the standard cyclic order of Z/nZ. In this note, we
derive a group theoretic characterization of oriented bouquets in terms of Dehn twists.

Theorem 1. Let � be an oriented compact surface and n ≥ 2 an integer. A set of simple closed curves
c1, c2, · · · , cn in � forms an oriented bouquet if and only if the corresponding positive Dehn twists
T1, T2, . . . , Tn are not all equal and satisfy the following relations:

(i) the braid relation TiTjTi = TjTiTj, for all pairs i, j ∈Z/nZ, and
(ii) the cycle relation TiTjTkTi = TjTkTiTj, for all triples i, j, k ∈Z/nZ of pairwise distinct indices

such that j is after i and before k in the standard cyclic order.

We briefly comment on the conditions (i) and (ii). According to the discussion above, condition (i)
is equivalent to the pairwise intersection numbers being one. For sets of three or more curves, form-
ing a bouquet is a strictly stronger condition. For example, a triple of curves that pairwise intersect
once transversally needs to delimit a triangle on the surface in order to form a bouquet; see Section 3.
By Theorem 1, the cycle relation is the additional condition needed to characterize bouquets. While less
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prominent than the braid relation, the cycle relation features in several geometric contexts. For exam-
ple, it appears in the work of Lönne on the monodromy group of simple plane curve singularities [8]
(see also [10] for a recent description of that group as a framed mapping class group). It also plays
an important role in the definition of mutation-invariant groups associated with Dynkin-type quivers
introduced by Grant and Marsh in [7].

The key observation on which Theorem 1 relies is the following group theoretic fact, the first part of
which is a reformulation of a consequence of a result by Birman and Hilden [4], while the second part
is an algebraic consequence of Artin’s standard braid group presentation.

Proposition 1. Let c1, c2, . . . , cn form a π1-injective bouquet in an oriented compact surface �. Then
the subgroup of the mapping class group of � generated by the corresponding positive Dehn twists
T1, T2, . . . , Tn is isomorphic to the braid group Bn+1. Moreover, the braid and cycle relations (i) and (ii)
form a complete set of relations for the generators T1, T2, . . . , Tn.

A subset of � is π1-injective if the canonical inclusion induces an injection of its fundamental group
into π1(�). Dropping the assumption of π1-injectivity, one would still get a quotient of Bn+1 rather than
Bn+1 itself. We derive this proposition in the next section, since it is hard to extract from the existing
literature. In the third section, we show that the cycle relation together with the braid relation character-
izes bouquets of three curves. The generalization from 3 to n curves is then purely topological, as we
will see in Section 4.

After the first version of this article appeared as a preprint, it was pointed out to us that the general-
ization from 3 to n curves was previously proven by Aougab and Gaster; see Proposition 5.3 in [1]. In
other words, once established for the case n = 3 as is done in Section 3, the if statement of Theorem 1
follows from their work. To be self-contained, we keep our arguments from Section 4. We hope that our
complementary treatment will steer the reader to Aougab and Gaster’s text, which has much to offer
beyond Proposition 5.3.

2. Bouquets and braid groups

We denote by Ta the positive Dehn twist along a simple closed curve a in an oriented surface �. Given
two simple closed curves a, b ⊂ � that intersect transversally in one point, we obtain the following
equality between curves, up to isotopy: Ta(b) = T−1

b (a). Rewriting this as TbTa(b) = a and applying the
change of coordinates TTbTa(b) = (TaTb)Ta(TaTb)−1, we obtain that Ta and Tb satisfy the braid relation:

TaTbTa = TbTaTb.

For a more detailed proof, including the reverse implication; see Chapter 3 in [6]. More generally, let
a1, a2, . . . , an ⊂ � be a of set of simple closed curves such that their union is π1-injective in � and such
that they are pairwise disjoint, except for pairs with consecutive indices, which intersect transversally in
one point. Such a family of curves is called a chain.

For every oriented compact surface �, the subgroup of the mapping class group of � generated
by the Dehn twists associated with a chain of n curves is isomorphic to the braid group Bn+1. This
is a consequence of work by Birman and Hilden in [4] (see also Chapter 9 in [6]). An interpretation
of that subgroup as the monodromy group of a plane curve singularity of type An was later described
in [9]; the case of curves intersecting in a general tree-like pattern was solved by Wajnryb in [11]. The
π1-injectivity is needed to rule out “false chains,” such as a, b, ā, where the curves a and ā cobound
an embedded annulus. In that case, the resulting subgroup is isomorphic to the braid group B3 or its
quotient SL(2, Z) rather than B4.

Here is an important relation between bouquets and chains of curves: suppose that the simple closed
curves a1, a2, . . . , an ⊂ � form a π1-injective bouquet, numbered in the anticlockwise direction around
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Figure 1. Bouquet and chain.

the common intersection point. Then the set of transformed curves

a1, T−1
a1

(a2), T−1
a2

(a3) . . . , T−1
an−1

(an)

forms a chain, as shown in Figure 1 for n = 4 (where the new curves are labeled 1’,2’,3’,4’). Moreover,
the Dehn twists along these new curves generate the same subgroup in the mapping class group of �

as the Dehn twists associated with the curves of the initial bouquet. This is another consequence of the
equation:

TT−1
x (y) = T−1

x TyTx.

Using the result about chains from the last paragraph, we conclude that the Dehn twists associated with
the curves of a bouquet generate a subgroup isomorphic to the braid group Bn+1.

As for the second statement of Proposition 1, we need to analyze how the braid and
cycle relations among the Dehn twists along the curves a1, a2, . . . , an translate into the usual
braid and commutation relation among the Dehn twists associated with the transformed curves
a1, T−1

a1
(a2), T−1

a2
(a3) . . . , T−1

an−1
(an).

Let a, b, c ∈ {a1, a2, . . . , an} be a triple of curves ordered in the anticlockwise way, and let x =
a, y = T−1

a (b), z = T−1
b (c) be the transformed curves. The Dehn twists Tx, Ty, Tz satisfy the two braid

relations:

TxTyTx = TyTxTy , TyTzTy = TzTyTz

and the commutation relation:

TxTz = TzTx.

Moreover, this is a complete set of relations, again by the result about chains from above. We need to
show that these are equivalent to the three braid relations:

TaTbTa = TbTaTb , TbTcTb = TcTbTc , TcTaTc = TaTcTa

and the following version of the cycle relation, due to our choice of numbering:

TbTaTcTb = TcTbTaTc,

Deriving these relations from the braid relations among Tx, Ty, Tz is an easy task, using the
expressions:

Ta = Tx

Tb = TaTyT
−1
a = TxTyT

−1
x

Tc = TbTzT
−1
b = TxTyT

−1
x TzTxT

−1
y T−1

x = TxTyTzT
−1
y T−1

x .

Indeed, after an identification of Tx, Ty, Tz with the standard braid generators σ1, σ2, σ3 ∈ B4, the four
relations among Ta, Tb, Tc admit a pictorial proof:
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TaTbTa = σ 2
1 σ2 = TbTaTb,

TbTcTb = σ1σ
2
2 σ3σ

−1
1 = TcTbTc,

TaTcTa = σ 2
1 σ2σ3σ

−1
2 = TcTaTc,

TbTaTcTb = σ 2
1 σ2σ3 = TcTbTaTc.

For the reverse direction, we express
Tx = Ta

Ty = T−1
a TbTa

Tz = T−1
b TcTb,

use the shortcuts a = Ta, b = Tb, c = Tc in order to save space and derive
TyTxTy = a−1baaa−1ba = baa = aa−1baa = TxTyTx.

Here, we used the braid relation bab = aba. The second braid relation is a bit trickier:
TzTyTz = b−1cba−1bab−1cb = cbc−1a−1bacbc−1 = cbc−1a−1cba,

TyTzTy = a−1bab−1cba−1ba = a−1bacbc−1a−1ba = a−1cbba.

Here, we used a version of the braid relation, b−1cb = cbc−1, as well as the cycle relation bacb = cbac.
The equality TzTyTz = TyTzTy is thus equivalent to

acbc−1a−1c = cb.

Thanks to the cycle relation bacb = cbac, the left-hand side is equal to
b−1cbacc−1a−1c = b−1cbc = cb.

Finally, here is the commutation relation:
TxTz = ab−1cb = acbc−1 = b−1bacbc−1 = b−1cbacc−1 = b−1cba = TzTx.

A similar derivation of the equivalence of these two group presentations can be found in Section 2
of [2], where the cycle relation is used to define an invariant of positive braids. Applying the above
procedure to all triples of curves among a1, a2, . . . , an, we obtain a complete set of relations, as stated
in Proposition 1.

3. Triple bouquets

In this section, we prove that whenever three simple closed curves a, b and c in an oriented closed surface
� satisfy pairwise braid relations and a cycle relation, then the set of curves a, b, c forms a bouquet or are
all isotopic. Note that this settles Theorem 1 for the case n = 3, since the converse follows from previous
considerations. More concretely, in Section 2, it was shown that the cycle relation follows algebraically
from TxTz = TzTx, where x = a and z = T−1

b (c).
Suppose a, b, c are curves satisfying the three braid relations:

TaTbTa = TbTaTb

TaTcTa = TcTaTc

TbTcTb = TcTbTc

and the cycle relation TbTaTcTb = TcTbTaTc. Using the relations, one checks that if two curves are
isotopic, then Ta = Tb = Tc, so all three curves are isotopic. Thus, from here on, we consider a, b, and
c to be pairwise non-isotopic. In particular, by the braid relations, a, b, c have pairwise intersection
number one. Hence, after an isotopy, they admit a tubular neighborhood either as shown to the left of
Figure 2, in which case we write a < b < c < a, or mirrored, in which case we write a < c < b < a;
compare Remark 1 below. Letting x = a, z = T−1

b (c) we have that Tx and Tz commute, under the exact
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Figure 2. The curves x = a and z = T−1
b (c) intersect twice.

Figure 3. Possible bigons.

same reasoning as in Section 2, where TxTz = TzTx is deduced purely algebraically from the braid
relations and the cycle relation. This means that x and z in Figure 2 have disjoint representatives in their
isotopy classes. Hence, x and z bound a bigon B, since their number of intersections is not minimal.

Notice that this allows us to exclude the case a < c < b < a, since in this case, the curves x and
z = T−1

b (c) have intersection number two and hence Tx and Tz do not commute. This is because the
union x ∪ z bounds two regions, both of whose boundaries are polygonal of length four that intersect
themselves in two corners, and in particular the two regions are not bigons.

We can now assume that a < b < c < a. There are two possibilities for the position of B, indicated
by the two dotted regions in Figure 3. In the first case, on the left, it is obvious that a, b, c form a
bouquet. The second case, on the right, seems slightly more challenging. However, note that the two
surfaces that are obtained by filling in the dotted regions are actually diffeomorphic via an orientation
preserving diffeomorphism preserving all three curves a, b, c individually as sets. One example of such
a diffeomorphism is as follows. Cut up Figure 3 along the dashed lines, as well as along the edges on
the drawn boundary that are identified with their opposites, to obtain three X-shaped regions after six
cuts. Rotating each of those regions by 180 degrees preserves all identifications and maps the edges of
the dotted triangle on the left to the edges of the dotted triangle on the right. Extending this to the dotted
regions yields the desired diffeomorphism.

It turns out that there are no further cases: the set x ∪ z bounds four regions in a small neighborhood
of x ∪ z, two of which we have now considered. The other two cannot possibly be the boundary of
a bigon, since they have homotopically nontrivial boundary, evidenced by the fact that the boundary
curves intersect b precisely once.

4. General bouquets

In this section, we prove Theorem 1 by induction on the number of curves n. It is beneficial to be careful
about the cyclic order of curves. For a bouquet given as the union of n simple closed curves c1, c2, . . . , cn

in an oriented surface �, we write
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c1 < c2 < · · · < cn < c1

if ci+1 occurs next (counter-clockwise) to ci for all i ∈Z/nZ. For an example with n = 4 and c1 < c2 <

c3 < c4 < c1; see the left-hand side of Figure 1. If a set of simple closed curves c1, c2, . . . , cn forms a
bouquet, we write c1 < c2 < · · · < cn < c1 if the corresponding bouquet is as above. In other words, by
the definition from the introduction, c1 < c2 < · · · < cn < c1 means that c1, c2, . . . , cn form an oriented
bouquet.

Remark 1. For a bouquet given as the union of three simple closed curves a, b, c in �, we have
a < b < c < a if and only if isotoping a, b, c into generic position (i.e., three distinct transversal
intersection points realizing the pairwise intersection number one, respectively) yields that a regular
neighborhood of a ∪ b ∪ c is orientation-preservingly diffeomorphic to the one depicted on the left-hand
side of Figure 2.

More generally, let a, b, c be simple closed curves in � that have pairwise intersection number one.
Having a < b < c < a and a < c < b < a, respectively, can be defined as in Section 3. And for bouquets
of three curves the notions agree.

Analyzing the case of three curves (as in Section 3) while keeping track of the cyclic order leads to
the following proposition, which we use to prove Theorem 1.

Proposition 2. Fix n ≥ 2. Let c1, c2, . . . , cn, cn+1 be simple closed curves in an oriented compact surface
� such that the set of n curves c1, c2, . . . , cn forms an oriented bouquet. Denote the positive Dehn twists
along ci by Ti. If the Ti satisfy

(i’) the braid relation TiTn+1Ti = Tn+1TiTn+1 for all 1 ≤ i ≤ n and
(ii’) the cycle relation TnT1Tn+1Tn = Tn+1TnT1Tn+1 or one of its cyclic permutations,

then the set of n + 1 curves c1, c2, . . . , cn, cn+1 forms an oriented bouquet.

As an aside, we note that cn+1 being distinct from ci, up to isotopy, for i ≤ n is implied without being
assumed.

Proof of Proposition 2. As a consequence of the bigon criterion, we can and do isotope all the ci

to achieve that they intersect pairwise transversely and the following holds. The c1, c2, . . . , cn intersect
in the same point p, and ci and cn+1 realize their intersection number and are in general position (their
intersections are pairwise different and different from p) for all i ≤ n; see Figure 4(a). We note that, due
to (ii’), the curves c1, cn, and cn+1 do intersect as depicted in Figure 4(a), rather than with the opposite
cyclic order; see analysis of the cyclic order at the end of Section 3. We also note that ci and cn+1 intersect
at most once since they satisfy the braid relation (i’).

By the argument in Section 3, (i’) and (ii’) imply that the triple of curves a = c1, b = cn, and c = cn+1

forms a bouquet. More precisely, up to an orientation preserving diffeomorphism, we have that a regular
neighborhood of a ∪ b ∪ c union a triangle � is embedded in � as depicted in Figure 4(b).

Denote by C the connected component of � \ (a ∪ b ∪ c) containing �. By the assumption on
c1, c2, . . . , cn forming an oriented bouquet, the triangle C has nonempty intersections with all ci for
1 ≤ i ≤ n. Hence, each ci intersects C in an interval with its end points on ∂C: one at p and the other one
in the interior of the interval cn+1 ∩ ∂C; see Figure 4(c). Thus, after isotoping cn+1 across C, we conclude
that c1, c2, . . . , cn, cn+1 form an oriented bouquet.

Proof of Theorem 1. For the case of n = 2, recall from the first paragraph of the introduction that
two non-isotopic simple closed curves can be isotoped to intersect once transversally if and only if the
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(a) (b) (c)

Figure 4. (a) A neighborhood of c1 ∪ cn ∪ cn+1 (gray), for 2 ≤ i ≤ n − 1 the intersections between ci

and cn+1 are not drawn. (b) That neighborhood union the triangle � (dotted). (c) The region C and its
intersection with the ci.

corresponding Dehn twists satisfy the braid relation. For n ≥ 3, we induct on n. The base case (three
curves) was treated in Section 3. For the induction step, we assume as the induction hyphothesis that
Theorem 1 holds for a fixed n ≥ 3.

The only if statement follows from Proposition 1. For the if statement, consider c1, c2, cn, cn+1 in �

with corresponding positive Dehn twists Ti along them satisfying (i) and (ii) and not all Ti are equal. By
cyclically relabeling the curves if needed, we may and do assume that not all T1, T2, · · · , Tn are equal.
By the induction hypothesis, c1, c2, . . . , cn form an oriented bouquet, that is, c1 < c2 · · · < cn < c1.

We consider a pair of consecutive curves b,a in this bouquet; that means, a = ci+1 and b = ci for
1 ≤ i ≤ n − 1 or a = c1 and b = cn. There is at least one choice of b, a such that the cyclic order of
a, b, cn+1 (as defined in Remark 1) is a < b < cn+1 < a. Indeed, assume we have ci+1 < cn+1 < ci < ci+1

for all 1 ≤ i ≤ n − 1, then one checks (using c1 < c2 . . . < cn) that c1 < cn < cn+1 < c1.
To conclude, we cyclically relabel c1, c2, . . . , cn such that c1 < cn < cn+1 < c1. Hence, by Remark 1

the cycle relation for c1, cn, and cn+1 provided by (ii) is

TnT1Tn+1Tn = Tn+1TnT1Tn+1

or one of its cyclic permutations. Thus, c1, c2, . . . , cn, cn+1 form an oriented bouquet by Proposition 2.
This concludes the induction step.

5. An explicit criterion

From the proof of Theorem 1, one notices that we did not use all cycle relations as provided by the
assumption (ii). Only linearly many cycle relations (in terms of number of curves) are needed. Indeed,
inductive application of Proposition 2 yields the following.

Corollary 1. Fix n ≥ 3. Let c1, c2, . . . , cn be simple closed curves in an oriented compact surface � at
least two of which are non-isotopic. Denote the positive Dehn twists along ci by Ti. Then, the set of n
curves c1, c2, . . . , cn forms an oriented bouquet if and only if the Ti satisfy

(i’’) the braid relation TiTjTi = TjTiTj for all 1 ≤ i < j ≤ n and
(ii’’) the cycle relation TiT1Ti+1Ti = Ti+1TiT1Ti+1 or one of its cyclic permutations for all 2 ≤ i ≤

n − 1.
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