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On the analyticity of generalized
minimal surfaces

Neil S. Trudinger

Strongly differentiable solutions of the minimal surface

equation are shown to be classical solutions and consequently

locally analytic. A global regularity result is also proved.

It follows readily from De Giorgi's interior estimate [2], that

continuous, strongly differentiable solutions of the minimal surface

equation must be locally analytic. A proof of this assertion, utilizing

the uniqueness of solutions to the generalized Dirichlet problem, was

indicated to the author by Nitsche [6]. The purpose of this note is to

establish this result for arbitrary generalized solutions, not necessarily

assumed continuous beforehand. Our method involves an extension of

Nitsche's uniqueness argument coupled with a bound for generalized

solutions obtained in [7]. Regularity results for fairly large classes of

divergence form, quasilinear elliptic equations are proved in the book [5];

however the permissible nonlinear structures considered there cannot be

stretched to embrace the minimal surface equation.

Let us begin by writing the minimal surface equation in its divergence

form

(1) divA(Z?w) = 0 ,

where Du denotes the gradient vector of the function, u , and the

mapping k : E -*• E is given by
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Equation (l) is elliptic and consequently strictly monotone. In fact we

have for all p, q € E*

(3)

A classical solution of equation (l) in a domain ft will simply be a

C (ft) solution, ^y a generalized solution, we will mean a strongly

differentiable function u , satisfying

(k) I A(Du)D<pdx = 0

Jft

for all (j> continuously differentiable with compact support in ft , that

is belonging to the space C7(ft) . Let us recall that a strongly

differentiable function in ft is a function whose distributional

derivatives are locally integrable in ft . The Sobolev space f/T(fl)

consists of strongly differentiable functions, u , for which the norm

(5) |ji

i s f i n i t e , and it'r(ft) denotes the closure of CT(ft) in WT(Q) . Since A

is bounded, the equation (h) wi l l then hold for a l l (J> lying in (^(ft) .

We wil l prove the following resul t .

THEOREM 1. A generalized solution of equation ( l ) coincides, almost

everywhere, with a classical solution.

Prior to giving the proof, we collect together some basic resu l t s

concerning equation ( l ) for l a te r reference.

THEOREM A. Let ft be a bounded domain in g" whose <J boundary,

3ft , has non-negative mean curvature everywhere. Then for any continuous

function § on 3ft , there exists a unique classical solution, u , of
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equation ( l ) in ft assuming the boundary values <$> continuously on 3ft .

Furthermore u is analytic in ft 3 and for any compact subset, K , of U

and multi-index, a , we have the estimate

(6) sup |Daw| < C ,
K

where the constant C depends on n, a, dist(#, 3ft) and sup \§\ . If §
3ft

is twice continuously differentiate, then u is continuously

differentiable in ft .

Theorem A is a big theorem and embodies not only the interior gradient

bound [2], but also, among other things, the De Giorgi-Nash,Holder

estimates [3], the Schauder theory [7] and Jenkins and Serrin's boundary

gradient estimate [4], The next result was derived by Serrin in [7].

THEOREM B. Let u be a generalized solution of equation (1) in ft .

Then u is locally bounded in ft and for any compact subset K of ft ,

we have

(7) sup \u\ 2 c\\ \u\dx
K Wft

+ 1

where the constant C depends on n and dist(K, 3ft) .

Proof of Theorem 1. Let B and B_ be balls in ft such that B is

strictly contained in B which is strictly contained in ft . Let u be

a generalized solution of equation (l) in ft and p a mollifier.

Consequently the mollified function u, , h > 0 , given by
n

(8) uh(x) = h
n |

will converge in WZ(B) to u as h tends to zero. But also for

h < dist(B, 3BQ) ,

(9) sup |M, | £ sup \u\
B BQ

< c\\ \u\dx + l]
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by Theorem B.

Define now v, to be the classical solution of equation (l) in B

with v, = u, on 9fl . By Theorem A, v,« C (fi) , and using also the

estimate (9) we obtain, for any a and compact K c B ,

(10) sup

, "*

2 C ,

where the constant C is independent of h . By a standard argument,

involving Ascoli's Theorem, we then obtain a subsequence V, ,

, 7 = 1 , 2, ... , converging, together with its derivatives, normally in B

The limit function, u , will consequently be a classical solution of (l).

To complete the proof we show that v coincides with u , almost

everywhere in B . Let us write V . = V, , u. = u. . Since u and

J o

V. , for any j , are both generalized solutions of (l), we have by
d

subtraction,

(11) I \A(DU)-A[DV .UDQdx = 0
Jg I Hi

for all $ € J O B ) . We choose $ = u . - v . = [u-v .) - (u-u .) and
1 3 3 0 0

substitute in (11) to obtain

(12) f \K{DU)-K{DV .) \{DU-DV .)6X 5 f \A(Du)-A(Dv .) | \Du-Du .\dx
Jg I 0 ) 0 Jg 0 3

5 2 \Du-Du .\dx .
>B °

Letting j tend to infinity, we obtain by Fatou's Lemma,

(13) J [A(Du)-A{Dv)) (Du-Dv)dx = 0 ,

h
and hence Du = Dv almost everywhere in S by the strict monotonicity

(3). It then follows easily that u = v almost everywhere in B and the

theorem is proved. //

In addition to Theorem 1, a global regularity result is readily
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derived.

THEOREM 2. Let SI be a bounded domain in g" , whose C boundary,

8fi 3 has nonnegative mean curvature everywhere. Let u be a W7(.Cl)

solution of equation (l) in SI 3 v a continuous function in fi and

suppose that the difference u - v belongs to Wz(£l) . Then u is

continuous in £2 .

Proof. Define w to "be the classical solution of equation (l)

satisfying w = V on 3ft . If we can show y 6 W~(Sl) , we are done, ̂ or

then w - u € WT(ft) and consequently the equation (13) holds for w and

u . In other words, the generalized Dirichlet problem for equation (l) in

l/r(ft) can only have unique solutions. Let us now choose, for e > 0 ,

(lk) <j> = sign(u-D )sup( \w-V |-e, 0)

as a test function in (2). It is easily seen that <f € Wz(£l) , and

consequently by substitution we obtain

(15) f
'support (j

\DV\ .

Hence as E tends to zero, we get

(16) f \Du)\dx < f (l+\Dv\)dx ,

so that w i iv^(n) . //

Further regularity at 8ft , along with local regularity at 3ft ,

follows by standard methods. We also mention that the above proofs

automatically carry over to more general classes of quasilinear elliptic

equations. In particular, Theorem 1 holds for the equation of prescribed

mean curvature

(17) divA(Ow) = H(x) ,
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provided H i s Holder continuous in £5 .
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