Proceedings of the Edinburgh Mathematical Society (2001) 44, 49–62 \bigodot

BANACH SPACES OF CONTINUOUS VECTOR-VALUED FUNCTIONS OF ORDINALS

ELÓI MEDINA GALEGO

Department of Mathematics, IME, University of São Paulo, São Paulo 05315-970, Brazil (eloi@ime.usp.br)

(Received 5 July 1998)

Abstract Let X be a Banach space and ξ an ordinal number. We study some isomorphic classifications of the Banach spaces X^{ξ} of the continuous X-valued functions defined in the interval of ordinals $[1,\xi]$ and equipped with the supremum norm. More precisely, first we use the continuum hypothesis to give an isomorphic classification of $C(I)^{\xi}$, $\xi \ge \omega_1$. Then we present a characterization of the separable Banach spaces X that are isomorphic to X^{ξ} , $\forall \xi, \omega \le \xi < \omega_1$. Finally, we show that the isomorphic classifications of $(C(I) \oplus F^*)^{\xi}$ and $\ell_{\infty}(\mathbb{N})^{\xi}$, where F is the space of Figiel and $\omega \le \xi < \omega_1$ are similar to that of \mathbb{R}^{ξ} given by Bessaga and Pelczynski.

Keywords: continuous vector-valued functions; isomorphic classifications of Banach spaces

AMS 2000 Mathematics subject classification: Primary 46B03; 46B20; 46E15

1. Introduction

As in [1], X being a Banach space and ξ an ordinal number, X^{ξ} will indicate the Banach space of the continuous X-valued functions defined in the interval of ordinals $[1, \xi]$ and equipped with the supremum norm. C(I) being the Banach space of continuous functions defined in the interval I = [0, 1] of the real line \mathbb{R} with the supremum norm, it follows from Milutin's Theorem (see [18, p. 379]) that

$$C(I)^{\xi}$$
 is isomorphic to $C(I), \quad \forall \xi, \quad \omega \leq \xi < \omega_1.$ (1.1)

Initially, using the continuum hypothesis we give an isomorphic classification of the Banach spaces $C(I)^{\xi}$, $\xi \ge \omega_1$ (Theorem 3.1). Afterwards, inspired by Bourgain [15] we exhibit a characterization of the separable Banach spaces X such that X^{ξ} , $\forall \xi, \omega \le \xi < \omega_1$ is isomorphic to X (Theorem 4.1). Next, by Pisier's Theorem, we will generalize a result from Samuel [16], and we show that the presence of F^* , where F is the space of Figiel [6], together with C(I) annihilates (1.1), since the isomorphic classification of $(C(I) \oplus F^*)^{\xi}$, $\omega \le \xi < \omega_1$ is similar to that of \mathbb{R}^{ξ} given in [1] (Corollary 5.6). Finally, we will prove that the same happens with the isomorphic classification of $\ell_{\infty}(\mathbb{N})^{\xi}$, $\omega \le \xi < \omega_1$, where $\ell_{\infty}(\mathbb{N})$ is the Banach space of the bounded sequences with the supremum norm (Corollary 5.8). These results motivated the definition of ω_1 cancellable Banach space (Definition 5.9).

2. Preliminaries

To fix the notation, let us recall some definitions. If X and Y are Banach spaces, then Y is isomorphic to a closed subspace of $X, Y \hookrightarrow X$, if there is a one-to-one bounded linear

operator from Y into X; Y is said to be isomorphic to X, $X \sim Y$, provided there is a one-to-one bounded linear operator from X onto Y, and Y is a quotient of $X, X \twoheadrightarrow Y$, if there is a surjective bounded linear operator from X onto Y. The notation $\hat{\otimes}_n X$ will indicate the injective tensor product of n isomorphic copies of X, $n < \omega$.

Let Γ be a set. By $C_0(\Gamma, X)$ we denote the Banach space of X-valued functions defined on Γ such that for any positive ε the set $\{\gamma \in \Gamma : ||f(\gamma)|| \ge \varepsilon\}$ is finite, with the supremum norm, and by $\ell_1(\Gamma, X)$ we denote the Banach space of all absolutely summable X-functions defined on Γ .

If α is an ordinal number and X is a Banach space, we set $X_0^{\alpha} = \{f \in X^{\alpha} : f(\alpha) = 0\}$. The cardinality of the ordinal number ξ will be denoted by $\overline{\xi}$. The notation ω_1 will denote the first non-denumerable ordinal. If α is a non-denumerable regular ordinal and γ is any ordinal, we will denote by \wedge_{γ}^{α} the subset of $[1, \gamma]$ consisting of limit ordinals that are not limits of sets of cardinality strictly smaller than $\overline{\alpha}$.

The density character dens X of a Banach space X is the smallest cardinal number δ such that there exists a set of cardinality δ dense in X.

Let γ be an ordinal. A γ -sequence in a set A is the image of a function $f : [1, \gamma] \to A$ and will be denoted by $(x_{\theta})_{\theta < \gamma}$. If A is a topological space and β is an ordinal, we will say that the γ -sequence is β -continuous if, for every β -sequence of ordinals $(\theta_{\xi})_{\xi < \beta}$ on $[1, \gamma]$ that converges to θ_{β} when ξ converges to β , we have that $x_{\theta_{\xi}}$ converges to $x_{\theta_{\beta}}$.

Let X be a Banach space. By X_s we will denote the set of $F \in X^{**}$ having the following property: for every ω -sequence $(x_n^*)_{n < \omega}$ in X^* such that $x_n^*(x) \xrightarrow{n \to \omega} 0$, for all $x \in X$, we have $F(x_n^*) \xrightarrow{n \to \omega} 0$. X is said to have Mazur's property (also, *d*-complete [9] or μB -spaces [19]) if $X_s = cX$, where cX is the canonical image of X in X^{**} . The class of Banach spaces with Mazur's property includes the weakly compactly generated (WCG) Banach spaces having this property.

Let α be a non-denumerable regular ordinal, φ any ordinal, and X a Banach space. By X^{φ}_{α} we will denote the set of $F \in X^{**}$ having the following property: for every limit ordinal $\beta < \alpha$ and for every φ -sequence $x^{\eta} = (x^*_{\xi}(\eta))_{\xi < \beta}$ of β -sequences of X^* such that there exists $K \in \mathbb{R}$ with $||x^*_{\xi}(\eta)|| \leq K$, $\forall \eta < \varphi$, $\forall \xi < \beta$ and such that $x^*_{\xi}(\eta)(x) \xrightarrow{\xi \to \beta} 0$, $\forall x \in X$, uniformly in η , we have $F(x^*_{\xi}(\eta)) \xrightarrow{\xi \to \beta} 0$ uniformly in η .

We say that the Banach spaces X and Y are totally incomparable if X and Y have no isomorphic closed subspaces of infinite dimension.

If $T: X \to Y$ is a surjective bounded linear operator and B_X and B_Y are the closed unit balls of X and Y respectively, we define $r_0(T) = \inf\{r > 0 : B_Y \subset rT(B_X)\}$.

Other notations are standard in conformity with [18].

3. Isomorphic classification of the Banach spaces $C(I)^{\xi}, \, \xi \ge \omega_1$

Our main aim here is to prove the following theorem, which provides the isomorphic classification of the Banach spaces $C(I)^{\xi}$, $\xi \ge \omega_1$, and for that we will suppose the continuum hypothesis, that is $2^{\aleph_0} = \aleph_1$.

Theorem 3.1. Let α be an initial non-denumerable ordinal and X a separable Banach space with $X^{\omega} \sim X$ and dens $X^* = 2^{\aleph_0}$.

(1) If α is singular, then $X^{\xi} \sim X^{\eta}$ with $\xi \leq \eta$ and $\overline{\xi} = \overline{\eta} = \overline{\alpha}$ if and only if $\eta < \xi^{\omega}$.

- (2) If α is regular, then
 - (a) $X^{\alpha} \sim X^{\alpha \eta}$, with $1 \leq \eta \leq \omega_1$ if and only if $\eta < \omega_1$;
 - (b) $X^{\alpha\xi} \sim X^{\alpha\eta}$, with $\omega_1 \leqslant \xi \leqslant \eta \leqslant \alpha$ if and only if $\bar{\xi} = \bar{\eta}$;
 - (c) $X^{\xi} \sim X^{\eta}$, with $\alpha^2 \leqslant \xi \leqslant \eta$ and $\bar{\xi} = \bar{\eta} = \bar{\alpha}$ if and only if $\eta < \xi^w$.

We will need some auxiliary results.

Lemma 3.2. Let X be a Banach space having Mazur's property and γ be any ordinal, then

$$\frac{(X^{\gamma})_{\omega_1}^{\omega}}{cX^{\gamma}} \sim C_0(\wedge_{\gamma}^{\omega_1}, X).$$

Proof. This is similar to the proof of Corollary 2.8 in [7], only noticing that the Statement (b) of the proof of Proposition 2b is also true in this case, since, if $F \in (X^{\gamma})_{\omega_1}^{\omega}$ and H is the canonical isomorphism from $\ell_1([1, \gamma], X^*)$ onto $(X^{\gamma})^*$, then $H^*(F) = (F_{\theta})_{\theta < \gamma+1}$ is β -continuous, $\forall \beta, \beta < \omega_1$. Indeed, let $\beta < \omega_1$ and $(\theta_{\xi})_{\xi < \beta}$ be a β -sequence of ordinals in $[1, \gamma]$ converging to θ_{β} when ξ converges to β .

Now suppose that $(F_{\theta_{\xi}})_{\xi < \beta}$ does not converge to $F_{\theta_{\xi}}$ when ξ converges to β . So there is $\varepsilon > 0$ and a strictly increasing ω -sequence of ordinals $(\xi_n)_{n < \omega}$ converging to β and a ω sequence $(x_n^*)_{n < \omega}$ of elements of the unit ball of X^* such that $\|F_{\theta_{\xi_n}}(x_n^*) - F_{\theta_{\beta}}(x_n^*)\| \ge \varepsilon$. Let $P_{\xi_m}^n$ be in $\ell_1([1, \gamma], X^*)$ defined by $P_{\xi_m}^n(\theta) = x_n^*$ if $\theta = \theta_{\xi_m}$ and $P_{\xi_m}^n(\theta) = 0$ if $\theta = \theta_{\xi_m}, \forall n, m < \omega$, so $HP_{\xi_m}^n(f) = x_n^*f(\theta_{\xi_m})$ and, therefore, $|H(P_{\theta_{\xi_m}}^n - P_{\theta_{\beta}}^n)(f)| \le$ $\|x_n^*\| \|f(\theta_{\xi_m}) - f(\theta_{\beta})\| \xrightarrow{m \to \omega} 0, \forall f$, uniformly in n and $\|H(P_{\theta_{\xi_m}}^n - P_{\theta_{\beta}}^n)\| \le 2\|H\|, \forall n,$ $m < \omega$. Thus, $FH(P_{\theta_{\xi_m}}^n - P_{\theta_{\beta}}^n) = F_{\theta_{\xi_m}}(x_n^*) - F_{\theta_{\beta}}(x_n^*) \xrightarrow{m \to \omega} 0$ uniformly in n, which is absurd. \Box

Now, we remark that the argument presented in the proof of Lemma 2 in [1] also proves the following result.

Lemma 3.3. Let ξ be a limit ordinal and X a Banach space. If, for every $\beta < \xi$, $\mathbb{R}^{\xi} \not\hookrightarrow X^{\beta}$ holds, then $\mathbb{R}^{\xi^{\omega}} \not\hookrightarrow X^{\xi}$.

Lemma 3.4. Let ξ be a non-denumerable ordinal and X a separable Banach space, then $\mathbb{R}^{\xi^{\omega}} \nleftrightarrow X^{\xi}$.

Proof. Let us suppose that (a) $\mathbb{R}^{\xi^{\omega}} \hookrightarrow X^{\xi}$, thus $\mathbb{R}^{\xi} \hookrightarrow \mathbb{R}^{\xi^{\omega}} \hookrightarrow X^{\xi}$, so we can consider $\xi_0 = \min\{\theta : \exists m, m < \omega, \mathbb{R}^{\xi} \hookrightarrow (\hat{\otimes}_m X)^{\theta}\}$. Let $m_0, m_0 < \omega$, be such that (b) $\mathbb{R}^{\xi} \hookrightarrow (\hat{\otimes}_{m_0} X)^{\xi_0}$. It suffices to show that ξ_0 is finite to come to a contradiction, because, in this case, $(\hat{\otimes}_{m_0} X)^{\xi_0}$ is separable and \mathbb{R}^{ξ} is not.

We suppose that ξ_0 is infinite and we note that (c) $\mathbb{R}^{\xi_0} \not\hookrightarrow (\hat{\otimes}_{m_0+1} X)^{\beta}, \forall \beta, \beta < \xi_0$. Indeed, otherwise there exists $\beta_1, \beta_1 < \xi_0$ such that by using item (b), Theorem 20.5.6 in [18] and Proposition 7 in [4, p. 225], we have

$$\mathbb{R}^{\xi} \hookrightarrow (\hat{\otimes}_{m_0} X)^{\xi_0} = \mathbb{R}^{\xi_0} \hat{\otimes} (\hat{\otimes}_{m_0} X) \hookrightarrow (\hat{\otimes}_{m_0+1} X)^{\beta_1} \hat{\otimes} (\hat{\otimes}_{m_0} X)$$
$$= \mathbb{R}^{\beta_1} \hat{\otimes} (\hat{\otimes}_{m_0+1} X) \hat{\otimes}_{m_0} X = (\hat{\otimes}_{2m_0+1} X)^{\beta_1},$$

which is absurd because of the choice of ξ_0 . We state that ξ_0 is a limit ordinal. Indeed, if $\xi_0 = \xi_1 + n$, for some $n, 0 \leq n < \omega$ and ξ_1 infinite, then $n + \xi_1 = \xi_1$ and, from Property II in [1, p. 54], it follows that $(\hat{\otimes}_{m_0} X)^{\xi_0} \sim (\hat{\otimes}_{m_0} X)^{\xi_1}$, so, by the minimality of ξ_0 , we conclude that n = 0.

We can use Lemma 3.3 and item (c) to conclude that (d) $\mathbb{R}^{\xi_0^{\omega}} \not\hookrightarrow (\hat{\otimes}_{m_0+1} X)^{\xi_0}$. Since $\xi_0 \leq \xi$, and bearing (a) and (b) in mind, we have

$$\mathbb{R}^{\xi_0^{\omega}} \hookrightarrow \mathbb{R}^{\xi^{\omega}} \hookrightarrow X^{\xi} = \mathbb{R}^{\xi} \hat{\otimes} X \hookrightarrow (\hat{\otimes}_{m_0} X)^{\xi_0} \hat{\otimes} X = \mathbb{R}^{\xi_0} \hat{\otimes} (\hat{\otimes}_{m_0} X) \otimes X = (\otimes_{m_0+1} X)^{\xi_0},$$

which is absurd because of (d).

So ξ_0 must be finite.

Proof of Theorem 3.1.

(1) Let α be singular. If $X^{\xi} \sim X^{\eta}$ with $\xi \leq \eta$ and we also suppose $\xi^{\omega} \leq \eta$, then

$$\mathbb{R}^{\xi^{\omega}} \hookrightarrow \mathbb{R}^{\eta} \hookrightarrow X^{\eta} \sim X^{\xi},$$

which is absurd by Lemma 3.4.

Conversely, if $\xi \leq \eta$, $\bar{\xi} = \bar{\eta} = \bar{\alpha}$ and $\eta < \xi^{\omega}$, then from Theorem 1 in [10] follows that $\mathbb{R}^{\xi} \sim \mathbb{R}^{\eta}$, so $\mathbb{R}^{\xi} \hat{\otimes} X \sim \mathbb{R}^{\eta} \hat{\otimes} X$, that is, $X^{\xi} \sim X^{\eta}$.

(2) Let α be regular.

(a) If $X^{\alpha} \sim X^{\alpha\eta}$ with $1 \leq \eta \leq \omega_1$, then we consider two cases. If $\alpha = \omega_1$, then, from Remark 2.3 in [7], we have

$$\frac{(X^{\omega_1})_{\omega_1}^{\omega}}{cX^{\omega_1}} \sim \frac{(X^{\omega_1\eta})_{\omega_1}^{\omega}}{cX^{\omega_1\eta}}.$$

Then, by Lemma 3.2, $C_0(\wedge_{\omega_1}^{\omega_1}, X) \sim C_0(\wedge_{\omega_1\eta}^{\omega_1}, X)$, that is $X \sim C_0(\Gamma, X)$, where $\Gamma = [1, \eta]$ (see [10]). Since X is separable, we conclude that $\eta < \omega_1$.

If $\alpha > \omega_1$, then again from Remark 2.3 in [7] it follows that

$$\frac{(X^{\alpha})^{\omega_1}_{\alpha}}{cX^{\alpha}} \sim \frac{(X^{\alpha\eta})^{\omega_1}_{\alpha}}{cX^{\alpha\eta}}.$$

Since we have the hypothesis that $\dim X^* = 2^{\aleph_0} = \aleph_1 < \bar{\alpha}$, we can apply Corollary 2.8 of [7] to obtain $C_0(\wedge_{\alpha}^{\alpha}, X) \sim C_0(\wedge_{\alpha\eta}^{\alpha}, X)$, that is $X \sim C_0(\Gamma, X)$, where $\Gamma = [1, \eta]$; the separability of X implies $\eta < \omega_1$.

Conversely, let η be $1 \leq \eta < \omega_1$. It suffices to prove that

$$X^{\alpha} \sim X^{\alpha \theta} \quad \forall \theta, \ \omega \leqslant \theta < \omega_1.$$
(3.1)

Indeed, if $1 \leq n < \omega$, from $X^{\alpha} \sim X^{\alpha\omega}$, Property III in [1, p. 54] and Theorem 2 in [10], it follows that

$$X^{\alpha n} \sim (X^{\alpha})^n \sim (X^{\alpha \omega})^n \sim X^{(\alpha \omega)n} \sim X^{\alpha(\omega n)} \sim \mathbb{R}^{\alpha(\omega n)} \hat{\otimes} X \sim \mathbb{R}^{\alpha \omega} \hat{\otimes} X \sim X^{\alpha}.$$

To see (3.1), firstly we note that

$$\mathbb{R}^{\alpha\omega} \sim \mathbb{R}^{\alpha\omega}_0 \sim (\mathbb{R}^{\alpha}_0)^{\omega}_0 \sim (\mathbb{R}^{\alpha})^{\omega} \sim \mathbb{R}^{\alpha} \hat{\otimes} \mathbb{R}^{\omega}.$$

The first and the third isomorphisms are Remark 2.1 in [1, p. 55], the second isomorphism follows from Corollary 3.1 in [10], and the fourth isomorphism follows from Corollary 7.7.6 and Theorem 20.5.6 in [18].

Finally, let θ be $\omega \leq \theta < \omega_1$, thus

$$\begin{split} X^{\alpha\theta} &\sim \mathbb{R}^{\alpha\theta} \hat{\otimes} X \sim \mathbb{R}^{\alpha\omega} \hat{\otimes} X \sim (\mathbb{R}^{\alpha} \hat{\otimes} \mathbb{R}^{\omega}) \hat{\otimes} X \\ &\sim \mathbb{R}^{\alpha} \hat{\otimes} (\mathbb{R}^{\omega} \hat{\otimes} X) \sim \mathbb{R}^{\alpha} \hat{\otimes} X^{\omega} \sim \mathbb{R}^{\alpha} \hat{\otimes} X \sim X^{\alpha}. \end{split}$$

The second isomorphism follows from Theorem 2 in [10].

(b) If $X^{\alpha\xi} \sim X^{\alpha\eta}$ with $\omega_1 \leq \xi \leq \eta \leq \alpha$, we can suppose $\alpha > \omega_1$, because, if $\alpha = \omega_1$, then $\xi = \eta = \omega_1$ and we have nothing to prove. So as in the proof of the second case in (a) we obtain that $C_0(\wedge_{\alpha\xi}^{\alpha}, X) \sim C_0(\wedge_{\alpha\eta}^{\alpha}, X)$, that is $C_0(\Gamma_1, X) \sim C_0(\Gamma_2, X)$, where $\Gamma_1 = [1, \xi]$ and $\Gamma_2 = [1, \eta]$, thus, the separability of X implies $\overline{\xi} = \overline{\eta}$.

Conversely, if $\omega_1 \leq \xi \leq \eta \leq \alpha$ with $\overline{\xi} = \overline{\eta}$, then Theorem 2 in [10] implies that $\mathbb{R}^{\alpha\xi} \sim \mathbb{R}^{\alpha\eta}$, so $X \hat{\otimes} \mathbb{R}^{\alpha\xi} \sim X \hat{\otimes} \mathbb{R}^{\alpha\eta}$.

(c) If $X^{\xi} \sim X^{\eta}$ with $\xi \leq \eta$, then, as it was proved in the case in which α is singular, we have $\eta < \xi^{\omega}$. Conversely, if $\alpha^2 \leq \xi \leq \eta$, $\bar{\xi} = \bar{\eta} = \bar{\alpha}$, then Theorem 2 in [10] implies that $\mathbb{R}^{\xi} \sim \mathbb{R}^{\eta}$, so $X \otimes \mathbb{R}^{\xi} \sim X \otimes \mathbb{R}^{\eta}$.

Question 3.5. Give an isomorphic classification of the Banach spaces $C(I)^{\xi}$, $\xi \ge \omega_1$, without using the continuum hypothesis.

Remark 3.6. For each γ , $1 \leq \gamma < \omega_{\xi+1}$, where $\omega_{\xi+1}$ is the first ordinal of cardinality $\aleph_{\xi+1}$, we define $K_{\gamma} = [1, \omega_{\xi}^{\omega^{\gamma}}] \times I$, ω_{ξ} being the first ordinal of cardinality \aleph_{ξ} . It follows from Lemma 3.4 that $C(K_{\eta_1}) \nleftrightarrow C(K_{\xi_1})$, for every $1 \leq \xi_1 < \eta_1 < \omega_{\xi+1}$.

Indeed, let $\theta_{\xi_1} = \omega_{\xi}^{\omega^{\xi_1}}$ and $\theta_{\gamma_1} = \omega_{\xi}^{\omega^{\gamma_1}}$, thus $\theta_{\xi_1}^{\omega} = \omega_{\xi}^{\omega^{\xi_1+1}} \leqslant \theta_{\gamma_1}$. If $C(K_{\eta_1}) \hookrightarrow C(K_{\xi_1})$, then

$$\mathbb{R}^{\theta_{\xi_1}^{\omega}} \hookrightarrow \mathbb{R}^{\theta_{\gamma_1}} \hookrightarrow C(K_{\eta_1}) \hookrightarrow C(K_{\xi_1}) = C(I)^{\theta_{\xi_1}},$$

which is a contradiction.

So, for each $\aleph_{\xi} \ge 2^{\aleph_0}$, there exists at least $\aleph_{\xi+1}$ perfect compacts K of the cardinality \aleph_{ξ} , such that C(K) are isomorphically different.

Question 3.7. Under the continuum hypothesis, are there more than \aleph_2 perfect compacts K of cardinality 2^{\aleph_0} , such that C(K) are isomorphically different?

4. Characterization of the separable Banach spaces satisfying $X^{\xi} \sim X, \forall \xi, \omega \leq \xi < \omega_1$

If X is a Banach space and K a compact, C(K, X) will indicate the Banach space of the continuous X-valued functions defined on K and equipped with the supremum norm.

It follows from the Milutin's Theorem that if X is isomorphic to C(I), then X satisfies the following equation: $X^{\xi} \sim X$, $\forall \xi, \omega \leq \xi < \omega_1$. In this section we will prove Theorem 4.1, which gives an isomorphic characterization of the separable Banach spaces satisfying such an equation.

Theorem 4.1. Let X be a separable Banach space. X satisfies the equation $X^{\xi} \sim X$, $\forall \xi, \omega \leq \xi < \omega_1$, if and only if $C(I, X) \sim X$.

Proof. If X is a Banach space satisfying

$$C(I, X) \sim X \quad \text{and} \quad \xi, \quad \omega \leqslant \xi < \omega_1,$$

$$(4.1)$$

then, from Lemma 21.5.1 of [18], we have $\mathbb{R}^{\xi} \hat{\otimes} C(I, X) \sim \mathbb{R}^{\xi} \hat{\otimes} X$. Now, from Theorem 20.5.6 of [18], we obtain $\mathbb{R}^{\xi} \hat{\otimes} C(I) \hat{\otimes} X \sim X^{\xi}$. So, from Milutin's Theorem, $C(I, X) \sim X^{\xi}$. But, bearing in mind (4.1), we conclude that $X \sim X^{\xi}$.

The converse follows immediately from the following proposition.

Proposition 4.2. Let X and B be separable Banach spaces with $X^{\xi} \sim B, \forall \xi, \omega \leq \xi < \omega_1$, then $C(I, X) \sim B$.

Proof. (Inspired by [15].) Let 2^{I} be the space of all compact subsets of I endowed with the Hausdorff metric

$$d(A,B) = \max\{\max_{a \in A} \operatorname{dist}(a,B), \max_{b \in B} \operatorname{dist}(b,A)\}.$$

Let $Y = \{K \in 2^I : C(K, X) \sim B\}$. For each $n < \omega, Y_n = \{K \in 2^I : \exists \bar{T} : C(I, X) \to B$ a bounded linear operator, $\|\bar{T}\| \leq 1$ and $\bar{L} : B \to C(I, X)$ a bounded linear operator satisfying $(1/n)\|f_{|_K}\| \leq \|\bar{T}(f)\| \leq \|f_{|_K}\|, \forall f \in C(I, X)$ and $\bar{T}\bar{L}(b) = b, \forall b \in B, \|\bar{L}\| \leq n\}$.

Firstly, we remark that $Y = \bigcup_{n < \omega} Y_n$. Indeed, supposing that $K \in Y$, there exists $T : C(K, X) \to B$, an isomorphism onto the image (we can suppose $||T|| \leq 1$), and $L : B \to C(K, X)$, a bounded linear operator (*L* is the inverse of *T*), satisfying TL(b) = b, $\forall b \in B$.

Let $n < \omega$ be such that $||L|| \leq n$. We define $\overline{T} : C(I, X) \to B$ by $\overline{T}(g) = T(g|_{K})$ and $L : B \to C(I, K)$, by $\overline{L}(b) = EL(b)$, where E is a linear extension operator (see [18, p. 365]), so $||g|_{K}|| = ||LT(g|_{K})|| \leq n ||T(g|_{K})||$,

- (I) $(1/n) ||g|_{K} || \leq ||\bar{T}(g)|| = ||T(g|_{K})|| \leq ||g|_{K} ||, \forall g \in C(I, X), \text{ and}$
- (II) $\overline{TL}(b) = \overline{TEL}(b) = T(EL(b)|_{\kappa}) = TL(b) = b, \forall b \in b, \text{ that is } K \in Y_n.$

Conversely, supposing $K \in Y_n$ for some $n < \omega$, we define $T : C(K, X) \to B$ by $T = \overline{T}E$, where E is a linear extension operator and $L : B \to C(K, X)$ by $L = R\overline{L}$, where R is an operator defined by $R(f) = f_{|_K}, \forall f \in C(I, X)$. Let $f \in C(K, X)$ and let $b \in B$, then

- (III) $(1/n)||f|| = (1/n)||E(f)|_{|_{K}}|| \leq ||T(f)|| = ||\overline{T}E(f)|| \leq ||E(f)|_{|_{K}}|| = ||f||$, that is T is an isomorphism onto the image.
- (IV) $TL(b) = \overline{T}ER\overline{L}(b)$ and, since $\overline{L}(b)|_{\kappa} = (ER\overline{L}(b))|_{\kappa}$ and $\|\overline{T}(f)\| \leq \|f|_{\kappa}\|, \forall f \in C(I, K)$, it follows that $\overline{T}(ER\overline{L}(b)) = \overline{T}(\overline{L}(b)) = b$ and, therefore, TL(b) = b, $\forall b \in B$, so the image of T is B, consequently $B \in Y$.

Next we will remark that each Y_n is analytic. Let A be the unit ball of L(C(I, X), B) in the pointwise convergence topology, and let J be the ball of radius n of L(B, C(I, X)) also in the pointwise convergence topology.

We consider the Polish space $Z = 2^I \times A \times J$ (see [3, p. 195]). Let $Q = \{(K, T, L) \in Z : (1/n) ||f_{|_K}|| \leq ||T(f)|| \leq ||f_{|_K}||, \forall f \in C(I, X) \text{ and } TL(b) = b, \forall b \in B\}$. Q is a closed subset of Z, because, if $(K_{\gamma}, T_{\gamma}, L_{\gamma})$ is a net of Q converging to (K, T, L) in Z, it follows that $(1/n) ||f_{|_K}|| \leq ||T(f)|| \leq ||f_{|_K}||, \forall f \in C(I, X)$, from the pointwise convergence of T_{γ} . Next we show that $TL(b) = b, \forall b \in B$.

Let $b \in B$, from $T_{\gamma} \to T$, it follows that

(1) $T_{\gamma}L(b) \to TL(b),$

and, from $L_{\gamma} \to L$, it follows that $L_{\gamma}(b) \to L(b)$ and, therefore,

(2) $TL_{\gamma}(b) \to TL(b)$.

Now, using

$$||T_{\gamma}L_{\gamma}(b) - TL_{\gamma}(b)|| \leq ||T_{\gamma}|| ||L_{\gamma}(b) - L(b)|| + ||T|| ||L_{\gamma}(b) - L(b)|| + ||T_{\gamma}L(b) - TL(b)||$$

with (1) and (2), we conclude that $b = T_{\gamma}L_{\gamma}(b) \rightarrow TL(b)$, that is TL(b) = b. So $(K,T,L) \in Q$ and, therefore, Q is closed, consequently (see [3, p. 195]) Q is a Polish space. Since Y_n is a projection of Q onto the 2^I axis, Y_n is analytic and, therefore, so is Y (see [3, p. 195]).

Let $D = \{K \in 2^I : K \text{ is countable}\}$, by the hypothesis of the proposition, it follows that $D \subset Y$ (see [18, p. 155]), and, since D is non-analytic (see [8]), there must be a non-denumerable compact subset K of I, such that $C(K, X) \sim B$, and, from Milutin's Theorem and Corollary 21.5.2 of [18], it follows that $C(I, X) \sim B$.

Remark 4.3. Let Y be a Banach space. It follows from Milutin's Theorem and from properties of injective tensor products that X = C(I, Y) satisfies

$$C(I,X) \sim X. \tag{4.2}$$

It will be shown (Corollary 5.6) that there exists a separable Banach space $W, C(I) \nleftrightarrow W$, such that $X = C(I) \oplus W$ does not satisfy (4.2). (To see this, bear in mind that if X satisfies (4.2), then $X^{\xi} \sim X^{\eta}, \forall \xi, \eta, \omega \leq \xi \leq \eta < \omega_1$.)

Now, since $C(I) \oplus C(I, Y) \sim C(I, Y)$, we have that $X = C(I) \oplus Y$ satisfies (4.2) if and only if

$$C(I,Y) \sim C(I) \oplus Y. \tag{4.3}$$

If Y is isomorphic to a complemented subspace of C(I) and $C(I) \nleftrightarrow Y$, then Y satisfies (4.3). Indeed, from Corollary 1 of [12], we have $C(I) \oplus Y \sim C(I)$ and, therefore, $C(I, C(I) \oplus Y) \sim C(I, C(I))$, that is $C(I, Y) \sim C(I)$.

Question 4.4. Let Y be a separable Banach space, $C(I) \nleftrightarrow Y$, such that $C(I,Y) \sim C(I) \oplus Y$. Is it true that Y is isomorphic to a complemented subspace of C(I)?

Question 4.5. Give a Banach space X such that $X^{\omega_1} \sim X$.

5. ω_1 cancellable Banach spaces

Next we present two Banach spaces X containing subspaces isomorphic to C(I) such that the isomorphic classifications of X^{ξ} , $\omega \leq \xi < \omega_1$ are similar to that of \mathbb{R}^{ξ} given by Bessaga and Pelczynski in [1]. The first space is $C(I) \oplus F^*$, where F is the Banach space considered by Figiel in [6] (Corollary 5.6), and the second is $\ell_{\infty}(\mathbb{N})$ (Corollary 5.8).

These results will be consequences of Theorem 5.1, and, in order to prove it, we will need some auxiliary results.

Theorem 5.1. Let X^* and F be totally incomparable Banach spaces satisfying $X \twoheadrightarrow X^{\xi}$, $\forall \xi$, $\omega \leq \xi < \omega_1$, F^* uniformly convex, $F^{n+1} \nleftrightarrow F^n$, $\forall n, n < \omega$. If $(X \oplus F^*)^{\xi} \twoheadrightarrow (X \oplus F^*)^{\eta}$, with $\omega \leq \xi \leq \eta < \omega_1$, then $\eta < \xi^{\omega}$.

Lemma 5.2. Let X, Y and Z Banach spaces, $T : X \oplus Y \to Z$ is a bounded linear operator such that $i_1^*T^* : Z^* \to X^*$ is an isomorphism onto the image, where i_1 is the canonical inclusion from X in $X \oplus Y$. Then $T_1 : X \to Z$ defined by $T_1(x) = T(x,0)$, $\forall x \in X$ is onto Z.

Proof. From $T_1^*(z^*)(x) = z^*(T_1(x)) = z^*(T(i_1(x))) = i_1^*(T^*(z^*(x))), \forall z^* \in \mathbb{Z}$, and $\forall x \in \mathbb{X}$, it follows that T_1^* is one-to-one and has a closed image. Then from Lemma 3 of [5, p. 488], we have that T_1 is onto \mathbb{Z} .

Lemma 5.3. Let γ be a denumerable ordinal, X and Y Banach spaces and $T: X_0^{\gamma} \oplus Y \to Z$ a surjective bounded linear operator. Let $\beta < \gamma$ be such that $T|_{X_0^{\beta} \oplus Y} : X_0^{\beta} \oplus Y \to Z$ is not surjective and $r > r_0(T)$, then, for every ε , $0 < \varepsilon < 1$, there exists $g \in X_0^{\gamma}$ with $g(\xi) = 0, \forall \xi, \xi \leq \beta, ||g|| \leq r$ and $||T(g)|| \geq \varepsilon$.

Proof. Let ε be such that $0 < \varepsilon < 1$; choosing $\delta = 1 - \varepsilon$ and writing $X_0^{\gamma} \oplus Y = X_0^{\beta} \oplus W \oplus Y$, where $W = \{f \in X_0^{\gamma} : f(\xi) = 0, \forall \xi, \xi \leq \beta\}$ and indicating by i_1 the canonical inclusion from $X_0^{\beta} \oplus Y$ to $X_0^{\gamma} \oplus Y$, it follows from the previous lemma that

there exists $z^* \in Z^*$, $||z^*|| = 1$ such that $||i_1^*T^*z^*|| \leq (\delta/2r)$, so, for every f + y in $X_0^\beta \oplus Y$ with $||f + y|| \leq r$, we have $||z^*T(f + y)|| \leq \frac{1}{2}\delta$.

Let $z \in Z$, ||z|| = 1 such that $||z^*(z)|| \ge 1 - \frac{1}{2}\delta$, since T is surjective, then there exists $g^1 + y_1$ in $X_0^{\gamma} \oplus Y$, $||g^1 + y_1|| \leq r$ such that $T(g^1 + y_1) = z$. Let $g_1 = g^1_{|[\beta+1,\gamma]}$, thus:

$$1 - \frac{1}{2}\delta \leq ||z^*T(g^1 + y_1)|| \leq ||z^*T(g^1 - g_1 + y_1)|| + ||z^*T(g_1)|| \leq \frac{1}{2}\delta + ||T(g_1)||,$$

so $||T(q_1)|| \ge \varepsilon$.

Proposition 5.4. Let X, Y and Z be Banach spaces, Y uniformly convex, $Z \twoheadrightarrow Y$ and α an infinite denumerable ordinal such that $\forall \beta, \beta < \alpha, Z^{\beta} \oplus X \not\rightarrow Y^{\alpha}$. Then $Z^{\alpha} \oplus X \not\twoheadrightarrow Y^{\alpha^{\omega}}.$

Proof. (Inspired by [16].) Y being uniformly convex, it follows from Pisier's Theorem (see [14, p. 803]) that Y admits an equivalent norm (that will be denoted by $\|\cdot\|$) and there exists $\delta > 0$ and $p \in \mathbb{R}, 2 such that if <math>b \in \mathbb{R}_+$ and $y_1, y_2 \in Y$ with $||y_1|| \ge 1$ and $||y_2|| \ge \sqrt[p]{b}$, then either $||y_1 + y_2|| \ge \sqrt[p]{1 + \delta b}$ or $||y_1 - y_2|| \ge \sqrt[p]{1 + \delta b}$. So, $\begin{aligned} \|y_1\| & \geqslant 1 \text{ and } \|y_2\| \geqslant \sqrt{6}, \text{ when effect } \|y_1 + y_2\| \geqslant \sqrt{1+66} \text{ of } \|y_1 - y_2\| \geqslant \sqrt{1+66}, \text{ set}, \\ \text{given } y_1, y_2, \dots, y_n \in Y, \text{ with } \|y_1\| = 1, \|y_i\| \geqslant \sqrt[p]{b}, i = 2, 3, \dots, N, \text{ there exists } c_i \in \mathbb{R}, \\ |c_i| = 1, i = 1, 2, \dots, N, \text{ such that } \|\sum_{i=1}^{N} c_i y_i\| \geqslant \sqrt[p]{1+(N-1)b\delta}. \\ \text{Let } \alpha = \omega^{\alpha_1} n_1 + \omega^{\alpha_2} n_2 + \dots + \omega^{\alpha_k} n_k \text{ be in the Cantor normal form (see [18, p. 153]),} \\ \text{so } Z^{\alpha} \sim Z^{\omega^{\alpha_1}} \text{ (see [1]), and, therefore, } Z^{\omega^{\alpha_1}} \oplus X \twoheadrightarrow Z^{\omega^{\alpha_1}} \twoheadrightarrow Y^{\omega^{\alpha_1}} = Y^{\alpha}. \end{aligned}$

hypothesis of the proposition, we cannot have $\omega^{\alpha_1} < \alpha$, i.e. $\alpha = \omega^{\alpha_1}$, and so α is a prime component ordinal (see [18, p. 153]).

We also know that $\alpha^{\omega} = \omega^{\alpha_1 \omega}$ and $Z^{\omega^{\alpha_1}} \sim Z_0^{\omega^{\alpha_1}}$ (see [1]). Then denying the thesis of the proposition, there will be T, a surjective bounded linear operator from $Z_0^{\omega^{\alpha_1}} \oplus X$ onto $Y^{\omega^{\alpha_1\omega}}$.

Let $r > r_0(T)$ and ε , $0 < \varepsilon < 1$; we choose s, s > 0 and $N, 1 \leq N < \omega$ such that $\varepsilon + s < 1$ and $||T||(r+\varepsilon) < \sqrt[p]{1+(N-1)\varepsilon\delta}$. Let $y_1 \in Y, ||y_1|| = 1$ and $h \in Y^{\omega^{\alpha_1\omega}}$ defined by $h(\gamma) = y_1, \forall \gamma$. There exists $g^1, g^1 \in Z_0^{\omega^{\alpha_1}} \oplus X$ such that $||g^1|| \leq r$ and $T(g^1) = h_1$. Writing $g^1 = g_1 + f_1$, with $g_1 \in Z_0^{\omega^{\alpha_1}}$ and $f_1 \in X$, we get $\gamma_1, \gamma_1 < \omega^{\alpha_1}$ such that $||g_1(\gamma)|| \leq (\varepsilon/N), \forall \gamma \in [\gamma_1 + 1, \omega^{\alpha_1}].$

Let us denote for every $\beta \in [0, \omega^{\alpha_1}[, \Delta^1_{\beta} = [\omega^{\alpha_1(N-1)}\beta + 1, \omega^{\alpha_1(N-1)}(\beta + 1)]$ and writing $W_1 = \{ f \in Y^{\omega^{\alpha_1 N}} : \forall \beta, \ \beta \in [0, \omega^{\alpha_1}[, f \text{ is constant in } \Delta_{\beta}^1] \}$. Let $P_1 : Y^{\omega^{\alpha_1 \omega}} \to W_1$ be the bounded linear operator defined by

$$P_{1}(f)(\gamma) = \begin{cases} 0, & \text{if } \gamma \in [\omega^{\alpha_{1}N} + 1, \omega^{\alpha_{1}\omega}], \\ f(\gamma), & \text{if } \gamma = \omega^{\alpha_{1}(N-1)}\beta, \text{ with } 1 \leqslant \beta \leqslant \omega^{\alpha_{1}}, \\ f(\omega^{\alpha_{1}(N-1)}(\beta+1)), & \text{if } \gamma = \omega^{\alpha_{1}(N-1)}\beta + \xi, \\ & \text{with } 0 \leqslant \beta < \omega^{\alpha_{1}} \text{ and } 1 \leqslant \xi < \omega^{\alpha_{1}(N-1)}, \end{cases}$$

 $\forall f \in Y^{\omega^{\alpha_1 \omega}}.$

Clearly, W_1 is a subspace of $Y^{\omega^{\alpha_1 \omega}}$ isometric to $Y^{\omega^{\alpha_1}}$, and P_1T is a surjective bounded linear operator from $Z_0^{\omega^{\alpha_1}} \oplus X$ to W_1 such that $r_0(P_1T) \leq r_0(T)$.

The previous lemma applied to γ_1 and $\sqrt[p]{\varepsilon+s}$ implies that there exists $g_2 \in Z_0^{\omega^{\alpha_1}}$, with $g_2(\xi) = 0, \forall \xi, \xi \leq \gamma_1, ||g_2|| \leq r$ and $||P_1T(g_2)|| \leq \sqrt[p]{\varepsilon+s}$; so there exists $\beta_1 \in [1, \omega^{\alpha_1}[$ such that (1.1) $||Tg_2(\omega^{\alpha_1(N-1)}\beta_1)|| \geq \sqrt[p]{\varepsilon+s}$, and we can suppose that β_1 is not a limit ordinal satisfying $||Tg_2(\omega^{\alpha_1(N-1)}\beta_1)|| \geq \sqrt[p]{\varepsilon}$.

Let $\beta_1 = \beta'_1 + 1$. Since $T(g_2) \in Y^{\omega^{\alpha_1\omega}}$ we can find $\lambda_1, \lambda_1 \in [0, \omega^{\alpha_1}[$, such that for every $\gamma, \gamma \in [\omega^{\alpha_1(N-1)}\beta'_1 + \omega^{\alpha_1(N-2)}\lambda_1 + 1, \omega^{\alpha_1(N-1)}\beta_1]$, we have $||Tg_2(\gamma)|| \ge \sqrt[p]{\varepsilon}$. Since $g_2 \in Z_0^{\omega^{\alpha_1}}$, there exists $\gamma_2 \in [\gamma_1 + 1, \omega^{\alpha_1}]$ such that $||g_2(\gamma)|| \le (\varepsilon/N), \forall \gamma, \gamma \in [\gamma_2 + 1, \omega^{\alpha_1}]$. Let us denote for every $\beta, \beta \in [\lambda_1, \omega^{\alpha_1}[, \Delta_\beta^2 = [\omega^{\alpha_1(N-1)}\beta'_1 + \omega^{\alpha_1(N-2)}\beta + 1, \omega^{\alpha_1(N-1)}\beta'_1 + \omega^{\alpha_1(N-2)}(\beta + 1)]$, and, writing $W_2 = \{f \in Y^{\omega^{\alpha_1\omega}} : \forall \beta, \beta \in [\lambda_1, \omega^{\alpha_1}[, f \text{ is constant in } \Delta_\beta^2, \alpha_1 \notin \gamma, \gamma \notin [\omega^{\alpha_1(N-1)}\beta'_1 + \omega^{\alpha_1(N-2)}\lambda_1 + 1, \omega^{\alpha_1(N-1)}\beta_1], f(\gamma) = 0\}$. Let $P_2 : Y^{\omega^{\alpha_1\omega}} \to W_2$ be the bounded linear operator defined by

$$P_{2}(f)(\gamma) = \begin{cases} 0, & \text{if } \gamma \notin [\omega^{\alpha_{1}(N-1)}\beta_{1}' + \omega^{\alpha_{1}(N-2)}\lambda_{1} + 1, \omega^{\alpha_{1}(N-1)}\beta_{1}], \\ f(\gamma), & \text{if } \gamma = \omega^{\alpha_{1}(N-1)}\beta_{1}' + \omega^{\alpha_{1}(N-2)}\beta, \text{ with } \lambda_{1} + 1 \leqslant \beta \leqslant \omega^{\alpha_{1}} \\ f(\omega^{\alpha_{1}(N-1)}\beta_{1}' + \omega^{\alpha_{1}(N-2)}(\beta + 1)), \\ & \text{if } \gamma = \omega^{\alpha_{1}(N-1)}\beta_{1}' + \omega^{\alpha_{1}(N-2)}\beta + \xi, \\ & \text{with } \lambda_{1} \leqslant \beta < \omega^{\alpha_{1}} \text{ and } 1 \leqslant \xi \leqslant \omega^{\alpha_{1}(N-2)}, \end{cases}$$

 $\forall f \in Y^{\omega^{\alpha_1}\omega} \text{ and } \forall \gamma, \gamma \in [1, \omega^{\alpha_1\omega}].$

Since ω^{α_1} is a prime component ordinal, it follows that $[\lambda_1, \omega^{\alpha_1}]$ is homeomorphic to $[1, \omega^{\alpha_1}]$ and, therefore, W_2 is a subspace of $Y^{\omega^{\alpha_1\omega}}$ isometric to $Y^{\omega^{\alpha_1}}$ and P_2T is a surjective bounded linear operator from $Z_0^{\omega^{\alpha_1}} \oplus X$ onto W_2 such that $r_0(P_2T) \leq r_0(T)$.

The previous lemma applied to γ_2 and $\sqrt[p]{\varepsilon + s}$ implies that there exists $g_3 \in Z_0^{\omega^{\alpha_1}}$ with $g_3(\xi) = 0, \forall \gamma, \gamma \leq \gamma_2, \|g_3\| \leq r$ and $\|P_2Tg_3\| \leq \sqrt[p]{\varepsilon + s}$; so there exists $\beta_2 \in [\lambda_1 + 1, \omega^{\alpha_1}]$ such that $\|T(g_3)(\omega^{\alpha_1(N-1)}\beta'_1 + \omega^{\alpha_1(N-2)}\beta_2\| \geq \sqrt[p]{\varepsilon + s}$ and we can suppose that β_2 is not a limit ordinal satisfying $\|T(g_3)(\omega^{\alpha_1(N-1)}\beta'_1 + \omega^{\beta_1(N-2)}\beta_2)\| \geq \sqrt[p]{\varepsilon}$. Let $\beta_2 = \beta'_2 + 1$. Since $T(g_3) \in Y^{\omega^{\alpha_1\omega}}$, we can find $\lambda_2, \lambda_2 \in [1, \omega^{\alpha_1}]$ such that $\forall \gamma, \gamma \in [\omega^{\alpha_1(N-1)}\beta'_1 + \omega^{\alpha_1(N-2)}\beta'_2 + \omega^{\alpha_1(N-1)}\beta'_1 + \omega^{\alpha_1(N-2)}\beta'_2 + 1]$. We have $\|T(g_3)\| \geq \sqrt[p]{\varepsilon}$.

Repeating this procedure N times, we can find $g^1 = g_1 + f_1$, $g_1 \in Z_0^{\omega^{\alpha_1}}$, $f_1 \in X$, $g_2, g_3, \ldots, g_N \in Z_0^{\omega^{\alpha_1}}$, ordinals $\gamma_1 < \gamma_2 < \cdots < \gamma_{N-1} < \omega^{\alpha_1}$, non-empty intervals $\Delta_1 = [1, \omega^{\alpha_1 N}]$, $\Delta_2 = [\omega^{\alpha_1(N-1)}\beta'_1 + \omega^{\alpha_1(N-1)}\lambda_1 + 1, \omega^{\alpha_1(N-1)}\beta'_1 + 1], \ldots, \Delta_n$, such that

- (1) $\Delta_1 \supset \Delta_2 \supset \cdots \supset \Delta_N;$
- (2) $||g^1|| \leq r$ and $||g_i|| \leq r, i = 1, 2, ..., N;$
- (3) $||g_i(\gamma)|| \leq (\varepsilon/N), \forall \gamma, \gamma \in [\gamma_{i+1}, \omega^{\alpha_1}], i = 1, 2, \dots, N-1;$
- (4) $g_i(\gamma) = 0, \forall \gamma, \gamma \in [1, \gamma_{i+1}], i = 2, 3, \dots, N;$
- (5) $Tg^{1}(\xi) = y_{1}, \forall \xi \in \Delta_{1}, ||Tg_{1}(\gamma)|| \ge \sqrt[p]{\varepsilon}, \forall i = 2, \dots, N, \text{ and } \forall \gamma, \gamma \in \Delta_{i};$

- (6) we take $\gamma \in \bigcap_{i=1}^{n} \Delta_i$, so, by the initial remark of this proof, there exists $c_i \in \mathbb{R}$, with $|c_i| = 1, i = 1, 2, ..., N$, such that $||c_1 T(g_1) + \cdots + c_N T(g_N)|| \ge \sqrt[n]{1 + (N-1)\delta\varepsilon}$;
- (7) $||c_1g_1 + \dots + c_Ng_N|| = \max\{||f_1||, ||c_1g_1 + \dots + c_Ng_N||\} \leq r + \varepsilon.$

From (6) and (7) we conclude that $\sqrt[p]{1+(N-1)\delta\varepsilon} \leq ||T||(r+\varepsilon)$, which is absurd because of the choices of ε and N.

Corollary 5.5. Let X and F be Banach spaces and α an infinite denumerable ordinal, F uniformly convex. If $F^{\alpha} \oplus X \twoheadrightarrow F^{\alpha^{\omega}}$, then there exists $n, m < \omega$, such that $F^{n} \oplus X^{m} \twoheadrightarrow F^{\alpha^{\omega}}$.

Proof. Let $\alpha_0 = \min\{\xi : \exists m, m < \omega, X^m \oplus F^{\xi} \twoheadrightarrow F^{\alpha}\}$. So $\alpha_0 \leq \alpha$, and if we suppose that $\alpha_0 \geq \omega$, then there exists $n_0 < \omega$ such that (a) $X^{n_0} \oplus F^{\alpha_0} \twoheadrightarrow F^{\alpha}$, and (b) $\forall \beta, \beta < \alpha_0, F^{\beta} \oplus X^{n_0+1} \not\twoheadrightarrow F^{\alpha_0}$, otherwise there exists $\beta, \beta < \alpha_0$, such that $X^{2n_0+1} \oplus F^{\beta} \twoheadrightarrow X^{n_0+1} \oplus F^{\beta} \oplus X^{n_0} \twoheadrightarrow F^{\alpha_0} \oplus X^{n_0} \twoheadrightarrow F^{\alpha}$, which is absurd because of the choice of α_0 . Therefore, from Proposition 5.4, it follows that $F^{\alpha_0} \oplus X^{n_0+1} \not\twoheadrightarrow F^{\alpha_0}^{\omega}$.

However, from (a) and our hypothesis it follows that $F^{\alpha_0} \oplus X^{n_0+1} = F^{\alpha_0} \oplus X \oplus X^{n_0} \twoheadrightarrow X \oplus F^{\alpha} \twoheadrightarrow F^{\alpha_0^{\omega}} \twoheadrightarrow F^{\alpha_0^{\omega}}$, which is absurd. Consequently, $\alpha_0 < \omega$, and again from (a) we have $X^{n_0} \oplus F^{\alpha_0} \oplus X \twoheadrightarrow F^{\alpha} \oplus X \twoheadrightarrow F^{\alpha_0^{\omega}}$.

Proof of Theorem 5.1. If $\xi^{\omega} \leq \eta$, then writing $G = F^*$, we have

$$X \oplus G^{\xi} \twoheadrightarrow X^{\xi} \oplus G^{\xi} \sim (X \oplus G)^{\xi} \twoheadrightarrow (X \oplus G)^{\eta} \twoheadrightarrow G^{\eta} \twoheadrightarrow G^{\xi^{\omega}}.$$

From Corollary 5.5 it follows that there exists $n, m < \omega$, such that $G^n \oplus X^m \twoheadrightarrow G^{\xi^{\omega}} \twoheadrightarrow G^{\omega}$. Now, bearing in mind that every uniformly convex Banach space is reflexive, see Proposition 1.e.3 of [13], we have $F^{n+2} \hookrightarrow (G^{\omega})^* \hookrightarrow F^n \oplus (X^*)^m$, that is there exists $T: F^{n+2} \to F^n \oplus (X^*)^m$ an isomorphism onto the image; $T(F^{n+2})$ and $(X^*)^m$ being totally incomparable Banach spaces, it follows that $T(F^{n+2}) \cap (X^*)^m = V$, where $\dim V = p, p < \omega$ and, therefore, $T(F^{n+2}) = Z \oplus V$ for some Banach space Z. Noticing that $Z \subset (X^*)^m \oplus F^n, Z \cap (X^*)^m = \{0\}$ and Z and X* are totally incomparable, we have from Lemma 1.1 in [20] that $Z \hookrightarrow F^n$, and so $T(F^{n+2}) = Z \oplus V \hookrightarrow F^n \oplus \mathbb{R}^p \hookrightarrow F^{n+1}$, which is absurd.

Let p be a real number, p > 2. It follows from the main result of [6] that there exists finite-dimensional uniformly convex Banach spaces X_i , i = 1, 2, ..., such that if F is the p sum of these spaces, then $F^{n+1} \nleftrightarrow F^n$, $\forall n, 1 \leq n < \omega$.

It is well known that every infinite-dimensional subspace of F contains a subspace isomorphic to ℓ_p and that $\ell_p \nleftrightarrow C(I)^*$ (see [2, p. 207]). So F and $C(I)^*$ are totally incomparable and we have the following corollary.

Corollary 5.6. $(C(I) \oplus F^*)^{\xi} \sim (C(I) \oplus F^*)^{\eta}$, with $\omega \leq \xi \leq \eta < \omega_1$, if and only if $\eta < \xi^{\omega}$.

Theorem 5.7. Let $\xi, \omega \leq \xi < \omega_1$, and let X be a Banach space. If $X^{\xi} \twoheadrightarrow \mathbb{R}^{\xi^{\omega}}$, then $X \twoheadrightarrow \mathbb{R}^{\omega}$.

Proof. Let $\xi_0 = \min\{\eta \ge \omega : X^\eta \twoheadrightarrow \mathbb{R}^{\eta^\omega}\}$. If $\xi_0 > \omega$, then $X^\beta \not\twoheadrightarrow \mathbb{R}^{\xi_0}, \forall \beta, \omega \le \beta < \xi_0$, otherwise there exists $\beta, \omega \le \beta < \xi_0$, such that $X^\beta \twoheadrightarrow \mathbb{R}^{\xi_0}$.

If $\beta^{\omega} < \xi_0^{\omega}$, it follows from Theorem 1 of [1] that $X^{\beta} \twoheadrightarrow \mathbb{R}^{\xi_0} \twoheadrightarrow \mathbb{R}^{\beta^{\omega}}$, which is absurd because of the choice of ξ_0 .

If $\beta^{\omega} = \xi_0^{\omega}$, again from Theorem 1 of [1] we have $X^{\beta} \sim X^{\xi_0} \twoheadrightarrow \mathbb{R}^{\xi_0^{\omega}} = \mathbb{R}^{\beta^{\omega}}$, which, again, is absurd.

From Proposition 5.4 it follows that $X^{\xi_0} \not\twoheadrightarrow \mathbb{R}^{\xi_0^{\omega}}$, which is a contradiction.

Consequently, $\xi_0 = \omega$ and, therefore, $X^{\omega} \twoheadrightarrow \mathbb{R}^{\omega^{\omega}}$, and again from Proposition 5.4 it follows that there exists $n < \omega$ such that $X^{\omega} \twoheadrightarrow \mathbb{R}^{\omega}$, and from Theorem 2 of [17] we have $X \twoheadrightarrow \mathbb{R}^{\omega}$.

Corollary 5.8. $\ell_{\infty}(\mathbb{N})^{\xi} \sim \ell_{\infty}(\mathbb{N})^{\eta}$, with $\omega \leq \xi \leq \eta < \omega_1$, if and only if $\eta < \xi^{\omega}$.

Proof. If $\xi^{\omega} \leq \eta$, then $\ell_{\infty}(\mathbb{N})^{\xi} \twoheadrightarrow \ell_{\infty}(\mathbb{N})^{\eta} \twoheadrightarrow \mathbb{R}^{\eta} \twoheadrightarrow \mathbb{R}^{\xi^{\omega}}$, so, by the above theorem, $\ell_{\infty}(\mathbb{N}) \twoheadrightarrow \mathbb{R}^{\omega}$, which is absurd because \mathbb{R}^{ω} is not reflexive, see the theorem on p. 304 in [18].

Our results suggest the following.

Definition 5.9. We say that the Banach space X is ω_1 cancellable if $X^{\xi} \sim X^{\eta}$ with $\xi \leq \eta < \omega_1$ implies $\eta < \xi^w$.

Question 5.10. Give an isomorphic characterization of the separable ω_1 cancellable Banach spaces.

6. Remarks and questions about the Banach spaces \mathbb{R}^{ξ} , $\omega \leq \xi < \omega_1$

Corollary 6.1 follows from Corollary 5.5, so we put Question 6.2.

Corollary 6.1. Let α be an infinite denumerable ordinal and X a Banach space. If $\mathbb{R}^{\alpha} \oplus X \twoheadrightarrow \mathbb{R}^{\alpha^{\omega}}$, then there exists $m, m < \omega$, such that $X^m \twoheadrightarrow \mathbb{R}^{\alpha^{\omega}}$.

Question 6.2. If X is a Banach space such that there exists $m < \omega$ and $\alpha, \omega \leq \alpha < \omega_1$ with $X^m \twoheadrightarrow \mathbb{R}^{\alpha^{\omega}}$, then is it true that $X \twoheadrightarrow \mathbb{R}^{\alpha^{\omega}}$?

Definition 6.3. Let α be an infinite ordinal. We say that the Banach space X has the $SQ(\alpha)$ property, if, for every $\gamma, \omega \leq \gamma \leq \alpha$, such that $X \twoheadrightarrow \mathbb{R}^{\gamma}$, we have $X \twoheadrightarrow \mathbb{R}^{\gamma} \oplus X$.

Remark 6.4. It is clear that if the Banach space X satisfies $X \to X^2$, then X has the $SQ(\alpha)$ property $\forall \alpha, \alpha \ge \omega$, and, if $G = F^*$, where F is the space of Figiel, then G has the $SQ(\alpha)$ property $\forall \alpha, \alpha \ge \omega$, but $G \not\to G^2$.

Question 6.5. Give a Banach space that does not have the $SQ(\alpha)$ property for some $\alpha, \omega \leq \alpha < \omega_1$.

Theorem 6.6. Let ξ and η be infinite denumerable ordinals and let X be a Banach space having the $SQ(\xi)$ property. If $\mathbb{R}^{\xi} \oplus X \twoheadrightarrow \mathbb{R}^{\eta}$, then either $X \twoheadrightarrow \mathbb{R}^{\eta}$ or $\eta < \xi^{\omega}$.

Proof. We will prove by transfinite induction on η that: $\forall \xi, \omega \leq \xi < \omega_1$, and for every Banach space X having the $SQ(\xi)$ property, with $\mathbb{R}^{\xi} \oplus X \twoheadrightarrow \mathbb{R}^{\eta}$, then either $X \twoheadrightarrow \mathbb{R}^{\eta}$ or $\eta < \xi^{\omega}$.

If $\eta = \omega$, then, since $\xi \ge \omega$, we have $\eta < \xi^{\omega}$.

Now, we suppose that this result is true for every ordinal $\varphi, \omega \leqslant \varphi < \theta$, and we consider $\mathbb{R}^{\xi} \oplus X \twoheadrightarrow \mathbb{R}^{\theta}$, with X having the $SQ(\xi)$ property. If $\xi^{\omega} \leqslant \theta$, then $\mathbb{R}^{\xi} \oplus X \twoheadrightarrow \mathbb{R}^{\xi^{\omega}}$. Let $\gamma = \min\{\beta : \mathbb{R}^{\beta} \twoheadrightarrow \mathbb{R}^{\xi}\}$, so $\omega \leqslant \gamma \leqslant \xi, \gamma < \gamma^{\omega} \leqslant \xi^{\omega} \leqslant \theta$ and, since $\mathbb{R}^{\gamma} \twoheadrightarrow \mathbb{R}^{\xi}$, it follows that $\mathbb{R}^{\gamma} \oplus X \twoheadrightarrow \mathbb{R}^{\xi} \oplus X \twoheadrightarrow \mathbb{R}^{\xi^{\omega}} \twoheadrightarrow \mathbb{R}^{\gamma^{\omega}}$, and by Proposition 5.4 we have

$$X \oplus \mathbb{R}^{\gamma_1} \twoheadrightarrow \mathbb{R}^{\gamma} \quad \text{for some } \omega \leqslant \gamma_1 < \gamma.$$
(6.1)

By the choice of γ we conclude that $\mathbb{R}^{\gamma_1} \not\twoheadrightarrow \mathbb{R}^{\gamma}$, so from [1] it follows that $\gamma_1^{\omega} \leq \gamma$, and, since X has the $SQ(\gamma_1)$ property, using the hypothesis of induction at (6.1) we have that $X \twoheadrightarrow \mathbb{R}^{\gamma} \twoheadrightarrow \mathbb{R}^{\xi}$, and, since X has the $SQ(\xi)$ property, we conclude that $X \twoheadrightarrow \mathbb{R}^{\xi} \oplus X \twoheadrightarrow \mathbb{R}^{\theta}$.

Question 6.7. Let X and Y be separable Banach spaces and ξ , $\omega^{\omega} \leq \xi < \omega_1$. If $X \oplus Y \twoheadrightarrow \mathbb{R}^{\xi}$, then is it true that either $X \twoheadrightarrow \mathbb{R}^{\xi}$ or $Y \twoheadrightarrow \mathbb{R}^{\xi}$?

Since $\mathbb{R} \oplus \mathbb{R}^{\xi} \sim \mathbb{R}^{\xi}$, $\forall \xi, \xi \ge \omega$, \mathbb{R}^{ξ} is isomorphic to each of its closed hyperplanes. The following lemma gives a positive answer to the above question in the case in which either X or Y is a finite-dimensional space.

Lemma 6.8. Let X and H be Banach spaces such that H is isomorphic to each of its closed hyperplanes. If $\mathbb{R} \oplus X \twoheadrightarrow H$, then $X \twoheadrightarrow H$.

Proof. Let $T : \mathbb{R} \oplus X \to H$ be a surjective bounded linear operator. If T(1,0) = 0, then $T|_X : X \to H$ is surjective. If $T(1,0) = h_1 \neq 0$, then writing $H = [h_1] \oplus H_1$ for some closed hyperplane H_1 of H and indicating by P the canonical projection from Honto H_1 , we have PT(1,0) = 0, therefore $PT|_{H_1} : X \to H_1$ is onto H_1 , and, from the hypothesis $H \sim H_1$, we have $X \twoheadrightarrow H$.

Question 6.9. If X and Y are Banach spaces such that $\mathbb{R} \oplus X \twoheadrightarrow H$, and H is of infinite dimension, then is it true that $X \twoheadrightarrow H$?

Corollary 6.10. Let α be an infinite denumerable ordinal and let X be a Banach space. If $X^{\alpha} \twoheadrightarrow \mathbb{R}^{\alpha^{\omega}}$, then there exists $n, m < \omega$, such that $(\hat{\otimes}_m X)^n \twoheadrightarrow \mathbb{R}^{\alpha^{\omega}}$.

Proof. It suffices to take $\alpha_0 = \min\{\xi : \exists m, m < \omega, (\hat{\otimes}_m X)^{\xi} \twoheadrightarrow \mathbb{R}^{\alpha}\}$ and to proceed as in the Lemma 3.4 using Proposition 5.4.

Question 6.11. If X is a Banach space such that there exists $n, n < \omega$ and α , $\omega \leq \alpha < \omega_1$ with $\hat{\otimes}_n X \twoheadrightarrow \mathbb{R}^{\alpha^{\omega}}$, then is it true that $X \twoheadrightarrow \mathbb{R}^{\alpha^2}$?

Definition 6.12. Let α be an infinite ordinal. We say that the Banach space X has the $TQ(\alpha)$ property if, for every $\gamma, \omega \leq \gamma \leq \alpha$, such that $X \twoheadrightarrow \mathbb{R}^{\gamma}$, we have $X \twoheadrightarrow X^{\gamma}$.

Remark 6.13. It is clear that if the Banach space X satisfies $X \twoheadrightarrow X \hat{\otimes} X$, then X has the $TQ(\alpha)$ property $\forall \alpha, \alpha \geq \omega$.

Theorem 6.14. Let ξ and η be infinite denumerable ordinals and let X be a Banach space having the $TQ(\xi)$ property. If $X^{\xi} \twoheadrightarrow \mathbb{R}^{\eta}$, then either $X \twoheadrightarrow \mathbb{R}^{\eta}$ or $\eta < \xi^{\omega}$.

Proof. Analogous to that for Theorem 6.8.

Question 6.15. Give a Banach space that does not have the $TQ(\alpha)$ property for some $\alpha, \omega \leq \alpha < \omega_1$.

References

- 1. C. BESSAGA AND A. PELCZYNSKI, Spaces of continuous functions, IV, *Studia Math.* XIX (1960), 53–61.
- 2. C. BESSAGA AND A. PELCZYNSKI, Some aspects of the present theory of Banach spaces, in *Appendix of theory of linear operators* (ed. S. Banach) (North-Holland Mathematical Library, 1987).
- 3. N. BOURBAKI, General topology, part 2 (Hermann, Paris, 1966).
- 4. J. DIESTEL AND J. J. R. UHL, *Vector measures* (American Mathematical Society, Providence, RI, 1977).
- 5. N. DUNFORD AND J. T. SCHWARTZ, *Linear operators, I, General theory* (Interscience, New York, 1958).
- 6. T. FIGIEL, Example of infinite dimensional reflexive Banach space non-isomorphic to its Cartesian square, *Studia Math.* XLII (1972), 295–306.
- 7. E. M. GALEGO, How to generate new Banach spaces non-isomorphic to their Cartesian squares, *Bull. Acad. Pol. Sci.* 47 (1999), 21–25.
- 8. W. HUREWICZ, Zur theorie der analytischen mengen, Fund. Math. 15 (1930), 4–17.
- 9. T. KAPPELER, Banach spaces with condition of Mazur's, Math. Z. 191 (1986), 623–631.
- S. V. KISLYAKOV, Classification of spaces of continuous functions of ordinals, Siberian Math. J. 16 (1975), 226–231.
- 11. D. LEUNG, On Banach spaces with Mazur's property, Glasgow Math. J. 33 (1991), 51–54.
- J. LINDENSTRAUSS AND A. PELCZYNSKI, Contributions to the theory of the classical Banach spaces, J. Funct. Analysis 8 (1971), 225–249.
- 13. J. LINDENSTRAUSS AND L. TZAFRIRI, Classical Banach spaces, II, Function spaces (Springer, New York, 1979).
- H. P. ROSENTHAL, Some recent discoveries in the isomorphic theory of Banach spaces, Bull. Am. Math. Soc. 5 (1978), 803–831.
- 15. H. P. ROSENTHAL, On applications of the boundedness principle to Banach space theory according to J. Bourgain (Exp. no. 5, Pub. Math. Univ. Pierre et Marie Curie, 29 Univ. Paris VI, 1979).
- C. SAMUEL, Contributions à l'étude des espaces de Banach, PhD thesis, l'Université d'Aix-Marseille II (1977).
- 17. C. SAMUEL, Sur la reproductibilité des espaces l_p , Math. Scand. 45 (1979), 103–117.
- Z. SEMADENI, Banach space of continuous functions (PWN–Polish Scientific Publishers, Warzawa, 1971).
- 19. A. WILANSKY, Mazur spaces, Internet J. Math. Sci. 4 (1981), 39–53.
- P. WOJTASZCZYK, On complemented subspaces and unconditional bases in l_p+l_q, Studia Math. XLV (1973), 197–206.