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Abstract Let X be a Banach space and ξ an ordinal number. We study some isomorphic classifications
of the Banach spaces Xξ of the continuous X-valued functions defined in the interval of ordinals [1, ξ]
and equipped with the supremum norm. More precisely, first we use the continuum hypothesis to give an
isomorphic classification of C(I)ξ, ξ > ω1. Then we present a characterization of the separable Banach
spaces X that are isomorphic to Xξ, ∀ξ, ω 6 ξ < ω1. Finally, we show that the isomorphic classifications
of (C(I) ⊕ F ∗)ξ and `∞(N)ξ, where F is the space of Figiel and ω 6 ξ < ω1 are similar to that of R

ξ

given by Bessaga and Pelczynski.
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1. Introduction

As in [1], X being a Banach space and ξ an ordinal number, Xξ will indicate the Banach
space of the continuous X-valued functions defined in the interval of ordinals [1, ξ] and
equipped with the supremum norm. C(I) being the Banach space of continuous functions
defined in the interval I = [0, 1] of the real line R with the supremum norm, it follows
from Milutin’s Theorem (see [18, p. 379]) that

C(I)ξ is isomorphic to C(I), ∀ξ, ω 6 ξ < ω1. (1.1)

Initially, using the continuum hypothesis we give an isomorphic classification of the
Banach spaces C(I)ξ, ξ > ω1 (Theorem 3.1). Afterwards, inspired by Bourgain [15] we
exhibit a characterization of the separable Banach spaces X such that Xξ, ∀ξ, ω 6 ξ < ω1

is isomorphic to X (Theorem 4.1). Next, by Pisier’s Theorem, we will generalize a result
from Samuel [16], and we show that the presence of F ∗, where F is the space of Figiel [6],
together with C(I) annihilates (1.1), since the isomorphic classification of (C(I) ⊕ F ∗)ξ,
ω 6 ξ < ω1 is similar to that of R

ξ given in [1] (Corollary 5.6). Finally, we will prove that
the same happens with the isomorphic classification of `∞(N)ξ, ω 6 ξ < ω1, where `∞(N)
is the Banach space of the bounded sequences with the supremum norm (Corollary 5.8).
These results motivated the definition of ω1 cancellable Banach space (Definition 5.9).

2. Preliminaries

To fix the notation, let us recall some definitions. If X and Y are Banach spaces, then Y

is isomorphic to a closed subspace of X, Y ↪→ X, if there is a one-to-one bounded linear
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operator from Y into X; Y is said to be isomorphic to X, X ∼ Y , provided there is a
one-to-one bounded linear operator from X onto Y , and Y is a quotient of X, X →→ Y ,
if there is a surjective bounded linear operator from X onto Y . The notation ˆ̂⊗nX will
indicate the injective tensor product of n isomorphic copies of X, n < ω.

Let Γ be a set. By C0(Γ, X) we denote the Banach space of X-valued functions defined
on Γ such that for any positive ε the set {γ ∈ Γ : ‖f(γ)‖ > ε} is finite, with the
supremum norm, and by `1(Γ, X) we denote the Banach space of all absolutely summable
X-functions defined on Γ .

If α is an ordinal number and X is a Banach space, we set Xα
0 = {f ∈ Xα : f(α) = 0}.

The cardinality of the ordinal number ξ will be denoted by ξ̄. The notation ω1 will denote
the first non-denumerable ordinal. If α is a non-denumerable regular ordinal and γ is any
ordinal, we will denote by ∧α

γ the subset of [1, γ] consisting of limit ordinals that are not
limits of sets of cardinality strictly smaller than ᾱ.

The density character densX of a Banach space X is the smallest cardinal number δ

such that there exists a set of cardinality δ dense in X.
Let γ be an ordinal. A γ-sequence in a set A is the image of a function f : [1, γ[→ A

and will be denoted by (xθ)θ<γ . If A is a topological space and β is an ordinal, we will
say that the γ-sequence is β-continuous if, for every β-sequence of ordinals (θξ)ξ<β on
[1, γ] that converges to θβ when ξ converges to β, we have that xθξ

converges to xθβ
.

Let X be a Banach space. By Xs we will denote the set of F ∈ X∗∗ having the following
property: for every ω-sequence (x∗

n)n<ω in X∗ such that x∗
n(x) n→ω−−−→ 0, for all x ∈ X,

we have F (x∗
n) n→ω−−−→ 0. X is said to have Mazur’s property (also, d-complete [9] or

µB-spaces [19]) if Xs = cX, where cX is the canonical image of X in X∗∗. The class of
Banach spaces with Mazur’s property includes the weakly compactly generated (WCG)
Banach spaces and, therefore, the separable Banach spaces. See [11] for more examples
of Banach spaces having this property.

Let α be a non-denumerable regular ordinal, ϕ any ordinal, and X a Banach space.
By Xϕ

α we will denote the set of F ∈ X∗∗ having the following property: for every limit
ordinal β < α and for every ϕ-sequence xη = (x∗

ξ(η))ξ<β of β-sequences of X∗ such that
there exists K ∈ R with ‖x∗

ξ(η)‖ 6 K, ∀η < ϕ, ∀ξ < β and such that x∗
ξ(η)(x)

ξ→β−−−→ 0,
∀x ∈ X, uniformly in η, we have F (x∗

ξ(η))
ξ→β−−−→ 0 uniformly in η.

We say that the Banach spaces X and Y are totally incomparable if X and Y have no
isomorphic closed subspaces of infinite dimension.

If T : X → Y is a surjective bounded linear operator and BX and BY are the closed
unit balls of X and Y respectively, we define r0(T ) = inf{r > 0 : BY ⊂ rT (BX)}.

Other notations are standard in conformity with [18].

3. Isomorphic classification of the Banach spaces C(I)ξ, ξ > ω1

Our main aim here is to prove the following theorem, which provides the isomorphic
classification of the Banach spaces C(I)ξ, ξ > ω1, and for that we will suppose the
continuum hypothesis, that is 2ℵ0 = ℵ1.

https://doi.org/10.1017/S0013091598000716 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091598000716


Banach spaces of continuous vector-valued functions of ordinals 51

Theorem 3.1. Let α be an initial non-denumerable ordinal and X a separable Banach
space with Xω ∼ X and dens X∗ = 2ℵ0 .

(1) If α is singular, then Xξ ∼ Xη with ξ 6 η and ξ̄ = η̄ = ᾱ if and only if η < ξω.

(2) If α is regular, then

(a) Xα ∼ Xαη, with 1 6 η 6 ω1 if and only if η < ω1;

(b) Xαξ ∼ Xαη, with ω1 6 ξ 6 η 6 α if and only if ξ̄ = η̄;

(c) Xξ ∼ Xη, with α2 6 ξ 6 η and ξ̄ = η̄ = ᾱ if and only if η < ξw.

We will need some auxiliary results.

Lemma 3.2. Let X be a Banach space having Mazur’s property and γ be any ordinal,
then

(Xγ)ω
ω1

cXγ
∼ C0(∧ω1

γ , X).

Proof. This is similar to the proof of Corollary 2.8 in [7], only noticing that the
Statement (b) of the proof of Proposition 2b is also true in this case, since, if F ∈
(Xγ)ω

ω1
and H is the canonical isomorphism from `1([1, γ], X∗) onto (Xγ)∗, then H∗(F ) =

(Fθ)θ<γ+1 is β-continuous, ∀β, β < ω1. Indeed, let β < ω1 and (θξ)ξ<β be a β-sequence
of ordinals in [1, γ] converging to θβ when ξ converges to β.

Now suppose that (Fθξ
)ξ<β does not converge to Fθξ

when ξ converges to β. So there
is ε > 0 and a strictly increasing ω-sequence of ordinals (ξn)n<ω converging to β and a ω-
sequence (x∗

n)n<ω of elements of the unit ball of X∗ such that ‖Fθξn
(x∗

n)−Fθβ
(x∗

n)‖ > ε.
Let Pn

ξm
be in `1([1, γ], X∗) defined by Pn

ξm
(θ) = x∗

n if θ = θξm and Pn
ξm

(θ) = 0 if
θ = θξm , ∀n, m < ω, so HPn

ξm
(f) = x∗

nf(θξm) and, therefore, |H(Pn
θξm

− Pn
θβ

)(f)| 6
‖x∗

n‖ ‖f(θξm
) − f(θβ)‖ m→ω−−−→ 0, ∀f , uniformly in n and ‖H(Pn

θξm
− Pn

θβ
)‖ 6 2‖H‖, ∀n,

m < ω. Thus, FH(Pn
θξm

− Pn
θβ

) = Fθξm
(x∗

n) − Fθβ
(x∗

n) m→ω−−−→ 0 uniformly in n, which is
absurd. �

Now, we remark that the argument presented in the proof of Lemma 2 in [1] also
proves the following result.

Lemma 3.3. Let ξ be a limit ordinal and X a Banach space. If, for every β < ξ,
R

ξ 6↪→ Xβ holds, then R
ξω 6↪→ Xξ.

Lemma 3.4. Let ξ be a non-denumerable ordinal and X a separable Banach space,
then R

ξω 6↪→ Xξ.

Proof. Let us suppose that (a) R
ξω

↪→ Xξ, thus R
ξ ↪→ R

ξω

↪→ Xξ, so we can
consider ξ0 = min{θ : ∃ m, m < ω, R

ξ ↪→ ( ˆ̂⊗mX)θ}. Let m0, m0 < ω, be such that (b)
R

ξ ↪→ ( ˆ̂⊗m0X)ξ0 . It suffices to show that ξ0 is finite to come to a contradiction, because,
in this case, ( ˆ̂⊗m0X)ξ0 is separable and R

ξ is not.
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We suppose that ξ0 is infinite and we note that (c) R
ξ0 6↪→ ( ˆ̂⊗m0+1X)β , ∀β, β < ξ0.

Indeed, otherwise there exists β1, β1 < ξ0 such that by using item (b), Theorem 20.5.6
in [18] and Proposition 7 in [4, p. 225], we have

R
ξ ↪→ ( ˆ̂⊗m0X)ξ0 = R

ξ0 ˆ̂⊗( ˆ̂⊗m0X) ↪→ ( ˆ̂⊗m0+1X)β1 ˆ̂⊗( ˆ̂⊗m0X)

= R
β1 ˆ̂⊗( ˆ̂⊗m0+1X) ˆ̂⊗m0X = ( ˆ̂⊗2m0+1X)β1 ,

which is absurd because of the choice of ξ0. We state that ξ0 is a limit ordinal. Indeed,
if ξ0 = ξ1 + n, for some n, 0 6 n < ω and ξ1 infinite, then n + ξ1 = ξ1 and, from
Property II in [1, p. 54], it follows that ( ˆ̂⊗m0X)ξ0 ∼ ( ˆ̂⊗m0X)ξ1 , so, by the minimality of
ξ0, we conclude that n = 0.

We can use Lemma 3.3 and item (c) to conclude that (d) R
ξw
0 6↪→ ( ˆ̂⊗m0+1X)ξ0 . Since

ξ0 6 ξ, and bearing (a) and (b) in mind, we have

R
ξω
0 ↪→ R

ξω

↪→ Xξ = R
ξ ˆ̂⊗X ↪→ ( ˆ̂⊗m0X)ξ0 ˆ̂⊗X = R

ξ0 ˆ̂⊗( ˆ̂⊗m0X) ⊗ X = (⊗m0+1X)ξ0 ,

which is absurd because of (d).
So ξ0 must be finite. �

Proof of Theorem 3.1.
(1) Let α be singular. If Xξ ∼ Xη with ξ 6 η and we also suppose ξω 6 η, then

R
ξω

↪→ R
η ↪→ Xη ∼ Xξ,

which is absurd by Lemma 3.4.
Conversely, if ξ 6 η, ξ̄ = η̄ = ᾱ and η < ξω, then from Theorem 1 in [10] follows that

R
ξ ∼ R

η, so R
ξ ˆ̂⊗X ∼ R

η ˆ̂⊗X, that is, Xξ ∼ Xη.

(2) Let α be regular.
(a) If Xα ∼ Xαη with 1 6 η 6 ω1, then we consider two cases. If α = ω1, then, from

Remark 2.3 in [7], we have
(Xω1)ω

ω1

cXω1
∼ (Xω1η)ω

ω1

cXω1η
.

Then, by Lemma 3.2, C0(∧ω1
ω1

, X) ∼ C0(∧ω1
ω1η, X), that is X ∼ C0(Γ, X), where Γ =

[1, η] (see [10]). Since X is separable, we conclude that η < ω1.
If α > ω1, then again from Remark 2.3 in [7] it follows that

(Xα)ω1
α

cXα
∼ (Xαη)ω1

α

cXαη
.

Since we have the hypothesis that dimX∗ = 2ℵ0 = ℵ1 < ᾱ, we can apply Corollary 2.8
of [7] to obtain C0(∧α

α, X) ∼ C0(∧α
αη, X), that is X ∼ C0(Γ, X), where Γ = [1, η]; the

separability of X implies η < ω1.
Conversely, let η be 1 6 η < ω1. It suffices to prove that

Xα ∼ Xαθ ∀θ, ω 6 θ < ω1. (3.1)
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Indeed, if 1 6 n < ω, from Xα ∼ Xαω, Property III in [1, p. 54] and Theorem 2
in [10], it follows that

Xαn ∼ (Xα)n ∼ (Xαω)n ∼ X(αω)n ∼ Xα(ωn) ∼ R
α(ωn) ˆ̂⊗X ∼ R

αω ˆ̂⊗X ∼ Xα.

To see (3.1), firstly we note that

R
αω ∼ R

αω
0 ∼ (Rα

0 )ω
0 ∼ (Rα)ω ∼ R

α ˆ̂⊗R
ω.

The first and the third isomorphisms are Remark 2.1 in [1, p. 55], the second iso-
morphism follows from Corollary 3.1 in [10], and the fourth isomorphism follows from
Corollary 7.7.6 and Theorem 20.5.6 in [18].

Finally, let θ be ω 6 θ < ω1, thus

Xαθ ∼ R
αθ ˆ̂⊗X ∼ R

αω ˆ̂⊗X ∼ (Rα ˆ̂⊗R
ω) ˆ̂⊗X

∼ R
α ˆ̂⊗(Rω ˆ̂⊗X) ∼ R

α ˆ̂⊗Xω ∼ R
α ˆ̂⊗X ∼ Xα.

The second isomorphism follows from Theorem 2 in [10].
(b) If Xαξ ∼ Xαη with ω1 6 ξ 6 η 6 α, we can suppose α > ω1, because, if α = ω1,

then ξ = η = ω1 and we have nothing to prove. So as in the proof of the second case
in (a) we obtain that C0(∧α

αξ, X) ∼ C0(∧α
αη, X), that is C0(Γ1, X) ∼ C0(Γ2, X), where

Γ1 = [1, ξ] and Γ2 = [1, η], thus, the separability of X implies ξ̄ = η̄.
Conversely, if ω1 6 ξ 6 η 6 α with ξ̄ = η̄, then Theorem 2 in [10] implies that

R
αξ ∼ R

αη, so X ˆ̂⊗R
αξ ∼ X ˆ̂⊗R

αη.
(c) If Xξ ∼ Xη with ξ 6 η, then, as it was proved in the case in which α is singular,

we have η < ξω. Conversely, if α2 6 ξ 6 η, ξ̄ = η̄ = ᾱ, then Theorem 2 in [10] implies
that R

ξ ∼ R
η, so X ˆ̂⊗R

ξ ∼ X ˆ̂⊗R
η. �

Question 3.5. Give an isomorphic classification of the Banach spaces C(I)ξ, ξ > ω1,
without using the continuum hypothesis.

Remark 3.6. For each γ, 1 6 γ < ωξ+1, where ωξ+1 is the first ordinal of cardinality
ℵξ+1, we define Kγ = [1, ωωγ

ξ ] × I, ωξ being the first ordinal of cardinality ℵξ. It follows
from Lemma 3.4 that C(Kη1) 6↪→ C(Kξ1), for every 1 6 ξ1 < η1 < ωξ+1.

Indeed, let θξ1 = ωωξ1

ξ and θγ1 = ωωγ1

ξ , thus θω
ξ1

= ωωξ1+1

ξ 6 θγ1 . If C(Kη1) ↪→ C(Kξ1),
then

R
θω

ξ1 ↪→ R
θγ1 ↪→ C(Kη1) ↪→ C(Kξ1) = C(I)θξ1 ,

which is a contradiction.
So, for each ℵξ > 2ℵ0 , there exists at least ℵξ+1 perfect compacts K of the cardinality

ℵξ, such that C(K) are isomorphically different.

Question 3.7. Under the continuum hypothesis, are there more than ℵ2 perfect com-
pacts K of cardinality 2ℵ0 , such that C(K) are isomorphically different?
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4. Characterization of the separable Banach spaces satisfying Xξ ∼ X, ∀ξ,
ω 6 ξ < ω1

If X is a Banach space and K a compact, C(K, X) will indicate the Banach space of the
continuous X-valued functions defined on K and equipped with the supremum norm.

It follows from the Milutin’s Theorem that if X is isomorphic to C(I), then X sat-
isfies the following equation: Xξ ∼ X, ∀ξ, ω 6 ξ < ω1. In this section we will prove
Theorem 4.1, which gives an isomorphic characterization of the separable Banach spaces
satisfying such an equation.

Theorem 4.1. Let X be a separable Banach space. X satisfies the equation Xξ ∼ X,
∀ξ, ω 6 ξ < ω1, if and only if C(I, X) ∼ X.

Proof. If X is a Banach space satisfying

C(I, X) ∼ X and ξ, ω 6 ξ < ω1, (4.1)

then, from Lemma 21.5.1 of [18], we have R
ξ ˆ̂⊗C(I, X) ∼ R

ξ ˆ̂⊗X. Now, from Theo-
rem 20.5.6 of [18], we obtain R

ξ ˆ̂⊗C(I) ˆ̂⊗X ∼ Xξ. So, from Milutin’s Theorem, C(I, X) ∼
Xξ. But, bearing in mind (4.1), we conclude that X ∼ Xξ. �

The converse follows immediately from the following proposition.

Proposition 4.2. Let X and B be separable Banach spaces with Xξ ∼ B, ∀ξ, ω 6
ξ < ω1, then C(I, X) ∼ B.

Proof. (Inspired by [15].) Let 2I be the space of all compact subsets of I endowed
with the Hausdorff metric

d(A, B) = max{max
a∈A

dist(a, B),max
b∈B

dist(b, A)}.

Let Y = {K ∈ 2I : C(K, X) ∼ B}. For each n < ω, Yn = {K ∈ 2I : ∃ T̄ : C(I, X) → B

a bounded linear operator, ‖T̄‖ 6 1 and L̄ : B → C(I, X) a bounded linear operator
satisfying (1/n)‖f|K ‖ 6 ‖T̄ (f)‖ 6 ‖f|K ‖, ∀f ∈ C(I, X) and T̄ L̄(b) = b, ∀b ∈ B, ‖L̄‖ 6
n}.

Firstly, we remark that Y =
⋃

n<ω Yn. Indeed, supposing that K ∈ Y , there exists
T : C(K, X) → B, an isomorphism onto the image (we can suppose ‖T‖ 6 1), and
L : B → C(K, X), a bounded linear operator (L is the inverse of T ), satisfying TL(b) = b,
∀b ∈ B.

Let n < ω be such that ‖L‖ 6 n. We define T̄ : C(I, X) → B by T̄ (g) = T (g|K ) and
L : B → C(I, K), by L̄(b) = EL(b), where E is a linear extension operator (see [18,
p. 365]), so ‖g|K ‖ = ‖LT (g|K )‖ 6 n‖T (g|K )‖,

(I) (1/n)‖g|K ‖ 6 ‖T̄ (g)‖ = ‖T (g|K )‖ 6 ‖g|K ‖, ∀g ∈ C(I, X), and

(II) T̄ L̄(b) = T̄EL(b) = T (EL(b)|K ) = TL(b) = b, ∀b ∈ b, that is K ∈ Yn.
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Conversely, supposing K ∈ Yn for some n < ω, we define T : C(K, X) → B by
T = T̄E, where E is a linear extension operator and L : B → C(K, X) by L = RL̄,
where R is an operator defined by R(f) = f|K , ∀f ∈ C(I, X). Let f ∈ C(K, X) and let
b ∈ B, then

(III) (1/n)‖f‖ = (1/n)‖E(f)|K ‖ 6 ‖T (f)‖ = ‖T̄E(f)‖ 6 ‖E(f)|K ‖ = ‖f‖, that is T is
an isomorphism onto the image.

(IV) TL(b) = T̄ERL̄(b) and, since L̄(b)|K = (ERL̄(b))|K and ‖T̄ (f)‖ 6 ‖f|K ‖, ∀f ∈
C(I, K), it follows that T̄ (ERL̄(b)) = T̄ (L̄(b)) = b and, therefore, TL(b) = b,
∀b ∈ B, so the image of T is B, consequently B ∈ Y .

Next we will remark that each Yn is analytic. Let A be the unit ball of L(C(I, X), B)
in the pointwise convergence topology, and let J be the ball of radius n of L(B, C(I, X))
also in the pointwise convergence topology.

We consider the Polish space Z = 2I × A × J (see [3, p. 195]). Let Q = {(K, T, L) ∈
Z : (1/n)‖f|K ‖ 6 ‖T (f)‖ 6 ‖f|K ‖, ∀f ∈ C(I, X) and TL(b) = b, ∀b ∈ B}. Q is a closed
subset of Z, because, if (Kγ , Tγ , Lγ) is a net of Q converging to (K, T, L) in Z, it follows
that (1/n)‖f|K ‖ 6 ‖T (f)‖ 6 ‖f|K ‖, ∀f ∈ C(I, X), from the pointwise convergence of Tγ .

Next we show that TL(b) = b, ∀b ∈ B.
Let b ∈ B, from Tγ → T , it follows that

(1) TγL(b) → TL(b),

and, from Lγ → L, it follows that Lγ(b) → L(b) and, therefore,

(2) TLγ(b) → TL(b).

Now, using

‖TγLγ(b) − TLγ(b)‖ 6 ‖Tγ‖ ‖Lγ(b) − L(b)‖ + ‖T‖ ‖Lγ(b) − L(b)‖ + ‖TγL(b) − TL(b)‖

with (1) and (2), we conclude that b = TγLγ(b) → TL(b), that is TL(b) = b. So
(K, T, L) ∈ Q and, therefore, Q is closed, consequently (see [3, p. 195]) Q is a Pol-
ish space. Since Yn is a projection of Q onto the 2I axis, Yn is analytic and, therefore, so
is Y (see [3, p. 195]).

Let D = {K ∈ 2I : K is countable}, by the hypothesis of the proposition, it follows
that D ⊂ Y (see [18, p. 155]), and, since D is non-analytic (see [8]), there must be a
non-denumerable compact subset K of I, such that C(K, X) ∼ B, and, from Milutin’s
Theorem and Corollary 21.5.2 of [18], it follows that C(I, X) ∼ B. �

Remark 4.3. Let Y be a Banach space. It follows from Milutin’s Theorem and from
properties of injective tensor products that X = C(I, Y ) satisfies

C(I, X) ∼ X. (4.2)
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It will be shown (Corollary 5.6) that there exists a separable Banach space W, C(I) 6↪→
W , such that X = C(I) ⊕ W does not satisfy (4.2). (To see this, bear in mind that if X

satisfies (4.2), then Xξ ∼ Xη, ∀ξ, η, ω 6 ξ 6 η < ω1.)
Now, since C(I)⊕C(I, Y ) ∼ C(I, Y ), we have that X = C(I)⊕Y satisfies (4.2) if and

only if

C(I, Y ) ∼ C(I) ⊕ Y. (4.3)

If Y is isomorphic to a complemented subspace of C(I) and C(I) 6↪→ Y , then Y

satisfies (4.3). Indeed, from Corollary 1 of [12], we have C(I)⊕Y ∼ C(I) and, therefore,
C(I, C(I) ⊕ Y ) ∼ C(I, C(I)), that is C(I, Y ) ∼ C(I).

Question 4.4. Let Y be a separable Banach space, C(I) 6↪→ Y , such that C(I, Y ) ∼
C(I) ⊕ Y . Is it true that Y is isomorphic to a complemented subspace of C(I)?

Question 4.5. Give a Banach space X such that Xω1 ∼ X.

5. ω1 cancellable Banach spaces

Next we present two Banach spaces X containing subspaces isomorphic to C(I) such
that the isomorphic classifications of Xξ, ω 6 ξ < ω1 are similar to that of R

ξ given by
Bessaga and Pelczynski in [1]. The first space is C(I)⊕F ∗, where F is the Banach space
considered by Figiel in [6] (Corollary 5.6), and the second is `∞(N) (Corollary 5.8).

These results will be consequences of Theorem 5.1, and, in order to prove it, we will
need some auxiliary results.

Theorem 5.1. Let X∗ and F be totally incomparable Banach spaces satisfying X →→
Xξ, ∀ξ, ω 6 ξ < ω1, F ∗ uniformly convex, Fn+1 6↪→ Fn, ∀n, n < ω. If (X ⊕ F ∗)ξ →→
(X ⊕ F ∗)η, with ω 6 ξ 6 η < ω1, then η < ξω.

Lemma 5.2. Let X, Y and Z Banach spaces, T : X ⊕ Y → Z is a bounded linear
operator such that i∗1T

∗ : Z∗ → X∗ is an isomorphism onto the image, where i1 is the
canonical inclusion from X in X ⊕ Y . Then T1 : X → Z defined by T1(x) = T (x, 0),
∀x ∈ X is onto Z.

Proof. From T ∗
1 (z∗)(x) = z∗(T1(x)) = z∗(T (i1(x))) = i∗1(T

∗(z∗(x))), ∀z∗ ∈ Z, and
∀x ∈ X, it follows that T ∗

1 is one-to-one and has a closed image. Then from Lemma 3
of [5, p. 488], we have that T1 is onto Z. �

Lemma 5.3. Let γ be a denumerable ordinal, X and Y Banach spaces and T : Xγ
0 ⊕

Y → Z a surjective bounded linear operator. Let β < γ be such that T |Xβ
0 ⊕Y : Xβ

0 ⊕Y →
Z is not surjective and r > r0(T ), then, for every ε, 0 < ε < 1, there exists g ∈ Xγ

0 with
g(ξ) = 0, ∀ξ, ξ 6 β, ‖g‖ 6 r and ‖T (g)‖ > ε.

Proof. Let ε be such that 0 < ε < 1; choosing δ = 1 − ε and writing Xγ
0 ⊕ Y =

Xβ
0 ⊕ W ⊕ Y , where W = {f ∈ Xγ

0 : f(ξ) = 0, ∀ξ, ξ 6 β} and indicating by i1 the
canonical inclusion from Xβ

0 ⊕ Y to Xγ
0 ⊕ Y , it follows from the previous lemma that
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there exists z∗ ∈ Z∗, ‖z∗‖ = 1 such that ‖i∗1T
∗z∗‖ 6 (δ/2r), so, for every f +y in Xβ

0 ⊕Y

with ‖f + y‖ 6 r, we have ‖z∗T (f + y)‖ 6 1
2δ.

Let z ∈ Z, ‖z‖ = 1 such that ‖z∗(z)‖ > 1 − 1
2δ, since T is surjective, then there exists

g1 + y1 in Xγ
0 ⊕ Y , ‖g1 + y1‖ 6 r such that T (g1 + y1) = z. Let g1 = g1

|[β+1,γ]
, thus:

1 − 1
2δ 6 ‖z∗T (g1 + y1)‖ 6 ‖z∗T (g1 − g1 + y1)‖ + ‖z∗T (g1)‖ 6 1

2δ + ‖T (g1)‖,

so ‖T (g1)‖ > ε. �

Proposition 5.4. Let X, Y and Z be Banach spaces, Y uniformly convex, Z →→ Y

and α an infinite denumerable ordinal such that ∀β, β < α, Zβ ⊕ X 6→→ Y α. Then
Zα ⊕ X 6→→ Y αω

.

Proof. (Inspired by [16].) Y being uniformly convex, it follows from Pisier’s The-
orem (see [14, p. 803]) that Y admits an equivalent norm (that will be denoted by ‖ · ‖)
and there exists δ > 0 and p ∈ R, 2 < p < +∞ such that if b ∈ R+ and y1, y2 ∈ Y with
‖y1‖ > 1 and ‖y2‖ > p

√
b, then either ‖y1 + y2‖ > p

√
1 + δb or ‖y1 − y2‖ > p

√
1 + δb. So,

given y1, y2, . . . , yn ∈ Y , with ‖y1‖ = 1, ‖yi‖ > p
√

b, i = 2, 3, . . . , N , there exists ci ∈ R,
|ci| = 1, i = 1, 2, . . . , N , such that ‖∑N

i=1ciyi‖ > p
√

1 + (N − 1)bδ.
Let α = ωα1n1 +ωα2n2 + · · ·+ωαknk be in the Cantor normal form (see [18, p. 153]),

so Zα ∼ Zωα1 (see [1]), and, therefore, Zωα1 ⊕ X →→ Zωα1 →→ Y ωα1 = Y α. By the
hypothesis of the proposition, we cannot have ωα1 < α, i.e. α = ωα1 , and so α is a prime
component ordinal (see [18, p. 153]).

We also know that αω = ωα1ω and Zωα1 ∼ Zωα1

0 (see [1]). Then denying the thesis
of the proposition, there will be T , a surjective bounded linear operator from Zωα1

0 ⊕ X

onto Y ωα1ω

.
Let r > r0(T ) and ε, 0 < ε < 1; we choose s, s > 0 and N , 1 6 N < ω such that

ε+s < 1 and ‖T‖(r+ε) < p
√

1 + (N − 1)εδ. Let y1 ∈ Y , ‖y1‖ = 1 and h ∈ Y ωα1ω

defined
by h(γ) = y1, ∀γ. There exists g1, g1 ∈ Zωα1

0 ⊕ X such that ‖g1‖ 6 r and T (g1) = h1.
Writing g1 = g1 + f1, with g1 ∈ Zωα1

0 and f1 ∈ X, we get γ1, γ1 < ωα1 such that
‖g1(γ)‖ 6 (ε/N), ∀γ ∈ [γ1 + 1, ωα1 ].

Let us denote for every β ∈ [0, ωα1 [, ∆1
β = [ωα1(N−1)β + 1, ωα1(N−1)(β + 1)] and writ-

ing W1 = {f ∈ Y ωα1N

: ∀β, β ∈ [0, ωα1 [, f is constant in ∆1
β}. Let P1 : Y ωα1ω → W1 be

the bounded linear operator defined by

P1(f)(γ) =




0, if γ ∈ [ωα1N + 1, ωα1ω],

f(γ), if γ = ωα1(N−1)β, with 1 6 β 6 ωα1 ,

f(ωα1(N−1)(β + 1)), if γ = ωα1(N−1)β + ξ,

with 0 6 β < ωα1 and 1 6 ξ < ωα1(N−1),

∀f ∈ Y ωα1ω

.
Clearly, W1 is a subspace of Y ωα1ω

isometric to Y ωα1 , and P1T is a surjective bounded
linear operator from Zωα1

0 ⊕ X to W1 such that r0(P1T ) 6 r0(T ).
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The previous lemma applied to γ1 and p
√

ε + s implies that there exists g2 ∈ Zωα1

0 , with
g2(ξ) = 0, ∀ξ, ξ 6 γ1, ‖g2‖ 6 r and ‖P1T (g2)‖ 6 p

√
ε + s; so there exists β1 ∈ [1, ωα1 [

such that (1.1) ‖Tg2(ωα1(N−1)β1)‖ > p
√

ε + s, and we can suppose that β1 is not a limit
ordinal satisfying ‖Tg2(ωα1(N−1)β1)‖ > p

√
ε.

Let β1 = β′
1 + 1. Since T (g2) ∈ Y ωα1ω

we can find λ1, λ1 ∈ [0, ωα1 [, such that for
every γ, γ ∈ [ωα1(N−1)β′

1 + ωα1(N−2)λ1 + 1, ωα1(N−1)β1], we have ‖Tg2(γ)‖ > p
√

ε. Since
g2 ∈ Zωα1

0 , there exists γ2 ∈ [γ1+1, ωα1 ] such that ‖g2(γ)‖ 6 (ε/N), ∀γ, γ ∈ [γ2+1, ωα1 ].
Let us denote for every β, β ∈ [λ1, ω

α1 [, ∆2
β = [ωα1(N−1)β′

1+ωα1(N−2)β+1, ωα1(N−1)β′
1+

ωα1(N−2)(β +1)], and, writing W2 = {f ∈ Y ωα1ω

: ∀β, β ∈ [λ1, ω
α1 [, f is constant in ∆2

β ,
and ∀γ, γ /∈ [ωα1(N−1)β′

1+ωα1(N−2)λ1+1, ωα1(N−1)β1], f(γ) = 0}. Let P2 : Y ωα1ω → W2

be the bounded linear operator defined by

P2(f)(γ) =




0, if γ /∈ [ωα1(N−1)β′
1 + ωα1(N−2)λ1 + 1, ωα1(N−1)β1],

f(γ), if γ = ωα1(N−1)β′
1 + ωα1(N−2)β, with λ1 + 1 6 β 6 ωα1 ,

f(ωα1(N−1)β′
1 + ωα1(N−2)(β + 1)),

if γ = ωα1(N−1)β′
1 + ωα1(N−2)β + ξ,

with λ1 6 β < ωα1 and 1 6 ξ 6 ωα1(N−2),

∀f ∈ Y ωα1ω and ∀γ, γ ∈ [1, ωα1ω].
Since ωα1 is a prime component ordinal, it follows that [λ1, ω

α1 ] is homeomorphic
to [1, ωα1 ] and, therefore, W2 is a subspace of Y ωα1ω

isometric to Y ωα1 and P2T is a
surjective bounded linear operator from Zωα1

0 ⊕ X onto W2 such that r0(P2T ) 6 r0(T ).
The previous lemma applied to γ2 and p

√
ε + s implies that there exists g3 ∈ Zωα1

0 with
g3(ξ) = 0, ∀γ, γ 6 γ2, ‖g3‖ 6 r and ‖P2Tg3‖ 6 p

√
ε + s; so there exists β2 ∈ [λ1 +1, ωα1 ]

such that ‖T (g3)(ωα1(N−1)β′
1 + ωα1(N−2)β2‖ > p

√
ε + s and we can suppose that β2 is

not a limit ordinal satisfying ‖T (g3)(ωα1(N−1)β′
1 + ωβ1(N−2)β2)‖ > p

√
ε. Let β2 = β′

2 + 1.
Since T (g3) ∈ Y ωα1ω

, we can find λ2, λ2 ∈ [1, ωα1 ] such that ∀γ, γ ∈ [ωα1(N−1)β′
1 +

ωα1(N−2)β′
2 + ωα1(N−3)λ2 + 1, ωα1(N−1)β′

1 + ωα1(N−2)β′
2 + 1]. We have ‖T (g3)‖ > p

√
ε.

Repeating this procedure N times, we can find g1 = g1 + f1, g1 ∈ Zωα1

0 , f1 ∈ X,
g2, g3, . . . , gN ∈ Zωα1

0 , ordinals γ1 < γ2 < · · · < γN−1 < ωα1 , non-empty intervals
∆1 = [1, ωα1N ], ∆2 = [ωα1(N−1)β′

1 + ωα1(N1)λ1 + 1, ωα1(N−1)β′
1 + 1], . . . ,∆n, such that

(1) ∆1 ⊃ ∆2 ⊃ · · · ⊃ ∆N ;

(2) ‖g1‖ 6 r and ‖gi‖ 6 r, i = 1, 2, . . . , N ;

(3) ‖gi(γ)‖ 6 (ε/N), ∀γ, γ ∈ [γi+1, ω
α1 ], i = 1, 2, . . . , N − 1;

(4) gi(γ) = 0, ∀γ, γ ∈ [1, γi+1], i = 2, 3, . . . , N ;

(5) Tg1(ξ) = y1, ∀ξ ∈ ∆1, ‖Tg1(γ)‖ > p
√

ε, ∀i = 2, . . . , N , and ∀γ, γ ∈ ∆i;
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(6) we take γ ∈ ⋂n
i=1 ∆i, so, by the initial remark of this proof, there exists ci ∈ R, with

|ci| = 1, i = 1, 2, . . . , N , such that ‖c1T (g1) + · · · + cNT (gN )‖ > p
√

1 + (N − 1)δε;

(7) ‖c1g1 + · · · + cNgN‖ = max{‖f1‖, ‖c1g1 + · · · + cNgN‖} 6 r + ε.

From (6) and (7) we conclude that p
√

1 + (N − 1)δε 6 ‖T‖(r + ε), which is absurd
because of the choices of ε and N . �

Corollary 5.5. Let X and F be Banach spaces and α an infinite denumerable ordinal,
F uniformly convex. If Fα⊕X →→ Fαω

, then there exists n, m < ω, such that Fn⊕Xm →→
Fαω

.

Proof. Let α0 = min{ξ : ∃ m, m < ω, Xm ⊕ F ξ →→ Fα}. So α0 6 α, and if we
suppose that α0 > ω, then there exists n0 < ω such that (a) Xn0 ⊕ Fα0 →→ Fα, and
(b) ∀β, β < α0, F β ⊕ Xn0+1 6→→ Fα0 , otherwise there exists β, β < α0, such that
X2n0+1 ⊕ F β →→ Xn0+1 ⊕ F β ⊕ Xn0 →→ Fα0 ⊕ Xn0 →→ Fα, which is absurd because of
the choice of α0. Therefore, from Proposition 5.4, it follows that Fα0 ⊕ Xn0+1 6→→ Fαω

0 .
However, from (a) and our hypothesis it follows that Fα0 ⊕Xn0+1 = Fα0 ⊕X⊕Xn0 →→

X ⊕ Fα →→ Fαw →→ Fαω
0 , which is absurd. Consequently, α0 < ω, and again from (a) we

have Xn0 ⊕ Fα0 ⊕ X →→ Fα ⊕ X →→ Fαω

. �

Proof of Theorem 5.1. If ξω 6 η, then writing G = F ∗, we have

X ⊕ Gξ →→ Xξ ⊕ Gξ ∼ (X ⊕ G)ξ →→ (X ⊕ G)η →→ Gη →→ Gξω

.

From Corollary 5.5 it follows that there exists n, m < ω, such that Gn ⊕ Xm →→
Gξω →→ Gω. Now, bearing in mind that every uniformly convex Banach space is reflexive,
see Proposition 1.e.3 of [13], we have Fn+2 ↪→ (Gω)∗ ↪→ Fn ⊕ (X∗)m, that is there
exists T : Fn+2 → Fn ⊕ (X∗)m an isomorphism onto the image; T (Fn+2) and (X∗)m

being totally incomparable Banach spaces, it follows that T (Fn+2) ∩ (X∗)m = V , where
dimV = p, p < ω and, therefore, T (Fn+2) = Z ⊕ V for some Banach space Z. Noticing
that Z ⊂ (X∗)m⊕Fn, Z∩(X∗)m = {0} and Z and X∗ are totally incomparable, we have
from Lemma 1.1 in [20] that Z ↪→ Fn, and so T (Fn+2) = Z ⊕ V ↪→ Fn ⊕ R

p ↪→ Fn+1,
which is absurd. �

Let p be a real number, p > 2. It follows from the main result of [6] that there exists
finite-dimensional uniformly convex Banach spaces Xi, i = 1, 2, . . . , such that if F is the
p sum of these spaces, then Fn+1 6↪→ Fn, ∀n, 1 6 n < ω.

It is well known that every infinite-dimensional subspace of F contains a subspace
isomorphic to `p and that `p 6↪→ C(I)∗ (see [2, p. 207]). So F and C(I)∗ are totally
incomparable and we have the following corollary.

Corollary 5.6. (C(I) ⊕ F ∗)ξ ∼ (C(I) ⊕ F ∗)η, with ω 6 ξ 6 η < ω1, if and only if
η < ξω.

Theorem 5.7. Let ξ, ω 6 ξ < ω1, and let X be a Banach space. If Xξ →→ R
ξω

, then
X →→ R

ω.
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Proof. Let ξ0 = min{η > ω : Xη →→ R
ηω}. If ξ0 > ω, then Xβ 6→→ R

ξ0 , ∀β, ω 6 β < ξ0,
otherwise there exists β, ω 6 β < ξ0, such that Xβ →→ R

ξ0 .
If βω < ξω

0 , it follows from Theorem 1 of [1] that Xβ →→ R
ξ0 →→ R

βω

, which is absurd
because of the choice of ξ0.

If βω = ξω
0 , again from Theorem 1 of [1] we have Xβ ∼ Xξ0 →→ R

ξω
0 = R

βω

, which,
again, is absurd.

From Proposition 5.4 it follows that Xξ0 6→→ R
ξω
0 , which is a contradiction.

Consequently, ξ0 = ω and, therefore, Xω →→ R
ωω

, and again from Proposition 5.4 it
follows that there exists n < ω such that Xω →→ R

ω, and from Theorem 2 of [17] we
have X →→ R

ω. �

Corollary 5.8. `∞(N)ξ ∼ `∞(N)η, with ω 6 ξ 6 η < ω1, if and only if η < ξω.

Proof. If ξω 6 η, then `∞(N)ξ →→ `∞(N)η →→ R
η →→ R

ξω

, so, by the above theorem,
`∞(N) →→ R

ω, which is absurd because R
ω is not reflexive, see the theorem on p. 304

in [18]. �

Our results suggest the following.

Definition 5.9. We say that the Banach space X is ω1 cancellable if Xξ ∼ Xη with
ξ 6 η < ω1 implies η < ξw.

Question 5.10. Give an isomorphic characterization of the separable ω1 cancellable
Banach spaces.

6. Remarks and questions about the Banach spaces R
ξ, ω 6 ξ < ω1

Corollary 6.1 follows from Corollary 5.5, so we put Question 6.2.

Corollary 6.1. Let α be an infinite denumerable ordinal and X a Banach space. If
R

α ⊕ X →→ R
αω

, then there exists m, m < ω, such that Xm →→ R
αω

.

Question 6.2. If X is a Banach space such that there exists m < ω and α, ω 6 α < ω1

with Xm →→ R
αω

, then is it true that X →→ R
αω

?

Definition 6.3. Let α be an infinite ordinal. We say that the Banach space X has the
SQ(α) property, if, for every γ, ω 6 γ 6 α, such that X →→ R

γ , we have X →→ R
γ ⊕ X.

Remark 6.4. It is clear that if the Banach space X satisfies X →→ X2, then X has
the SQ(α) property ∀α, α > ω, and, if G = F ∗, where F is the space of Figiel, then G

has the SQ(α) property ∀α, α > ω, but G 6→→ G2.

Question 6.5. Give a Banach space that does not have the SQ(α) property for some
α, ω 6 α < ω1.

Theorem 6.6. Let ξ and η be infinite denumerable ordinals and let X be a Banach
space having the SQ(ξ) property. If R

ξ ⊕ X →→ R
η, then either X →→ R

η or η < ξω.
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Proof. We will prove by transfinite induction on η that: ∀ξ, ω 6 ξ < ω1, and for every
Banach space X having the SQ(ξ) property, with R

ξ ⊕ X →→ R
η, then either X →→ R

η

or η < ξω.
If η = ω, then, since ξ > ω, we have η < ξω.
Now, we suppose that this result is true for every ordinal ϕ, ω 6 ϕ < θ, and we consider

R
ξ ⊕ X →→ R

θ, with X having the SQ(ξ) property. If ξω 6 θ, then R
ξ ⊕ X →→ R

ξω

. Let
γ = min{β : R

β →→ R
ξ}, so ω 6 γ 6 ξ, γ < γω 6 ξω 6 θ and, since R

γ →→ R
ξ, it follows

that R
γ ⊕ X →→ R

ξ ⊕ X →→ R
ξω →→ R

γω

, and by Proposition 5.4 we have

X ⊕ R
γ1 →→ R

γ for some ω 6 γ1 < γ. (6.1)

By the choice of γ we conclude that R
γ1 6→→ R

γ , so from [1] it follows that γω
1 6 γ,

and, since X has the SQ(γ1) property, using the hypothesis of induction at (6.1) we
have that X →→ R

γ →→ R
ξ, and, since X has the SQ(ξ) property, we conclude that

X →→ R
ξ ⊕ X →→ R

θ. �

Question 6.7. Let X and Y be separable Banach spaces and ξ, ωω 6 ξ < ω1. If
X ⊕ Y →→ R

ξ, then is it true that either X →→ R
ξ or Y →→ R

ξ?

Since R ⊕ R
ξ ∼ R

ξ, ∀ξ, ξ > ω, R
ξ is isomorphic to each of its closed hyperplanes. The

following lemma gives a positive answer to the above question in the case in which either
X or Y is a finite-dimensional space.

Lemma 6.8. Let X and H be Banach spaces such that H is isomorphic to each of
its closed hyperplanes. If R ⊕ X →→ H, then X →→ H.

Proof. Let T : R ⊕ X → H be a surjective bounded linear operator. If T (1, 0) = 0,
then T |X : X → H is surjective. If T (1, 0) = h1 6= 0, then writing H = [h1] ⊕ H1 for
some closed hyperplane H1 of H and indicating by P the canonical projection from H

onto H1, we have PT (1, 0) = 0, therefore PT |H1 : X → H1 is onto H1, and, from the
hypothesis H ∼ H1, we have X →→ H. �

Question 6.9. If X and Y are Banach spaces such that R ⊕ X →→ H, and H is of
infinite dimension, then is it true that X →→ H?

Corollary 6.10. Let α be an infinite denumerable ordinal and let X be a Banach
space. If Xα →→ R

αω

, then there exists n, m < ω, such that ( ˆ̂⊗mX)n →→ R
αω

.

Proof. It suffices to take α0 = min{ξ : ∃ m, m < ω, ( ˆ̂⊗mX)ξ →→ R
α} and to proceed

as in the Lemma 3.4 using Proposition 5.4. �

Question 6.11. If X is a Banach space such that there exists n, n < ω and α,
ω 6 α < ω1 with ˆ̂⊗nX →→ R

αω

, then is it true that X →→ R
α?

Definition 6.12. Let α be an infinite ordinal. We say that the Banach space X has
the TQ(α) property if, for every γ, ω 6 γ 6 α, such that X →→ R

γ , we have X →→ Xγ .

Remark 6.13. It is clear that if the Banach space X satisfies X →→ X ˆ̂⊗X, then X

has the TQ(α) property ∀α, α > ω.
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Theorem 6.14. Let ξ and η be infinite denumerable ordinals and let X be a Banach
space having the TQ(ξ) property. If Xξ →→ R

η, then either X →→ R
η or η < ξω.

Proof. Analogous to that for Theorem 6.8. �

Question 6.15. Give a Banach space that does not have the TQ(α) property for some
α, ω 6 α < ω1.
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