
9

Smooth point asymptotics

After discussing the overall framework of ACSV in Chapter 7, and the com-
putational tools needed to carry out the analysis in Chapter 8, we are now
ready to prove asymptotic theorems. As usual, we begin with a convergent
Laurent expansion F(z) =

∑
r∈Zd arzr in some domain D ⊂ Cd and try to

determine asymptotic behavior of ar as r → ∞ with the normalized vector
r̂ = r

|r| = r
|r1 |+···+|rd |

restricted to compact sets. In this chapter we give results
when dominant asymptotic behavior is determined by the local behavior of F
near a finite set of points where its set of singularities V forms a manifold.
Typically we assume F is rational, although we also state results when F is
meromorphic.

Remark 9.1. The smoothness assumption of this chapter is generic, meaning
(for instance) that it holds for all rational functions except for those whose co-
efficients lie in a fixed proper algebraic set depending only on the degree of the
denominator. Although this might suggest that every example encountered in
practice is handled by the techniques of this chapter, non-generic behavior does
occur in many combinatorial applications. Nonetheless, a large fraction of the
multivariate generating functions encountered by the authors can be handled
by the techniques presented here, without going into the more general theory
of Chapters 10 and 11.

The Main Results of Smooth ACSV
We begin by stating the main theorems of this chapter. Let F(z) = P(z)/Q(z)
be the ratio of coprime polynomials, where Q ∈ C[z] has square-free part
Q̃ (equal to the product of its distinct irreducible factors). Recall from past
chapters that w ∈ Cd

∗ is a smooth critical point for the direction r̂ ∈ Rd if and
only if (∇Q̃)(w) , 0 and

Q̃(w) = r̂iwdQ̃zd (w) − r̂dwiQ̃zi (w) = 0 (1 ≤ i ≤ d − 1). (9.1)
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246 Smooth point asymptotics

The case when the direction vector r̂ is the zero vector is trivial, so we
always assume that r̂ has a non-zero coordinate. When the series expansion
of F under consideration is a power series we can further assume the stronger
condition that r̂ has no zero coordinates, because asking for terms where (say)
rd = 0 corresponds to extracting terms from the (d − 1)-variate series obtained
by setting zd = 0. In this case, because our results hold only for critical points
with non-zero coordinates, the smooth critical point equations imply that none
of the partial derivatives of Q̃ vanish.

For Laurent expansions, on the other hand, there are combinatorially inter-
esting cases where r̂ has zero coordinates. Even so, if there are to be smooth
critical points with non-zero coordinates then the critical point equations imply
the existence of a coordinate k such that rk , 0 and Q̃zk (w) , 0. Without loss
of generality, we may assume this coordinate k is the final coordinate d.

Consider a Laurent expansion of F with domain of convergence D. Theo-
rem 6.44 from Chapter 6 implies that if w is a smooth minimal critical point
(see Definition 7.7) for the direction r̂ then the hyperplane with normal r̂ going
through the point Relog(w) is a support hyperplane to B = Relog(D).

Definition 9.2 (contributing and nondegenerate points). The smooth minimal
critical pointw described above is called a contributing point for the direction
r̂ if r̂ points away from B at Relog(w), meaning x · r̂ < Relog(w) · r̂ for
all x ∈ B. Recall that the point w is nondegenerate if the Hessian matrix H
defined by Lemma 8.22 in Chapter 8 is nonsingular with H = Q̃.

Remark 9.3. If we consider the power series expansion of F(z), where r̂ has
positive coordinates, then every smooth minimal critical point is contributing.
Recall that nondegeneracy is equivalent to previous definitions in terms of the
Hessian of the height function h(z) = −r · log z restricted toV.

Definition 9.2 is constructed so that contributing points are minimizers of the
height function hr̂ on D, which turn out to be the points determining asymp-
totic behavior. Conversely, non-contributing smooth minimal critical points are
maximizers of hr̂ onD; see Figure 9.1.

Exercise 9.1. Which of the components of the complement of the amoeba in
Figure 9.1 have a contributing point in the direction (1,−1)?

We break our main result into three versions, depending on the assumptions
required and the proof techniques used. Our first version is the most restric-
tive, however it still holds in a wide variety of applications and has the ad-
vantage that it can be derived purely through complex analysis and classical
saddle point techniques, without the need for the homological framework of

https://doi.org/10.1017/9781108874144.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874144.014
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Figure 9.1 The amoeba complement component B1, corresponding to a power
series expansion, has one point on its boundary where its support hyperplane has
normal r = (1, 1), which corresponds to contributing points. On the other hand,
the component B2 has two boundary points with support hyperplanes having nor-
mals r = (1, 1), only one of which (the upper-most one) corresponds to contribut-
ing singularities.

Chapter 7. In order to simplify our presentation, we begin by stating it in the
common special case where Q is square-free and there is a single minimal
contributing point.

Theorem 9.4 (Main Theorem of Smooth ACSV (Local Version, Square-Free
Case)). Let F(z) = P(z)/Q(z) be the ratio of coprime polynomials P and Q
with convergent Laurent expansion F(z) =

∑
r∈Zd arzr. Suppose that there is

a compact set R ⊂ Rd of non-zero directions such that if r̂ lies in R then F has
a smooth strictly minimal nondegenerate contributing point w = w(r̂) ∈ Cd

∗ ,
and let H = H(r̂) be the Hessian matrix defined by (8.7) and (8.8) when
H = Q. If Qzd (w) , 0 then

ar ≈ Φw(r)

uniformly as r → ∞ with r̂ ∈ R, where Φw(r) is an asymptotic series

Φw(r) = w−r |rd |
(1−d)/2 (2π)(1−d)/2 sgn(rd)√

det(sgn(rd)H)

∞∑
`=0

C`(r̂)r−`d . (9.2)

The square-root of the matrix determinant is the product of the principal branch
square-roots of its eigenvalues (which will have nonnegative real parts). The
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248 Smooth point asymptotics

constants C` are explicitly computable in terms of the derivatives of P(z) and
Q(z) evaluated at z = w(r̂). In particular,

C0 =
P(w)

−wdQd(w)
. (9.3)

�

Theorem 9.4 is a special case of the following, which holds for poles of
general order.

Theorem 9.5 (Main Theorem of Smooth ACSV (Local Version)). Let F(z) =

P(z)/Q(z) be the ratio of coprime polynomials with convergent Laurent ex-
pansion F(z) =

∑
r∈Zd arzr. Suppose there exists a compact set R ⊂ Rd of

non-zero directions such that if r̂ lies in R then F has a smooth strictly mini-
mal nondegenerate contributing point w = w(r̂) ∈ Cd

∗ , and let H = H(r̂) be
the Hessian matrix defined by (8.7) and (8.8) when H = Q̃. If (∂p

d Q)(w) , 0
and (∂q

dQ)(w) = 0 for all 0 ≤ q < p then

ar ≈ Φw(r)

uniformly as r → ∞ with r̂ ∈ R, where Φw(r) is an asymptotic series

Φw(r) = w−r |rd |
p−1+(1−d)/2 (2π)(1−d)/2 sgn(rd)p√

det(sgn(rd)H)

∞∑
`=0

C`(r̂)r−`d . (9.4)

The square-root of the matrix determinant is the product of the principal branch
square-roots of its eigenvalues (which will have nonnegative real parts). The
constants C` are explicitly computable in terms of the derivatives of P(z) and
Q(z) evaluated at z = w(r̂). In particular,

C0 =
(−1)pP(w)p
wp

d (∂p
d Q)(w)

.

If w is a finitely minimal point (instead of being strictly minimal) such that
all points in the set W(r̂) = T (w) ∩ V vary smoothly with r̂ in R and are
contributing points satisfying the conditions above then

ar ≈
∑
y∈W(r̂)

Φy(r),

where each Φy is given by (9.4).

Exercise 9.2. What, in general, can go wrong pulling a factor of sgn(rd)d−1

out of the square-root in the denominator of (9.4)?
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Remark 9.6. An explicit (but unwieldy) formula for all coefficients in (9.4)
is given in Section 9.4 below. If Q = Hp for some square-free H with ∇H
nonvanishing at w then

C0 =
(−1)pP(w)

(p − 1)! (wd∂dH(w))p .

Remark 9.7. Our surgery approach below singles out the coordinate zd for a
residue computation, leading to an asymptotic expansion in powers of the non-
zero coordinate rd. With some extra work, the Fourier–Laplace integral used to
deduce asymptotics can be modified to provide an asymptotic series in powers
of |r|, giving an expansion of the form

Φw(r) = w−r
1√

det(2π|r| H ′)

∞∑
`=0

C′`(r̂)|r|−` (9.5)

for a new Hessian matrixH ′. We leave details of such symmetric formulae to
Chapter 10, where asymptotics are computed using multivariate residue forms
that do not privilege individual coordinates.

Remark 9.8. If R = {s} contains a single point with sd > 0 then r = ns and

Φw(ns) ≈ w−ns np−1+(1−d)/2 (2π)(1−d)/2√
det(H)

∞∑
`=0

D`n−`

for constants D` with D0 = (sd)p−dC0.

Example 9.9. The hypotheses of Theorem 9.5 can be simplified for bivariate
power series. In particular, suppose that F(x, y) =

P(x,y)
Q(x,y) =

∑
i, j≥0 ai jxiy j admits

a strictly minimal critical pointw = w(r) ∈ C2
∗ that varies smoothly as r̂ varies

in a compact neighborhood R of directions. If both P(x, y) and the expression

Q(x, y) = −xy2Q2
y Qx − x2yQyQx − x2y2(Q2

y Qxx + Q2
xQyy − 2QxQyQxy) (9.6)

are non-zero when (x, y) = w(r̂) for each r̂ ∈ R then

ar,s ∼
P(x, y)
−yQy

1
√

2π
x−ry−s

√
(−yQy)3

sQ

=
P(x, y)
−xQx

1
√

2π
x−ry−s

√
(−xQx)3

rQ

(9.7)

as |r| → ∞ after setting (x, y) = w(r̂), uniformly over r̂ ∈ R. /

Exercise 9.3. Prove (9.7) by simplifying (9.2) in the bivariate case.
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250 Smooth point asymptotics

Example 9.10 (binomial coefficients continued). If F(x, y) = 1/(1− x−y) then
the coefficient of xrys in the power series expansion of F is

(
r+s

s

)
. Solving the

smooth critical point equations yields the unique critical point

w =

( r
r + s

,
s

r + s

)
= (r̂, ŝ) ,

which is strictly minimal by Lemma 6.41. We obtain(
r + s

s

)
∼

(r + s)r+s

rr ss

√
r + s
2πrs

as r, s → ∞ with r/s bounded away from zero and infinity. For example, the
central binomial coefficients given by r = s = n satisfy

(
2n
n

)
∼ 4n/

√
πn. /

Example 9.11 (Delannoy numbers continued). If F(x, y) = 1/(1 − x − y − xy)
then we have the critical points

(x∗, y∗) =

 √r2 + s2 − s
r

,

√
r2 + s2 − r

s

 or

−√r2 + s2 − s
r

,
−
√

r2 + s2 − r
s

 ,
the first of which is strictly minimal by Lemma 6.41. Writing d =

√
r2 + s2,

we directly compute

ars ∼

( r
d − s

)r ( s
d − r

)s
√

rs (d2 + (r − s))
2π (r + s − d)

(
d2 + d(r − s)

)
as r, s→ ∞ with r/s bounded away from zero and infinity. /

We give a proof of Theorem 9.5 in Section 9.1 using the surgery method for
ACSV, which works in the presence of smooth finitely minimal contributing
points. Although the requirement of finite minimality makes proofs simpler, it
is computationally difficult to check, and rules out cases that can be handled by
our other results. In Section 9.2 we use more advanced techniques (including
the theory of hyperbolic polynomials developed in Chapter 11) to prove an
extension of Theorem 9.5 that ignores non-critical points and only requires
that the torus T (w) contains a finite number of critical points. This gives a
large computational advantage, because generically there are a finite number
of critical points described by a zero-dimensional algebraic set.

Theorem 9.12 (Main Theorem of Smooth ACSV (Minimal Point Version)).
Let F(z) = P(z)/Q(z) be the ratio of coprime polynomials with convergent
Laurent expansion F(z) =

∑
r∈Zd arzr. Suppose there exists a compact setR ⊂

Rd of non-zero directions such that F has a smooth minimal nondegenerate
contributing pointw = w(r̂) ∈ Cd

∗ whenever r̂ ∈ R. If the set W(r̂) of solutions
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to (9.1) with the same coordinatewise modulus as w(r̂) is finite and contains
only smooth nondegenerate contributing points that vary smoothly with r̂ then

ar ≈
∑
y∈W(r̂)

Φy(r), (9.8)

uniformly as r → ∞ with r̂ ∈ R, where Φy is defined in (9.4).

Example 9.13 (negative binomial coefficients). If F(x, y) = −x/(1− x−y) then
the coefficient of x−rys in the Laurent series expansion of F converging in the
domain 1 + |y| < |x| is (−1)s

(
r
s

)
. There is a unique critical point

w =

(
−r
−r + s

,
s

−r + s

)
,

where now, because r > s, the first coordinate of w is positive while the sec-
ond is negative. This point is minimal, since it lives on the boundary {(x, y) ∈
C2 : 1 + |y| = |x|} of the domain of convergence of this Laurent series, and
contributing. Ultimately, we obtain

[x−rys]F ∼ (−1)s rr

(r − s)r−sss

√
r

2π(r − s)s
.

Note that if we replace x by 1/x in F, we obtain G = 1/(1 − x + xy), whose
(r, s)-coefficient is (−1)s

(
r
s

)
. This is consistent with the usual identity(
−r
s

)
= (−1)s

(
r + s − 1

s

)
for binomial coefficients when r, s > 0. Replacing y by −y, we are led back
to the generating function 1/(1 − x − xy) for binomial coefficients examined
above. /

Example 9.14 (Chebyshev polynomials). Let F(z,w) = 1/(1−2zw+w2) be the
generating function for Chebyshev polynomials of the second kind [Com74].
To use Theorem 9.12 for an arbitrary direction (r, s) with nonnegative indices
and r/s ∈ (0, 1), we first compute the critical points w± =

(
i
(
β − β−1

)
/2, iβ

)
,

where β = ±
√

s−r
s+r . These points are minimal by Corollary 6.36 because if

we substitute (z,w) = (tx, ty) in the denominator then |2xy − y2| is at most
t2

(
1 − β2 + β2

)
< 1, and hence T (tw±)∩V = ∅ for all t ∈ (0, 1). These points

are contributing because any smooth minimal critical points are contributing
for power series expansions.

Summing the asymptotic contributions given by the two points implies

ars ∼

√
2
π

(−1)(s−r)/2
(

2r
√

s2 − r2

)−r √ s − r
s + r

−s √
s + r

r(s − r)
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252 Smooth point asymptotics

when r + s is even, while ars = 0 when r + s is odd. These asymptotics are
uniform as r/s varies over any compact subset of (0, 1). /

Exercise 9.4. Redo Examples 9.13 and 9.14 using Theorem 9.5 instead of
Theorem 9.12. What extra conditions do you need to check?

In the presence of minimal critical points we do not need to rule out the
critical points at infinity (CPAI) discussed in previous chapters. However, if
we do rule out CPAI then Theorem 7.20 applies and we get the following.

Theorem 9.15 (Main Theorem of Smooth ACSV (No CPAI Version)). Sup-
pose that, as r̂ varies over a compact set R ⊂ Rd of non-zero directions, the
function F has no CPAI with height at least M ∈ R, and that the set W = W(r̂)
of critical points with height larger than M is finite and consists of smooth non-
degenerate points. Then there exist κw ∈ Z for w ∈W with

ar ≈
∑
w∈W

κw Φw(r) + O(eM|r|) , (9.9)

where each Φw is the asymptotic series defined by (9.4).

To determine dominant asymptotic behavior, it is necessary to identify the
highest critical points w with non-zero coefficients κw. This seems to be a
very difficult task in general, but we can say more in some circumstances.
For instance, κw = 1 for any smooth minimal contributing points, and if ar
is not eventually zero and M = −∞ then at least one κw is non-zero. If the
exponential growth of a sequence can be determined or bounded using other
means, this can also be used to identify the highest coefficients which are non-
zero, and thus pin down asymptotics up to these unknown integers.

Although Theorem 9.15 is the most abstract of our main theorems, it follows
directly from the large amount of technical background in Chapter 7 and the
appendices, and some computations from the proof of Theorem 9.12 below.

Proof of Theorem 9.15 Fix a direction r̂. In the absence of CPAI at height M
or above, Theorem 7.20 in Chapter 7 shows that, for some ε > 0, the homology
group Hd(M,M≤M−ε) has a basis indexed by the critical points σ1, . . . ,σm for
Q whose elements are smooth cycles γ j such that hr̂ attains its maximum on
γ j at σ j and

ar =

m∑
j=1

κ j

(2πi)d−1

∫
γ j

Res
(
F(z)z−r−1 dz

)
+ O(eM|r|).

We will determine this residue integral and its uniform error term with r̂ in our
proof of Theorem 9.12 below, giving the stated expansion. �

https://doi.org/10.1017/9781108874144.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874144.014


9.1 Finitely minimal points and the surgery method 253

Sections 9.3.1 and 9.3.2 complement the decomposition (9.9) by presenting
an algorithm to determine the integer coefficients kw for bivariate series, the
only case beyond minimal points and rational functions with linear denomi-
nators where we know a general strategy for their calculation. Section 9.3.3
also gives an asymptotic formula for degenerate critical points in the bivariate
case. Finally, Section 9.4 ends this chapter with some related results, including
explicit formulae for higher-order terms and a coordinate-free formula (9.23)
in terms of geometric invariants such as the Gaussian curvature.

9.1 Finitely minimal points and the surgery method

To prove Theorem 9.5 we show that the Cauchy integral representation for se-
ries coefficients is negligible outside a small neighborhood of w, reduce to a
lower-dimensional integral using a univariate residue computation, parametrize
the simplified integral to obtain a saddle point integral, and apply the theorems
of Chapter 5 to the result.

Localization and residue

We start by assuming that W(r̂) contains a strictly minimal contributing sin-
gularity w = w(r̂).

Definition 9.16. For simplicity, we write v◦ = (v1, . . . , vd−1) for any vector
v ∈ Cd.

Our hypotheses imply that Q̃zd (w) , 0, so the implicit function theorem
states that zd is locally analytically parametrized by z◦ near w on V. More
specifically, if rd > 0 and we define ρ = |wd | then there exist a sufficiently
small real number δ > 0, a neighborhood N of w◦ in T (w◦), and an analytic
function g : N → C such that for z◦ ∈ N ,

(i) Q(z◦, g(z◦)) = 0,
(ii) ρ ≤ |g(z◦)| < ρ + δ with equality only if z◦ = w◦, and

(iii) Q(z◦, t) , 0 if t , g(z◦) and |t − wd | < δ.

If rd < 0 then the same conditions hold exceptw being contributing means the
inequality in (ii) is replaced by ρ − δ < |g(z◦)| ≤ ρ.

Let C1 denote the circle of radius ρ− δ centered at the origin of the complex
plane and let C2 denote the circle of radius ρ+δ. The fact thatw is contributing,
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combined with the Cauchy integral formula, implies that the series coefficients
of interest can be represented by an iterated integral

ar =



(
1

2πi

)d ∫
T(w◦)

[∫
C1

F(z◦, t)t−rd−1 dt
]

(z◦)−r
◦ dz◦

z1 · · · zd−1
if rd > 0

(
1

2πi

)d ∫
T(w◦)

[∫
C2

F(z◦, t)t−rd−1 dt
]

(z◦)−r
◦ dz◦

z1 · · · zd−1
if rd < 0

.

(9.10)
In either case, the key observation is that the inner integral is exponentially
smaller than ρ−rd away from w◦. Indeed, if rd > 0 under our assumptions then
for each fixed z◦ , w◦ the function f (t) = F(z◦, t) has radius of convergence
greater than ρ and the inner integral is O((ρ+ε)−rd ) for some ε > 0; by continu-
ity of the radius of convergence, a single ε > 0 may be chosen for all compact
subsets of T(w◦) not containingw◦. Similarly, if rd < 0 then the inner integral
is O((ρ + ε)−rd ) for some ε ∈ (−ρ, 0). Thus,

|wr (ar − I)| → 0 (9.11)

exponentially quickly, where I is any integral in (9.10) with T(w◦) replaced by
any neighborhood of w◦ in T(w◦). We now take the neighborhood defining I
to be the setN on which the properties (i)–(iii) for the parametrization g hold,
and compare the inner integral in (9.10) to one pushed ‘beyond’ the singular
set. Note that in general we cannot do this without first ‘cutting out’ the small
neighborhood N .

Assume that rd > 0 and compare

I =

(
1

2πi

)d ∫
N

[∫
C1

F(z◦, t)t−rd−1 dt
]

(z◦)−r
◦ dz◦

z1 · · · zd−1

to the integral

I′ =

(
1

2πi

)d ∫
N

[∫
C2

F(z◦, t)t−rd−1 dt
]

(z◦)−r
◦ dz◦

z1 · · · zd−1

with the inner contour C1 replaced by C2. Because the points on C2 have larger
modulus than ρ, ∣∣∣wrI′

∣∣∣→ 0 (9.12)

exponentially quickly. Furthermore, our assumption of strict minimality im-
plies that the common inner integrand of I and I′ has a unique pole in the
annulus ρ − δ ≤ |t| ≤ ρ + δ, occurring at t = g(z◦). If

Ψ(z◦) = Res
(
F(z◦, t)t−rd−1 ; t = g(z◦)

)
(9.13)
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then the difference of I and I′ can be computed in terms of Ψ. If rd < 0 the
argument is the same, with the roles of C1 and C2 reversed, changing the sign
in front of the residue integral. Ultimately, we obtain the following, which may
be thought of as the computational analog of the fact that one can integrate in
relative homology at the expense of an exponentially small error (see Proposi-
tion B.10 in Appendix B).

Theorem 9.17 (reduction to residue integral). Let

χ = I − I′ =
− sgn(rd)
(2πi)d−1

∫
N

Ψ(z◦)(z◦)−r
◦ dz◦

z1 · · · zd−1
, (9.14)

with Ψ given by (9.13). Assuming the hypotheses of Theorem 9.5 when W(r) =

{w(r̂)},

|wr (ar − χ)| → 0

exponentially in |r|, uniformly as r → ∞ with r̂ varying overM.

The fact that we can obtain explicit asymptotic expansions is a consequence
of the following result.

Lemma 9.18. Under the hypotheses of Theorem 9.5, the residue Ψ has the
form Ψ(z◦) = −g(z◦)−rd Ψp(z◦) where

Ψp(z◦) =

p−1∑
k=0

(rd + 1)(p−k−1)

k!(p − k − 1)!
Rk(z◦). (9.15)

Here (a)(b) = a(a − 1) · · · (a − b + 1) and

Rk(z◦) = (−g(z◦))−p+k lim
zd→g(z◦)

∂k
d ((zd − g(z◦))pF(z)) .

In particular, Ψp is a polynomial of degree p − 1 in rd with leading coefficient

(−1)pg(z◦)−p p
P(z◦, g(z◦))

(∂p
d Q)(z◦, g(z◦))

.

Proof Our assumptions imply that F(z◦, t) has a pole of order p at t = g(z◦),
and (9.15) comes from the classic residue formula

Res
(
F(z◦, t)t−rd−1 ; t = g(z◦)

)
=

1
(p − 1)!

lim
zd→g(z◦)

∂
p−1
d

(
(zd − g(z◦))pF(z)z−rd−1

d

)
together with Leibniz’s rule for derivatives. The leading term in rd comes from
the summand where k = 0. �

Remark 9.19. The results of this section only require that F be meromorphic
in a neighborhood of the domain of convergenceD. If F is locally the ratio of
analytic functions P and Q in a neighborhood of w then all formulae are still
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valid, provided Q̃ is interpreted to be a square-free factorization in the local
ring of germs of analytic functions (see Definition 10.42 below).

Exercise 9.5. Let F(x, y) = 1/(ex + ey − 1). What can you deduce from Theo-
rem 9.5 about the power series coefficients of F?

Proof of Theorem 9.5

Making the change of variables z j = w jeiθ j for 1 ≤ j ≤ d − 1 turns χ into a
saddle point integral

χ =
sgn(rd)
(2π)d−1 w

−r

∫
N ′

A(θ)e−|rd | φ(θ)dθ (9.16)

with amplitude A(θ) = Ψp

(
w◦eiθ

)
for Ψp defined in (9.15) and phase

φ(θ) =
rd

|rd |
log

g
(
w◦eiθ

)
wd

 + i
(r◦ · θ)
|rd |

= sgn(rd)

log

g
(
w◦eiθ

)
wd

 + i
(r◦ · θ)

rd


in the variables θ = (θ1, . . . , θd−1), where

(
w◦eiθ

)
=

(
w1eiθ1 , . . . ,wd−1eiθd−1

)
and

N ′ is a neighborhood of the origin in Rd. Lemma 8.21 implies that this integral
satisfies the conditions necessary to apply Theorem 5.2 in Chapter 5 (note that
the real part of φ has a strict minimum at the origin by our conditions on g).
Lemma 8.22 applied to sgn(rd)φ simplifies the Hessian and finishes the proof.

Modification for finitely minimal points

When w(r̂) is finitely minimal then the Cauchy integral decays exponentially
away from any element of W(r̂). We can thus restrict the domain of integration
to a disjoint union of neighborhoods Nk around the elements of W(r̂). The
residue computation in Theorem 9.17 results in a sum as k varies of integrals
over neighborhoodsNwk . The asymptotic contributions of each of the integrals
in the sum can be computed in the same way as the strictly minimal case.

Modification under strong torality hypothesis

Because our residue computations are so explicit, they also hold under the fol-
lowing strong torality hypothesis. This hypothesis is important when studying
generating functions whose singularities have many symmetries, for instance
in the case of quantum random walks (see Exercise 9.12).
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Definition 9.20 (strong torality). We say Q satisfies the strong torality hy-
pothesis on the torus T(w) if Q(z) = 0 and |z j| = |w j| for 1 ≤ j ≤ d− 1 implies
that |zd | = |wd |.

Exercise 9.6. Suppose that the function Q(x, y) = a + bx + cy + dxy is bilinear.
What conditions on the constants a, b, c, d are equivalent to strong torality of
Q?

In the following proposition g is the multivalued function solving for zd as a
function of z◦; the number of values, counted with multiplicities, is the degree
m of zd in Q, except on a lower dimensional set where two values coincide.
The multivalued integrand should be interpreted as a sum over all m values.

Corollary 9.21 (reduction under strong torality). Supposew satisfies all of the
hypotheses of Theorem 9.5 except that instead of w being finitely minimal, it
is minimal and Q satisfies the strong torality hypothesis on T(w). If all poles
of F on T(w) are simple (i.e., p = 1) then

ar =

(
1

2πi

)d−1 ∫
T(w◦)

(z◦)−r
◦

g(z◦)−rd Ψ(z◦)
dz◦

z◦
,

where Ψ is given by (9.13).

Proof This time we may take C1 to be the circle of radius of ρ − δ and C2 to
be the circle of radius ρ + δ for any δ ∈ (0, ρ). The inner integral will be the
sum of simple residues at points g(z◦) for any z◦ and the proof is completed
the same way as Theorem 9.17. �

In this case dimension is reduced by one without localizing. The localization
occurs when we apply the multivariate saddle point results of Chapter 5, which
implies that this (d − 1)-dimensional integral is determined by the behavior of
g and Ψ near the critical points on T (w).

Corollary 9.22. Suppose w satisfies all of the hypotheses of Theorem 9.5 ex-
cept that instead ofw being finitely minimal, Q satisfies the torality hypothesis
on T(w). Then the conclusions of Theorem 9.5 still hold.

9.2 The method of residue forms

In this section we use the homological framework of previous chapters, to-
gether with the appendices, to prove Theorem 9.12. For convenience, we begin
by naming the minimality property assumed in Theorem 9.12.
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Definition 9.23 (finite criticality). We say Q is finitely critical on the torus
T(w) (in the direction r̂) if the intersection ofVQ with T(w) contains finitely
many critical points of Q in the direction r̂.

Exercise 9.7. For which directions r̂ (if any) does the function Q(x, y) = (1 +

x)(1 + y) satisfy finite criticality on the unit torus T(1, 1)?

Suppose that p is a minimal point of V that is critical in direction r̂ and
lies in the exponential torus Te(x) = Relog−1(x) defined by some x ∈ ∂B,
where B is a component of the complement of amoeba(Q). Further assume
that Te(x) ∩V contains only finitely many critical points p1, . . . ,pm.

Proposition 9.24 (stratified flow). For x′ ∈ B arbitrarily close to x, the torus
Te(x′) may be deformed in M so that it remains fixed in a neighborhood of
each critical point p j but moves to a height less than −r̂ ·x outside of a larger
neighborhood of each.

Proof This is a consequence of Theorem 11.5, which uses cones of hyperbol-
icity to create a deformation based on Theorem 11.1. In the case that the points
p1, . . . ,pm are all smooth points, the cones and vectors can be constructed by
the simpler and more explicit Theorem 11.9 and Corollary 11.10. �

We remark that because Q̃ is hyperbolic at all minimal points (see Proposi-
tion 11.26), the vector flow used in the proof of Proposition 9.24 can also be
used to construct the general homotopy equivalence (C.3.1), giving the rela-
tive homology attachment groups up to points of height just below the minimal
points. An important practical consequence is the following principle, stating
that local integral formulae may be summed when finite criticality holds. It
follows immediately from the deformation in Proposition 9.24.

Theorem 9.25 (finite criticality implies sum of local contributions). Suppose
that w is a minimal point satisfying finite criticality, with all critical points on
T (w) enumerated p1, . . . ,pm. If each of the p j are nondegenerate contributing
points and the Cauchy integral over a quasi-local cycle maximized near p j has
asymptotic expansion Φp j (r) then

ar ≈
m∑

j=1

Φp j (r) + E(r) (9.17)

where E(r) grows exponentially slower than the common value of the |p−rj |. �

Theorem 9.25 holds for general rational functions, not just those with smooth
denominators, for more general definitions of contributing points that are dis-
cussed in later chapters.
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Figure 9.2 Spacetime generating function for a one-dimensional quantum walk.

Exercise 9.8. Let Q(x, y) = 1 − cy(1 + x) − xy2, where c ∈ (0, 1). The func-
tion 1/Q is the spacetime generating function for the simplest non-trivial one-
dimensional quantum walk [BP07].

(a) Show that all singularities on the unit torus are minimal points.
(b) Show that the singularities on the unit torus are not finitely minimal.
(c) Show that for |a − 1/2| < c/2 and r̂ =

[
a

a+1 ,
1

a+1

]
there are two critical

points in the direction r̂ on the unit torus.
(d) Explain why (9.17) produces the picture in Figure 9.2 for the generating

function F(x, y) = 1/Q(x, y).

9.2.1 Theorem 9.12 via residue integrals

We are now ready to prove the minimal point version of the Main Theorem of
Smooth ACSV.

Proof of Theorem 9.12 Assume the hypotheses of Theorem 9.12 and let B be
the component of amoeba(Q)c corresponding to the convergent Laurent series
under consideration. We use the homological constructions and terminology
introduced in Appendix C. If T = Te(x) for some x ∈ B and T ′ = Te(x′) for
some x′ ∈ B′, where B′ is one of the components of amoeba(Q)c on which hr̂
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is not bounded from below (whose existence is guaranteed by Theorem 6.29),
then the intersection class INT(T,T ′) is represented by the intersection of V
with any homotopy from T to T ′ intersecting V transversely. Choosing such
a homotopy whose time-t cross-sections are tori that expand with t and go
through w, perhaps slightly perturbed to intersect V transversely, the class
INT(T,T ′) can be represented by a smooth (d − 1)-chain γ on V on which
hr̂ reaches its (not necessarily unique) maximum at w. The Cauchy integral
formula and the residue theorems from Chapter C imply

ar =
1

(2πi)d

∫
T

F(z)z−r−1 dz

=
1

(2πi)d−1

∫
γ

Res(F(z)z−r−1 dz) +
1

(2πi)d−1

∫
T ′

F(z)z−r−1 dz

=
1

(2πi)d−1

∫
γ

Res(F(z)z−r−1 dz). (9.18)

Assume first that Q is square-free and rd > 0, so that (C.2.1) in Proposi-
tion C.8 implies

ar =
e−hr (w)

(2πi)d−1

∫
γ

e−λφ(z) P(z)
Qzd (z)

∏d
j=1 z j

dz◦

with λ = rd. Applying Theorem 5.3 with a generic triangulation of C = γ gives
an asymptotic expansion of ar which, after the change of variables z j = w jeiθ j

and algebraic simplification, gives the expression for Φw in (9.2). Note that
the Hessian determinant of hr̂ onV with respect to the θ j variables equals the
Hessian determinant with respect to the z j variables multiplied by the Jacobian
for the change of variables because the gradient of hr̂ restricted toV vanishes
at w.

This completes the proof of Theorem 9.12 in the case that p = 1 and rd > 0.
The derivation for p > 1 is similar, with Lemma C.13 describing the residue
and leading to (9.4). Likewise, accounting for the sign change in λ = −rd when
rd < 0 produces the sign factors in (9.4). �

9.2.2 Homological decompositions

Our results above help us prove that there is at most one torus containing
smooth nondegenerate contributing points. A minimal torus with respect to
a component B and direction r̂ is a torus Te(x) for some x ∈ ∂B minimizing
r̂ · x on B, containing at least one point w = exp(x + iy) that is critical in
direction r̂.
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Proposition 9.26. Let F(z) = P(z)/Q(z) be the ratio of coprime polynomials
P and Q. Fix a direction r̂, a component B of the complement of amoeba(Q)
on which hr̂ is bounded from below, and a component B′ on which hr̂ is not
bounded from below.

(i) There is at most one minimal torus with respect to B and r̂ satisfying
finite criticality and on which each critical point is smooth, contributing,
and nondegenerate.

(ii) Let T = Te(x) for some x ∈ B and let T ′ = Te(x′) for some x′ ∈
B′. Given the existence of the torus described in (i), the projection of
INT(T,T ′) to the relative homology group Hd−1(V∗,V≤c−ε), for suffi-
ciently small ε > 0 and c = −r̂ · x, equals

∑
z∈W γz , where the cycle γz

is a generator for the cyclic local homology group Hd−1(Vz,loc
∗ ).

(iii) The projection of [T ] to (M,M≤c−ε) is equal to
∑
z∈W oγz , where γz is a

generator of the cyclic group Hd−1

(
Vz,loc
∗

)
.

Proof To prove (i), suppose there are two such tori Te(x) and Te(x′). Ap-
plying Theorems 9.12 and 9.25 to the rational function F̃(z) = 1/Q̃(z) at the
points in each torus gives two, necessarily equal, asymptotic series estimating
the coefficients {ãr} uniformly as |r| → ∞with r/|r| remaining in some neigh-
borhood R of r̂ (we replace P by 1 and Q by its square-free part as this does not
change the minimal tori or our nondegeneracy assumptions, but simplifies the
asymptotic formulae). In particular, the leading term of each expansion Φw(r)
in (9.4) has the form C(w) exp(−r ·x) exp(−ir ·y)r(1−d)/2

d with C nonvanishing.
Summing the contributions of the finitely many points on Te(x) (respectively
Te(x′)) gives a function of r that is nonvanishing at least on some finite-index
sublattice of Zd. Furthermore, the terms given by the elements of Te(x) and
the elements of Te(x′) differ from each other in exponential growth, because
−x · r and −x′ · r disagree on R except possibly for a set of codimension 1.
This contradicts the fact that both expansions represent asymptotics for the
same sequences, so two such tori cannot exist.

To prove (ii), the deformation used to prove Theorem 5.3 shows that the
intersection cycle may be deformed to a sum of elements of local homology
groups. None of these can be zero because there is a term corresponding to
each in (9.8). Similarly, each is a relative homology generator: this can be seen
from the deformation, but an easier argument is that the corresponding term
Φw(r) is, up to sign, the integral obtained from a small (d − 1)-patch and we
know the local homology generator is a (d − 1)-ball modulo its boundary (see,
for example, Theorem C.38).

Conclusion (iii) can be argued similarly to (ii), using the stratified descrip-
tion of attachments from Theorem D.25 in place of Theorem C.38. Alterna-
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tively, the Thom isomorphism (Theorem C.2) says that o induces an injec-
tion from Hd−1(V∗) to Hd(Cd

∗ \ V). Being functorial, it commutes with π∗
where π : V∗ → (V∗,V≤c−ε) is projection. The Thom isomorphism carries
INT(T,T ′) to T − T ′, which is equal to T in Hd(V∗,V≤c−ε), proving (iii). �

We remark that it is possible to have a minimal smooth contributing point p
in the direction r̂, and another smooth critical (but not contributing) point p′

in the direction r̂ that is not minimal but has the same height as p.

9.3 Smooth bivariate functions

This section further explores bivariate rational functions, for which we can be
more explicit and give stronger results.

9.3.1 Smooth bivariate power series

We first present a complete algorithm for bivariate power series that finds all
smooth contributing critical points, without any assumption of minimality, fol-
lowing the techniques of [DeV11; DvdHP11].

Assumption 9.1. In this section we always assume thatV is smooth and Q is
square-free, so that for every (x, y) ∈ V, at least one of Qx(x, y) and Qy(x, y) is
non-zero, and that the set of critical points is finite. If Q is not square-free then
our arguments characterizing the singularities that determine asymptotics still
hold when Q is replaced by its square-free part.

In any number of variables, a potential program to determine asymptotics is
the following.

1. Explicitly compute a cycle representing the intersection class.
2. Try to push the cycle below each critical point, starting at the highest.
3. When it is not possible to push past a point, describe the local cycle that is

‘snagged’ on the critical point.
4. Check whether this is a quasi-local cycle of the form we have already de-

scribed and, if so, read off the estimate from saddle point asymptotics.

This program is not generally effective because the step of ‘pushing the cycle
down’ is not algorithmic, which is why we use the framework of stratified
Morse theory. However, an exception occurs when d = 2, since the cycle C has
codimension 1 inV and thus, up to a time change, there is only one way for it
to flow downward.
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Fix a direction r̂ = (r̂, ŝ) with r̂ and ŝ positive (otherwise all series coef-
ficients in this direction are zero, or given by a univariate rational function,
since we consider the power series expansion of F). Because Q does not van-
ish at the origin, there exists some ε > 0 such that V = VQ does not in-
tersect the set {(x, y) : |x| ≤ ε, |y| ≤ ε}. Now, for any c ∈ R if the height
h(x, y) = −r̂ log |x| − ŝ log |y| of a point (x, y) is at least c then either |x| ≤ e−c

or |y| ≤ e−c. Taking c ≥ log(1/ε) thus shows that no connected component of
V≥c contains both points with |x| ≤ ε and points with |y| ≤ ε.

On the other hand, for sufficiently large c every connected component of
V≥c contains points with arbitrarily large height, and hence points with either
|x| ≤ ε or |y| ≤ ε. Thus, we may decompose V≥c for sufficiently large c into
a disjoint union X≥c ∪ Y≥c, where X≥c is the union of connected components
containing points with arbitrarily small x-coordinates and Y≥c is the union of
connected components containing points with arbitrarily small y-coordinates.
Puiseux’s Theorem states that in a sufficiently small neighborhood of the origin
in x, with a ray from the origin removed to account for branch cuts, every
branch y(x) of Q(x, y) = 0 has a representation

y(x) =
∑
j≥ j0

c jx j/k

for a fixed branch of the kth root, where j0 ∈ Z and k is a positive integer (and
analogous representations for the branches of x in terms of y also hold). By
Rouché’s Theorem, projection of such a connected component to its x-value
is diffeomorphic as a covering to the projection of the graph of yk = Cx j for
some constant C, such a covering space being diffeomorphic to a punctured
disk. Thus, for any sufficiently large c, the connected components of X≥c and
Y≥c are diffeomorphic to disjoint open disks with their origins removed. The
values of c such that this decomposition holds form an interval [cxy,∞) for
some cxy ∈ R.

Critical points at infinity
Puiseux’s Theorem also helps characterize critical points at infinity. In partic-
ular, any branch y(x) of Q(x, y) = 0 near the origin x = 0 satisfies

y(x) = Cxα(1 + o(1))

for some C ∈ C and α ∈ Q, and any branch x(y) near the origin y = 0 satisfies

x(y) = C′yβ(1 + o(1))

for some C′ ∈ C and β ∈ Q. If F(x, y) has a CPAI in the direction r̂ then either
α = − r̂

ŝ for some branch y(x) or β = − ŝ
r̂ for some branch x(y). We thus make

the following assumption to rule out the existence of CPAI.
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Assumption 9.2 (No CPAI). For any branch y(x) = Cxα(1+o(1)) of Q(x, y) =

0 as x → 0 we have α , − r̂
ŝ and for any branch x(y) = C′yβ(1 + o(1)) of

Q(x, y) = 0 as y→ 0 we have β , − ŝ
r̂ .

When Assumption 9.2 holds we can be very explicit about the behavior of
the height function near the coordinate axes.

Lemma 9.27. Assume there are no CPAI. For any sufficiently small ε > 0,
fixed θ ∈ [−π, π], and branch y(x) of Q(x, y) = 0 near x = 0, the parametrized
height function

hθ(t) = h
(
teiθ, y

(
teiθ

))
is monotonic for t ∈ [0, ε]. Furthermore, if y(x) ∼ Cxα as x→ 0 then

lim
t→0+

hθ(t) =

∞ if α > −r̂/ŝ

−∞ if α < −r̂/ŝ
.

Proof Puiseux’s theorem implies we can always find α ∈ Q,C ∈ C, and a
function φ with φ(x) and xφ′(x) in o(1) such that y(x) = Cxα(1 + φ(x)) as
x→ 0. The height function is the real part of H(x, y) = −r̂ log x − ŝ log y, so

d
dt

hθ(t) = cos(θ)Re
[
Hx(x, y(x))

]
− sin(θ)Im

[
Hx(x, y(x))

]
,

where

Hx(x, y(x)) =
−r̂ − ŝα

x
−

φ′(x)
1 + φ(x)

∼
−r̂ − ŝα

x
.

Thus

d
dt

hθ(t) ∼
−r̂ − ŝα
|x|

,

which is strictly positive or strictly negative under Assumption 9.2. Finally, we
note

hθ(t) ∼ log
(
Ct−r̂−ŝα

)
for t sufficiently small, giving the stated asymptotic behavior. �

Corollary 9.28. Under Assumption 9.2 the connected components of X≥c are
diffeomorphic to disjoint open disks with their origins removed, corresponding
to the branches y(x) ∼ Cxα of Q(x, y) = 0 as x→ 0 with −r̂/ŝ < α ≤ 0.
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Intersection cycles and flows
Fixing |x| small and expanding |y| gives a homotopy that (up to minor pertur-
bation) intersectsV transversely. In particular, the intersection cycle C created
from this operation contains a positively oriented circle around the removed
origin from each of the punctured disks in X≥c for c sufficiently large. As usual,
we get a residue integral expression

ar,s =
1

2πi

∫
C

Res
(

P(x, y)
Q(x, y)

x−r−1y−s−1dx ∧ dy
)

when P and Q are polynomials. More generally, when P is an analytic function
over appropriate regions of Cd we get

ar,s =
1

2πi

∫
C

Res
(

P(x, y)
Q(x, y)

x−r−1y−s−1dx ∧ dy
)

+ O(δr+s)

as r, s→ ∞, for any δ > 0.
As we have already seen multiple times, in the absence of CPAI the topology

ofV≥c cannot change with c except at critical values. Because we work in two
dimensions, we can be very explicit about the change in topology as c passes
through a critical value.

Definition 9.29. Suppose σ = (x0, y0) is a critical point where Qx(σ) , 0, so
that we can parametrize y = y(x) in a neighborhood of σ inV. The degree of
degeneracy of Q at σ is the integer k such that there is a series expansion

h(x, y(x)) = h(σ) + Re

∑
j≥k

c j(x − x0) j


in a neighborhood of x0 with ck , 0. Because σ is a critical point of the
height function h, the degree of degeneracy is always at least 2, and σ is a
nondegenerate critical point precisely when the degree of degeneracy is equal
to 2. Because r̂ has no zero coordinate and σ is a critical point, Qy(σ) , 0 and
the degree of degeneracy is the same parametrizing by y instead of x.

If σ = (x0, y0) is a critical point with degree of degeneracy k then we can
substitute y = y(x) and expand H(x, y) = −r̂ log x − ŝ log y near x0 to obtain

H(x, y(x)) = C + (x − x0)kg(x)

for some C ∈ C and analytic function g with g(x0) , 0. In particular, if w =

(x−x0)g(x)1/k then (dw/dx)(x0) , 0 and we can parametrize the height function
h in the local coordinate w near σ as

h(x(w), y(x(w))) = Re
[
H(x(w), y(x(w)))

]
= h(σ) + Re

[
wk

]
.
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Thus, near σ the set V contains k disjoint ascent regions, where h increases
while moving towardsσ, which alternate with k disjoint descent regions, where
h decreases while moving towards σ; this is illustrated in Figure 9.5 below.

Definition 9.30. Let cxy ∈ [−∞,∞) be the infimum of all values c such that
X>c ∩ Y>c = ∅ (which is also the smallest value c such that X>c and Y>c are
well-defined). If cxy = −∞ then let W = ∅, otherwise let W be the nonempty
set of critical points σ such that h(σ) = cxy and, for any sufficiently small
neighborhood U of σ inV, the sets U ∩ X>cxy and U ∩ Y>cxy are nonempty.

Our choice of the notation W comes from the following result.

Theorem 9.31. Suppose Assumptions 9.1 and 9.2 hold. If W is empty then the
intersection cycle C is in the same homology class as a cycle with maximum
height −m for all sufficiently large m ∈ R (it can be pushed down forever). If
W is nonempty then C is in the same homology class as a cycle κ such that

(i) The points of κ with maximum height are precisely the points of W.
(ii) For σ ∈ W and a sufficiently small neighborhood U of σ in V, if

A0, . . . , Ak−1 and D0, . . . ,Dk−1 denote the ascent and descent regions of
κ ∩ U enumerated counterclockwise such that D j lies between A j and
A j+1 mod k then

κ ∩ U =

k−1∑
j=0

[
X( j + 1) − X( j)

]
γ j,

where each γ j is a curve traveling downward in D j starting at σ and

X( j) =

1 if A j mod k ⊂ X>cxy

0 if A j mod k ⊂ Y>cxy
.

In particular, κ ∩ U projects to a non-trivial cycle in the relative homology
group H1(U,U ∩ V≤cxy−ε) for any ε > 0 sufficiently small (so the intersection
cycle gets stuck at height cxy).

Proof Let M ∈ R be larger than all critical values of h. Then C is homologous
to closed curves in each component of X≥M , and in fact it is homologous to the
boundary ∂X≥M . First, we show that we can push down the intersection cycle
until arriving at cxy. The topology of V≥c only changes at critical values c, so
let σ be a critical value in (cxy,M] and suppose that σ is the only critical point
with h(σ) = σ.

Figure 9.3 showsV≥c (shaded) for three values of c when the degree of de-
generacy of σ is k = 2 and a circle enclosing a region where the parametriza-
tion h = σ + Re[wk] holds (higher degrees of degeneracy are similar, just with

https://doi.org/10.1017/9781108874144.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874144.014


9.3 Smooth bivariate functions 267

Figure 9.3 V≥c and its boundary for three values of c.

more components). In the top diagram c > σ, in the middle diagram c = σ,
and in the bottom c < σ, with the arrows showing the orientation of ∂V≥c

inherited from the complex structure ofV.
Consider the first picture where c > σ. Because c > cxy each of the k shaded

regions is in X≥c or Y≥c, but not both. In fact, since σ > cxy this persists in
the limit as c ↓ σ, so either all k regions are in Y≥c or all k regions are in
X≥c. In the first case ∂X≥c does not contain any critical points of h on V with
height in an interval (σ−2ε, σ+2ε), so the first Morse Lemma implies ∂X≥σ+ε

is homotopic to ∂X≥σ−ε as desired. In the latter case, the difference between
∂V≥σ+ε and ∂V≥σ−ε is a boundary ∂B (see Figure 9.4, or Figure 9.5 below) so
these sets are still homologous. In fact, one can show they are still homotopic.

Thus, we can push the intersection cycle below any critical value above cxy

that has a single corresponding critical point, and the same argument holds
generally by working locally around each critical point of fixed height larger
than cxy. In particular, if W is empty then we can push the intersection cycle
down to arbitrarily low height.

It remains only to show that the intersection cycle can be represented by
the stated cycle κ. Just as in Figure 9.3, the connected components of ∂X≥cxy+ε

will contain curves moving through a descent region of V near σ, crossing
over an ascent region, then going back out through an adjacent descent region.
However, unlike for critical points at higher height where all ascent regions are
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Figure 9.4 ∂V≥σ+ε and ∂V≥σ−ε differ locally by a boundary.

covered or none were, in this case the curves will only cross the ascent regions
containing points of X>cxy ; see Figure 9.5.

Figure 9.5 Left: Plot of V near a critical point with degree of degeneracy k = 3,
whereV>cxy contains two ascent regions with points in X>cxy and one region with
points in Y>cxy . The setV>cxy+ε is colored gray and the part of ∂X≥cxy+ε in view is
drawn. Right: Straightening out the connected components of ∂X≥cxy+ε near this
critical point gives the stated curves γ j.

The connected components of ∂X≥cxy+ε can be straightened into rays γ j (in
terms of the local coordinate w) that stay in each descending region adjacent
to an ascending region containing points of X>cxy . If the descending region is
between ascending components containing points of Y>cxy and X>cxy , working
counterclockwise, then γ j will start at the critical point and move down the
descending region. Conversely, if the descending region is between ascend-
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ing components containing points of X>cxy and Y>cxy , working counterclock-
wise, then γ j will move up the descending region to peak at the critical point.
Descending regions between two ascending regions both containing points of
X>cxy have γ j twice with opposite orientations, which can be joined and pushed
to lower height. Descending regions between two ascending regions both con-
taining points of Y>cxy are not touched by the intersection cycle. Taking these
sign considerations into account gives the stated formula for κ. �

Theorem 9.31 immediately gives an algorithm for the bivariate case.

Algorithm 3: Determination of W in the smooth, bivariate case.
Input: Bivariate rational function F(x, y) and direction (r, s).
Output: Set of critical points W determining coefficient asymptotics of

F in the (r, s) direction.
1 Verify that Assumptions 9.1 and 9.2 hold using Gröbner bases and Puiseux

expansions
2 List the critical value in order of decreasing height
3 Set the provisional value of cxy to the highest critical value
4 For each critical point at height cxy do

(a) Compute the order k of the critical point
(b) Follow each of the k ascent paths until it is clear whether the

x-coordinate or the y-coordinate goes to zero
(c) Add the point to the set W if and only if at least one of the k paths has

x-coordinate going to zero and at least one of the k paths has
y-coordinate going to zero

5 If W is nonempty then terminate and output cxy and W
6 Else, if cxy is not the least critical value then replace cxy by the next lower

critical value and go to step 4
7 Else, if no critical values remain then cxy = −∞, W is empty, and the

asymptotics decay super-exponentially

The doctoral dissertation [DeV11] discusses how to turn this breakdown
into effective steps, and [MS22] give an implementation in Sage using interval
arithmetic. The trickiest part is Step 4b. Ascent paths could conceivably get
caught in a trap, approaching a critical point rather than continuing to height
+∞. However, this is a higher critical point, hence already known to be in
an x- or y-component. Therefore, one only needs to know a radius ε for each
higher critical point p such |w −p| < ε impliesw is in the same component as
p, which can be done with interval arithmetic. We conclude this section with
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an example of the evaluation of the intersection class for a particular smooth
bivariate generating function whose analysis first appeared in [DeV10].

Example 9.32 (bi-colored supertrees). A bi-colored supertree [FS09, Exam-
ple VI.10] is a planar binary tree with each node replaced by a bi-colored
rooted planar binary tree. The class of bi-colored supertrees is counted by the
main diagonal of the bivariate function

F(x, y) =
P(x, y)
Q(x, y)

=
2x2y(2x5y2 − 3x3y + x + 2x2y − 1)

x5y2 + 2x2y − 2x3y + 4y + x − 2
,

and we give asymptotics following the algorithm above.
First, we note that there is one branch y(x) ∼ (−4)x−5 of y as x → 0 and

four branches x(y) of x as y→ 0, two of which satisfy x(y) ∼ y−1/2 and two of
which have x(y) ∼ −y−1/2. In particular, there are no critical points at infinity in
the main diagonal direction (r, s) = (1, 1). A quick Gröbner basis computation
further verifies that the system

Q(x, y) = Qx(x, y) = Qy(x, y) = 0

has no solution, and the smooth critical point system

Q(x, y) = xQx(x, y) − yQy(x, y) = 0

has three solutions1 − √5,
3 +
√

5
16

 , (
2,

1
8

)
,

1 +
√

5,
3 −
√

5
16

 ,
listed here in order of decreasing height under h1/2,1/2.

The highest critical point is nondegenerate, meaning V locally has two as-
cent paths. Following both ascent paths using, for instance, the Sage package
of [MS22] shows that both contains points arbitrarily close to the x-axis, so
the intersection cycle can be pushed lower. In this case we could also simply
observe that the highest critical point cannot contribute to the asymptotics be-
cause the coordinates are real and of opposite sign. The factor x−ny−n in the
asymptotic formula for an,n would then force the signs to alternate on the diag-
onal, whereas we know the diagonal terms to be positive.

Continuing to the next-highest point we consider the point (2, 1/8). This
point has degree of degeneracy four, of which three climb to the x-axis and
one climbs to the y-axis. In particular, the point (2, 1/8) determines dominant
diagonal asymptotics and, using the notation of Theorem 9.31, the intersection
cycle is homologous to γ = γ j − γ j−1 where j is the index of the region whose
ascent region goes to the y-axis. Among the four descent regions, this path
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inhabits two consecutive ones, making a right-angle turn as it passes through
the saddle.

Finally, we evaluate the univariate integral over this cycle. To compute the
residue form in this example it is easiest to parametrize a neighborhood of
(2, 1/8) in V by the x-coordinate and use Proposition C.8 from Appendix C
with j = 2 to see that

ω = Res
(
F(x, y)x−n−1y−n−1dx ∧ dy

)
=

−P(x, y)
xy(x)Qy(x, y(x))

x−ny(x)−n dx.

Moving the origin to x = 2, equals

1
2πi

∫
γ

ω = 4n
∫
γ

A(x)e−nφ(x) dx

where the series expansions for A and φ are given by

A(x) = −
x3

8
−

x4

16
+ O(x5)

φ(x) = −
x4

16
+ O(x6) .

Applying Theorem 4.1 to evaluate the integral on the segment −γ j+1 using the
parametrization x = (i − 1)t for 0 ≤ t ≤ ε gives a series for 1

2πi

∫
ω that begins

4n

−i
4π

n−1 +
(1 + i)

√
2Γ(5/4)

8π
n−5/4 + O(n−3/2)

 .
Similarly, on γ j we parametrize by x = (−i − 1)t and obtain the complex con-
jugate of the previous expansion,

4n

 i
4π

n−1 +
(1 − i)

√
2Γ(5/4)

8π
n−5/4 + O(n−3/2)

 .
When the two contributions are summed the first terms cancel and we are left
with

an,n ∼
4n
√

2Γ(5/4)
4π

n−5/4 .

/

9.3.2 Laurent series

In this section we discuss what can be done when the hypotheses of Algo-
rithm 3 are satisfied, except that the series in question is a Laurent series rather
than an ordinary power series. We first revisit Algorithm 3 from a different
point of view, involving intersection numbers of middle-dimensional cycles.
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Definition 9.33. Let X be a smooth, oriented real 2k-manifold, and let γ1 and
γ2 be two smooth, oriented k-cycles on X, intersecting transversely at finitely
many points x1, . . . ,xm. The signed intersection number of γ1 and γ2 is the
integer

#(γ1, γ2) =

m∑
j=1

sgn(x j),

where sgn(x j) = 1 if the oriented bases B1 and B2 for the tangent spaces Tp(γ1)
and Tp(γ2) form (in this order) a positively oriented basis for the tangent space
Tp(X), and sgn(x j) = −1 otherwise.

The following construction can be found in [GP74] or [BJ82, pages 151–
152].

Proposition 9.34. Let X be an oriented real manifold of dimension 2k and let α
and β be smooth oriented compact cycles of dimension k. Then generic pertur-
bations of α and βwill intersect transversely in a finite number of points [GP74,
Section 2.3], and the resulting signed intersection number does not depend on
the generic perturbation. In fact, the signed intersection number is an invari-
ant [GP74, Section 3.3] of the homology classes [α] and [β] in Hk(X). �

Let h be a (not necessarily proper) smooth Morse function on a complex
k-manifold X with finitely many critical points x1, . . . ,xm, listed in order of
decreasing height h(x1) ≥ · · · ≥ h(xm), such that all critical points have middle
index k. For each j ≤ m, let γ j be a smooth cycle agreeing with the stable
manifold of the (upward) gradient flow of h in a neighborhood of x j having
x j as its highest point. Similarly, let γ j be a smooth cycle agreeing with the
unstable manifold of the gradient flow of h in a neighborhood of x j with x j

as its lowest point. The γ j are absolute cycles representing attachments in the
Morse filtration at x j (described in Appendix C). Similarly, the γ j are absolute
cycles representing attachments in the reverse Morse filtration at x j, obtained
by replacing h by −h.

Proposition 9.35. Let L be the subspace of Hk(X) generated over the complex
numbers by {[γ j] : j ≤ m} and let L∗ denote the dual space to L. Then {[γ j] :
j ≤ m} is a basis for L∗ and the signed intersection number #(γi, γ

j) is a
nonsingular pairing whose representing matrix M is upper triangular.

Proof When i = j the cycles γi and γ j represent the stable and unstable
manifolds of the gradient flow for a Morse function at the critical point x j.
Morse functions are quadratically nondegenerate, therefore locally these inter-
sect transversely at a single point, and they cannot intersect anywhere else due
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to the height restrictions. Hence the intersection number is ±1. When i > j the
height restrictions prevent γi and γ j from intersecting at all, whence Mi j = 0,
so M is an upper triangular matrix with ±1 diagonal entries, and thus nonsin-
gular. �

Remark 9.36. If h(x j) = h(x j+r) for r ≥ 1 then again the height restrictions
prevent γi from intersecting γ` when i and ` are distinct elements of { j, . . . , j +

r}, hence the only non-zero entries in the submatrix M[ j, j+r],[ j, j+r] are those on
the diagonal.

Algorithm 3 may be understood in terms of this pairing, as we now sketch.

Sketched alternative proof of correctness for Algorithm 3 Suppose that some
component B′ of the complement of the amoeba of Q(x, y) contains a ray with
small x coordinate that points up in the y direction, let T be the torus of in-
tegration for the bivariate Cauchy integral, with both x- and y-radii arbitrarily
small, and let γ be the intersection cycle INT(T,T ′), where the basepoint of
T ′ still has small x-coordinate but has sufficiently large y-coordinate to be in
B′. Then γ consists of small cycles around the points (0, s), as s ranges over
the roots of Q(0, y). Assuming these to be simple roots, the circles wind once
about the origin.

The key is to interpret Steps 4(b-c) in Algorithm 3 using intersection num-
bers. Suppose p j is a nondegenerate critical point reached by the algorithm,
with corresponding ascent path γ j. Steps 4(b-c) compute the intersection num-
ber of γ with γ j. If, among the two branches of γ, one goes to the x-axis and
one goes to the y-axis, then γ will intersect precisely one of the circles around
a point (0, s) and the intersection number will be ±1. If both branches go to
the x-axis then the intersection number is zero because they cannot intersect
any of the small circles around the points (0, s). Furthermore, the intersection
number depends only on the homology class of the intersection cycle γ and, as
shown in Corollary C.5 of Appendix C, the homology class of the intersection
cycle obtained by keeping |x| small and taking |y| to infinity is the same as the
intersection cycle obtained by keeping |y| small and expanding |x| to infinity.
Interpreting the intersection cycle using this second construction shows that if
both branches go to the y-axis then the intersection number is also zero.

The upshot is that in Step 4(c), the point p j is added to W if and only if
#(γ, γ j) = ±1 is non-zero. If any point at a given height is added, then all
points at that height are added for which the intersection number of the ascent
path with γ is ±1 and no lower points are added. Inverting the dual basis shows
that γ −

∑
i:pi∈W ±γi is zero in H1(V∗,V<cxy ). �

We now return to the case of more general Laurent series. The difference
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between these and ordinary power series is that we can no longer count on
the intersection cycle γ to be the union of small circles around points of inter-
section of V with one of the coordinate axes. The solution is to consider the
components B where the series is defined and B′ where height goes to −∞ and
trace an explicit intersection path γ between two points in these components.
One can then try to infer the intersection numbers #(γ, γ j) between γ and every
ascent path γ j from every critical point p j. If successful, this identifies W as
the set of p j such that h(p j) is maximized among p j such that #(γ, γ j) = ±1.

Example 9.37. The generating function 1/Q(x, y), where

Q(x, y) = 3 + x + x−1 + y + y−1 +
1
2

(x + x−1)(y + y−1) +
1
5

(x − x−1 + y − y−1),

appears in the analysis of certain matrix inversions arising from Green’s func-
tion computations [Wan22]. Figure 9.6 shows a plot of the amoeba of Q. Its
Newton polygon is the convex hull of the 3×3 grid of lattice points with |x| ≤ 1
and |y| ≤ 1.

Figure 9.6 The amoeba of Q (reproduced with permission of Hong-Yi Wang).

The complement of the amoeba of Q has seven components, illustrated in
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Figure 9.6. Six of the components are unbounded and correspond to vertices on
the perimeter of the Newton polygon, and the seventh component is a bounded
component corresponding to the origin, which is an interior lattice point of the
Newton polygon.

Exercise 9.9. Laurent polynomials whose Newton polygons are as in Example
9.37 can have as many as nine components in the amoeba complement. How-
ever the specific Laurent polynomial Q(x, y) under consideration only admits
seven.

(a) Let Qx+(x, y) denote the sum of the three monomials in Q that have x-
degree 1. How many distinct values do the magnitudes of the roots of
Qx+(y) take?

(b) Let Qx−(x, y) denote the sum of the three monomials of Q that have x-
degree −1. How many distinct values do the magnitudes of the roots of
Qx−(y) take?

(c) Explain why there is only one amoeba ‘tentacle’ in the negative x direction
whereas there are two in the positive x direction.

Continuing our current example, the component unbounded in the (−1,−1)
direction corresponds to a power series expansion. However, the series of com-
binatorial interest in this case is the one corresponding to the bounded com-
ponent, which we call B. Specifically, asymptotics of this series in the (1, 1)
direction are desired. For the component B′ we may choose any where h(1,1)

is unbounded from below, and for specificity we choose the component in the
upper right.

A quick computation shows the varietyVQ to be smooth and identifies eight
critical points in the direction r̂ parallel to (1, 1). Their projections under the
Relog map are shown on the amoeba in Figure 9.6 and denoted by p1, . . . ,p8.
All but two of the points, p3 and p4, are on the boundary of the amoeba, and
the four points p2 = p1 and p8 = p7 come in conjugate pairs.

As described immediately prior to the example, we choose an explicit in-
tersection cycle γ by moving the product of circles represented by the point
x ∈ B to one represented by a point in B′. The size of a fiber amoeba−1(x)
for x ∈ B only changes when crossing a point of the amoeba contour drawn in
Figure 9.6, so by sampling points and performing algebraic computations it is
possible to determine that the interior of the amoeba has four regions on which
the log-modulus map from V to amoeba(Q) is two-to-one, while the map is
four-to-one on the remainder of the amoeba (the four-to-one regions are more
heavily shaded in Figure 9.6).

To construct the intersection cycle γ, we first choose x to be the origin and
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move it in the (1, 0) direction halfway to p5, then up and around the boundary
of the component containing p5 moving rightward to the edge of the picture
and then upward into B′. Until the very end, this traces a single path in each of
the two preimages of the log-modulus map. Therefore γ will be a single arc,
centered on the preimage of the point x′ where the amoeba was first entered
(this boundary point having a single preimage) and extending downward until
another piece of arc appears when passing through where the preimage size is
four. This second arc can be made to occur below every critical point, therefore
as a cycle relative to −∞ the cycle γ is a simple arc in the preimage size 2 region
with p5 on its boundary.

We conclude immediately that p1,p2,p3,p4,p5, and p6 do not contribute.
The first four are in fact higher than the origin, so the upward trajectories can-
not possibly intersect the intersection cycle. For p5, it suffices to check that
the two upward trajectories can be drawn to be disjoint from our choice of
γ. Indeed, the two ascent arcs, projected to the amoeba, move initially in the
(−1,−1) direction, and can do so until they are higher than the highest point
on the intersection cycle. Where they go after that is unclear, because upon
entering the preimage size 4 region it is no longer clear which is the increasing
time direction, so the image of the arcs may no longer be able to move in the
(−1,−1) direction. However, they are already high enough that they cannot in-
tersect γ. By symmetry, an identical argument (choosing a different γ) shows
that p6 cannot contribute.

By symmetry, p7 contributes if and only if p8 contributes. By process of
elimination, because we know the asymptotics are non-zero, these both con-
tribute. To argue this geometrically, one needs to understand where the two
ascent arcs from p7 go. The description in terms of the four preimages is a lit-
tle complicated, but one finds in the end that the projections of the two ascent
arcs to the amoeba pass around the hole (the region B) in opposite ways, one
to the north and one to the south. This forces the intersection number with γ to
be ±1; see [Wan22] for details.

We conclude that the intersection cycle γ is homologous to the sum of a
homology generator going downward from p7 and a homology generator going
downward from p8, with properly chosen signs. The coordinates of the critical
points are algebraic numbers satisfying

55 x8 +664 x7 +2840 x6 +5780 x5 +5610 x4 +2520 x3 +440 x2−44 x−45 = 0 .

The points p7 and p8 are on the diagonal, conjugate to each other, with co-
ordinates −2.19 . . . ± i1.10 . . .. The two contributions have opposite phases,
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ultimately giving that

an,n ∼ Cn−1/2α−n cos(nθ),

where α = 6.03 . . . is the absolute value of the product of the coordinates in p7

(or equivalently the coordinates of p8) and C and θ are non-zero constants. /

Exercise 9.10. Find the constants C and θ for this example.

9.3.3 Smooth Bivariate Generating Functions with Degeneracies

Using the results of Chapter 4 we can give asymptotics for bivariate smooth
point asymptotics in directions where the phase function φ vanishes to arbitrary
order. For simplicity, we consider a power series expansion and assume that
the dominant singularities are finitely minimal points where the numerator P
is nonvanishing. It is also possible to derive (more complicated) results when
these conditions fail: for instance, they fail in Example 9.32 above.

Let (x∗, y∗) be a smooth minimal critical point in the direction r̂ and assume
that Qy(x∗, y∗) , 0 so that we can parameterize y = g(x) on V near (x∗, y∗).
Theorem 9.17 and (9.16) define functions A and φ such that

xr
∗y

s
∗(ars − χ) = O

(
e−εs) ,

where

χ(r, s) = x−r
∗ y−s
∗

1
2π

∫ ε

−ε

e−sφ(θ)A(θ) dθ . (9.19)

Let c = cκ denote the leading non-zero series coefficient in the expansion
φ(x) ∼ cκxκ as x→ 0 and define the quantity

Φx∗,y∗ (r) = −
Γ(1/κ)

2κπ
(1 − ζ)

P(x∗, y∗)
y∗Qy(x∗, y∗)

c−1/κs−1/k x−r
∗ y−s
∗ , (9.20)

where, as in Theorem 4.1(iii), ζ = −1 if κ is even and ζ = exp(σiπ/κ) if κ is
odd.

Theorem 9.38. If (x∗, y∗) is a strictly minimal critical point in the direction r̂
and satisfies the conditions above then as (r, s) → ∞ with the distance from
(r, s) to the ray {tr̂ : t ≥ 0} remaining bounded, there is an asymptotic series
of the form

ars ≈ x−r
∗ y−s
∗

∞∑
j=0

ν js(−1− j)/k

with leading term Φx∗,y∗ (r). If (x∗, y∗) is a finitely minimal point and all critical
points with the same coordinate-wise modulus satisfy the same conditions as
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(x∗, y∗) then an asymptotic series for ars is obtained by adding the contributions
of each of the critical points.

Proof The asymptotic development follows from (9.19) and Theorem 4.1. It
remains to check that the leading term is given by (9.20). Starting from (9.19)
use Theorem 4.1 with ` = 0 to get, in the notation of Theorem 4.1, the leading
term

χ ∼
x−r
∗ y−s
∗

2π

∫ ε

−ε

A(x)e−sφ(x) dx

=
x−r
∗ y−s
∗

2π
I(s)

=
x−r
∗ y−s
∗

2π
(1 − ζ)C(κ, 0)A(0)(cs)−1/κ.

Parametrizing by y means choosing coordinate k = 2 giving sign (−1)k−1 = −1

in A(0) = −
P(x∗, y∗)

y∗Qy(x∗, y∗)
, and the fact that C(κ, 0) =

Γ(1/κ)
κ

gives (9.20). �

Example 9.39 (Cube root asymptotics). Let F(x, y) = 1/(3 − 3x − y + x2) so
that the setV is parametrized by y = g(x) = x2 − 3x + 3. If r̂ = (a, 1 − a) then
asymptotic behavior depends on whether a is less than, equal to, or greater than
1/2. When a < 1/2 there are two real critical points on the curve y = g(x) –
as a increases from 0 to 1/2 one approaches (1, 1) from the left, and the other
approaches (1, 1) from the right (see Figure 9.7). Only the critical point on
the right of (1, 1) is minimal, and it determines asymptotics. When a = 1/2,
the two critical points meet and h becomes quadratically degenerate. Once
a > 1/2, the critical points have complex conjugate coordinates and are both
minimal.

Because (1, 1) is a minimal point, the main diagonal has exponential rate
zero, while all other directions have exponential decay at a rate that is uni-
form over compact subsets of directions not containing the diagonal. Implicit
differentiation implies

g′′(x) = −3
x(x2 − 4x + 3)
(x2 − 3x + 3)2 ,

which vanishes when x = 1 as the critical point (1, 1) in the main diagonal
direction is degenerate. Computing further, we find that g(x) − g(1) vanishes
to order κ = 3 here, with c = c3 = g′′′(1)/3! = i. Checking the signs gives
ζ = −eiπ/3 and therefore

i−1/3(1 − ζ) = eiπ/6 + e−iπ/6 = 2 cos(π/6) =
√

3.
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Figure 9.7 The two critical points for Q(x, y) = 3 − 3x + x2 − y in directions
(a, 1 − a) with a < 1/2, which approach the same degenerate ‘double point’ (1, 1)
when a→ 1/2. Only the critical points with x > 1 are minimal for such directions.

Evaluating A(0) = −P(1, 1)/yQy(1, 1) = −1/(−1) = 1, Theorem 9.38 gives

ar,r ∼
1

2π
C(3, 0)i−1/3(1 − ζ)r−1/3 =

√
3Γ(1/3)

6π
r−1/3 .

/

Remark. We have given a formula holding only very near a fixed direction r̂.
Because the results for nondegenerate smooth points hold in neighborhoods of
directions, it remains to be seen whether asymptotics can be worked out that
“bridge the gap” and hold when the distance δ = ||r − |r| · r̂|| to the ray {λ · r̂}
satisfies |r| � δ � 1. See Section 13.2 for further discussion.

9.4 Additional formulae for asymptotics

It is sometimes useful to have alternative or more detailed formulae for the
coefficients of the asymptotic expansions derived above. We collect some such
formulae in this section.
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9.4.1 Higher order terms

We first examine explicit expressions for the higher order asymptotic coeffi-
cients.

Theorem 9.40. Under the hypotheses of Theorem 9.5, the asymptotic series
Φw(r) can be expressed as

Φw(r) =
w−r√

det(2πrdH)

∑
k≥0

p−1∑
j=0

(rd + 1)(p−1− j)

(p − 1 − j)! j!
r−k

d Lk(A j, φ),

where

Lk(A, φ) = (−1)k
∑

0≤`≤2k

D`+k
(
A(x) · φ(x)`

)
2`+k`!(` + k)!

∣∣∣∣∣∣∣∣
x=0

for the functions

φ(x) = φ(x) − (1/2)x · H ·xT

A j(θ) = R j(w◦eiθ)

R j(z) = (−g(z◦))−p+ j lim
zd→g(z◦)

∂
j
d ((zd − g(z◦))pF(z)) ,

andD is the differential operator

D = −
∑

1≤i, j≤d

(
H
−1

)
i j
∂i∂ j.

Proof Theorem 9.17 and Lemma 9.18 above imply that Φw(r) is obtained
from an asymptotic expansion of the saddle point integral (9.16), where the
residue Ψ is a weighted sum of terms Rk occurring in the explicit formula
(9.15). Distributing the integral over the sum of residue terms, Lemma 5.16
from Chapter 5 gives an asymptotic expansion of each. The stated result fol-
lows from simplifying the sum of these expansions, taking into account a subtle
interplay between the lower order terms in (9.15) and the higher order terms in
Lemma 5.16. �

Remark 9.41. It is possible to expand the falling factorials in terms of the
Stirling numbers of the second kind and collect powers of rd, to give an explicit
formula for the coefficients Ck in (9.4) at the cost of an even more unwieldy
formula.

Exercise 9.11. In the cases p = 1 and p = 2, explicitly compute the second
term in the asymptotic expansion of Φw(r) in descending powers of rd.
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9.4.2 A geometric formula for the leading term

Complementing the explicit expressions for asymptotics given above, it is pos-
sible to write down a coordinate-free representation for the leading term using
the curvature ofV near the contributing singularities determining asymptotics.
In addition to an alternative, sometimes more compact, expression, coordinate-
free representations can also help with conceptual understanding, such as in
Example 9.47 below. We begin by reviewing the definition of the Gaussian
curvature of a smooth hypersurface, before extending it to certain points of
complex algebraic hypersurfaces.

Gaussian curvature of real hypersurfaces
For a smooth orientable hypersurfaceV ⊂ Rd+1, the Gauss map G sends each
point p ∈ V to a normal vector G(p), which we identify with an element of
the d-dimensional unit sphere S d. For a given patch P ⊂ V containing p, let
G[P] = ∪q∈P G(q). The Gaussian curvature (also called Gauss–Kronecker
curvature) ofV at p is defined as the limit

K = lim
P→p

A(G[P])
A[P]

(9.21)

as P shrinks to the single point p, where A(G[P]) is the area of G[P] in S d

and A[P] is the area of P in V. When d is odd, the antipodal map on S d has
determinant −1, whence the particular choice of unit normal will influence the
sign K , which is therefore only well defined up to sign. When d is even, we
take the numerator to be negative if the map G is orientation reversing and we
have a well defined signed quantity. The curvature K is equal to the Jacobian
determinant of the Gauss map at the point p.

For computational purposes, it is convenient to use standard formulae for
the curvature of the graph of a function from Rd to R. If η is a homogeneous
quadratic form, we let ||η|| denote the determinant of the Hessian matrix of η
computed with respect to any orthonormal basis.

Proposition 9.42 ([Bar+10, Corollary 2.4]). Let P be the tangent plane to V
at p and let v be a unit normal vector. Suppose thatV is the graph of a smooth
function h over P, meaning

V = {p + u + h(u)v : u ∈ U ⊆ P} .

If η is the quadratic part of h, so that h(u) = η(u) + O(|u|3), then the curvature
ofV at p is K = ||η||. �

Corollary 9.43 (curvature of the zero set of a polynomial). Suppose thatV =

{x ∈ Rd : Q(x) = 0} and that ∇Q(p) , 0. If η is the quadratic part of Q at p
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and η⊥ is the restriction of η to the hyperplane orthogonal to ∇Q(p) then the
curvature ofV at p is given by

K =
||η⊥||

||(∇Q)(p)||d−1
2

, (9.22)

where ||(∇Q)(p)||2 denotes the Euclidean norm of the gradient of Q at p.

Proof Replacing Q by ||(∇Q)(p)||−1
2 Q leavesV unchanged and reduces to the

case ||(∇Q)(p)||2 = 1, so we assume without loss of generality that ||(∇Q)(p)||2 =

1. Given an arbitrary vector u we write u = u⊥ + λ(u)(∇Q)(p) to denote the
decomposition of u into its components orthogonal to, and contained in, the
span of (∇Q)(p). The Taylor expansion of Q near p is

Q(p + u) = (∇Q)(p) · u + η⊥(u) + R ,

where R = O(|u⊥|3 + |λ(u)||u⊥|). Near the origin, we can solve for λ to obtain

λ(u) = η⊥(u) + O(|u|3) ,

and the result follows from Proposition 9.42. �

Gaussian curvature at minimal points of complex hypersurfaces
Suppose now that Q is a real polynomial in d variables and that p is a minimal
smooth point of the corresponding complex algebraic hypersurface. We are
interested in the curvature at logp of the logarithmic image logV = {z ∈ Cd :
(Q ◦ exp)(z) = 0} of V (this image is similar to the amoeba of Q except we
do not take moduli). When p is a point with positive real coordinates then the
curvature at logp can be defined (up to a factor of ±1) directly using (9.22)
from Corollary 9.43. In fact, we use this formula to define curvature in the
general complex case as it is invariant under scalar multiplications of Q and
Theorem 6.44 from Chapter 6 implies that the normal (∇log Q)(p) to Q ◦ exp at
a minimal point p is a scalar multiple of a real vector.

It is useful to observe that the curvature K is a reparametrization of the
Hessian determinant in our asymptotic theorems, in the sense that they vanish
together.

Proposition 9.44. The quantity K defined by (9.22) vanishes if and only if the
determinant of the Hessian matrixH in Theorem 9.5 vanishes.

Proof Going back to its original definition in Lemma 8.22, the matrix H in
Theorem 9.5 is the Hessian matrix for the function g expressing logV as a
graph over the first (d − 1) coordinates. At such a point, the tangent plane to
logV is not perpendicular to the dth coordinate plane, and reparametrizing the
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graph to be over the tangent plane does not change whether the Hessian is sin-
gular. The Hessian matrix obtained from such a reparametrization represents
the quadratic form η in Proposition 9.42, so singularity of the Hessian matrix
from Theorem 9.5 is equivalent to singularity of η in Proposition 9.42. �

Theorem 9.45 (Main Theorem of Smooth ACSV (Curvature Version)). Let
F(z) = P(z)/Q(z) be the ratio of coprime polynomials with convergent Lau-
rent series expansion F(z) =

∑
r∈Zd arzr. Suppose there exists a compact set

R ⊂ Rd of directions such that F has a smooth strictly minimal nondegenerate
contributing point w = w(r̂) ∈ Cd

∗ , where Qzd (w) , 0 whenever r̂ ∈ R. Let
K(r̂) denote the Gaussian curvature of logV at logw(r̂). Then

ar =

(
1

2π‖r‖2

)(d−1)/2

w−r K(r̂)−1/2
 P(w)
‖ ∇log Q(w)‖22

+ O
(
‖r‖−1

2

) (9.23)

uniformly as ‖r‖2 → ∞ with r̂ ∈ R. The square-root of the matrix determinant
is the product of the principal branch square-roots of the Jacobian of the Gauss
map when the Gauss map is oriented towards −r̂.

Proof As in the proofs above, we let ω = z−r−1F(z)dz so that

ar =

(
1

2πi

)d−1 ∫
σ

Res(ω)

where σ is an intersection class onV. To work in log space we let z = exp(ζ),
so dz = zdζ and

ar =

(
1

2πi

)d−1 ∫
σ̃

Res
(

exp(−r · ζ)F̃(ζ) dζ
)
,

where F̃ = F ◦ exp and σ̃ = logσ. In fact, our assumptions imply that we have
a simple pole, so we can pull out the factor of z−r = exp(−r · ζ) to obtain

ar =

(
1

2πi

)d−1 ∫
σ̃

exp(−r · ζ) Res(F̃(ζ) dζ). (9.24)

Let P be the tangent space to logV at the point ζ∗ = logw. This tangent
space consists of the vectors orthogonal to r̂, so we may locally parameterize
logV near ζ∗ by P using a representation

logV = {ζ∗ + ζ‖ + h(ζ‖)r̂ : ζ‖ ∈ P} .

Pick an orthonormal basis v(2), . . . ,v(d) for P so that a general point ζ ∈ Cd in
a neighborhood of ζ∗ has a representation

ζ = ζ∗ + u1r̂ +

d∑
j=2

u jv
( j) .
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Proposition C.8 in Appendix C implies

Res(F̃(ζ) dζ) =
P ◦ exp

∂(Q ◦ exp)/∂u1
du2 ∧ · · · ∧ dud+1 ,

and the partial derivative in the direction of the gradient is the square of the
magnitude of the gradient. Thus,

Res(F̃(ζ) dζ)(ζ∗) =
P(w)

‖ ∇log Q(w)‖22
dA, (9.25)

where dA = du‖ = du2∧· · ·∧dud is equal to the oriented holomorphic (d−1)-
area form for logV as it is immersed in Cd.

Let λ = |r| and φ(ζ) = r̂ · ζ so that (9.24) becomes

ar =

(
1

2πi

)d ∫
σ̃

exp(−λφ(ζ)) Res(F̃(ζ) dζ) , (9.26)

and let η denote the quadratic part of h. By Proposition 9.42 (or Corollary 9.43)
and the subsequent discussion, we see that the curvatureK of logV at the point
ζ∗ with respect to the unit normal r̂ is given by ||η||.

To proceed, we describe a logspace intersection cycle σ̃. One way to con-
struct σ̃ is to pick a point x′ in the component of amoeba(Q)c giving the series
expansion under consideration, and a point x′′ in a component of amoeba(Q)c

on which the height function h is unbounded, and take the intersection cycle
of logV with a homotopy H obtained by taking a straight line from x′ to x′′

and mapping by Relog−1. A convenient choice is to make the segment x′x′′

parallel to r̂. The real tangent space to H is then the sum of the imaginary
d-space and the real 1-space in direction r̂. The tangent space to logV is the
sum of the real (d − 1)-space orthogonal to r̂ and the imaginary (d − 1)-space
orthogonal to r̂. The tangent space to σ̃ is the intersection of these, which is
the imaginary (d − 1)-space orthogonal to r̂ – in other words, just ImP.

Because σ̃ is contained in the linear space ImP + C · r̂, we see that locally
there is a unique analytic function α : ImP → C · r̂ such that ζ + α(ζ) ∈ σ̃.
Comparing to our parametrization above, we see that α = h, so the quadratic
part of α is therefore equal to η. Because our multivariate integral formulae
are in terms of real parametrizations, we reparametrize ImP by ζ = iy and
dζ = id dy. In these coordinates, locally

σ̃ = {iy + h(iy) : y ∈ ReP} . (9.27)
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Using r̂ · y‖ = 0 and r̂ · r̂ = 1, we obtain

φ(iy + h(iy)) = φ(ζ∗) + h(iy)

= φ(ζ∗) + η(iy) + O(|y|3)

= φ(ζ∗) − η(y) + O(|y|3) .

We know, by our assumptions, that φ is a smooth phase function whose real
part has a minimum on σ̃ at ζ∗, which is y = 0 in the parametrization (9.27).
Applying Theorem 5.3 to (9.26) using the evaluation (9.25) then gives (9.23),
where the square-root of the curvature is taken to be the reciprocal of the prod-
uct of the principal square-roots of the eigenvalues of −η in the positive r̂-
direction, all of which have nonnegative real parts. The eigenvalues of −η in
direction r̂ are the same as the eigenvalues of η in direction −r̂, which finishes
the proof of the theorem. �

Again, minor modifications to proof extend to include the case where there
are finitely many critical points on a minimizing torus.

Corollary 9.46. Let F(z) = P(z)/Q(z) be the ratio of coprime polynomials
with convergent Laurent series expansion F(z) =

∑
r∈Zd arzr corresponding

to the amoeba complement component B ⊂ amoeba(Q)c. Suppose there exists
a compact set R ⊂ Rd of directions such that for each r̂ ∈ R the function
r̂ · x is uniquely maximized at xmin ∈ B, and that the set W of critical points
in Te(xmin) is finite, nonempty, and consists of smooth nondegenerate points
where some partial derivative of Q does not vanish. For each z ∈ W(r̂) write
z = exp(xmin + iy). Then

ar =

(
1

2π|r|

)(d−1)/2

e−r·x
 ∑
z∈W(r̂)

e−ir·y P(z)
‖ ∇log Q(z)‖22

K (z)−1/2 + O(|r|−1)


uniformly as |r| → ∞ with r̂ ∈ R. �

Example 9.47 (Quantum walk). A quantum walk or quantum random walk
(QRW) is a model for a particle moving in Zd under a quantum evolution in
which the randomness is provided by a unitary evolution operator on a hidden
variable taking k states. States and position are simultaneously measurable, but
one must not measure either until the final time n or the quantum interference
is destroyed. A one-dimensional quantum walk was briefly presented in Ex-
ercise 9.8 as an example of torality. Here we illuminate the general form of
asymptotics for a QRW, using Theorem 9.45 and Corollary 9.46 to qualita-
tively describe the probability profile of the particle at large time n. Further
examples of QRWs are given in Chapter 12.

A QRW is defined by a k×k unitary matrix U along with k vectors v(1), . . . ,v(k)
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in Zd representing possible steps of the walk. At each time step, the particle
chooses a new state j ∈ [k] and then moves by a jump of v( j). The amplitude
of a transition from state i to j is the entry Ui, j, while the amplitude of a path
of n steps, starting in state i0 and ending in states in is

∏n−1
t=0 Uit ,it+1 . Suppose the

particle starts, at time zero, at the origin in state i. The amplitude of moving
from 0 to a point p in n time steps and ending in state j is obtained by summing
the amplitudes of all paths of n steps having total displacement p and ending in
state j. This description gives us everything we need to compute asymptotics
of QRWs – for more on the interpretation of quantum walks, see [Amb+01;
Bar+10].

The multiplicative nature of the amplitudes makes QRW a perfect candidate
for the transfer matrix method, the univariate version of which was discussed
in Section 2.2 and whose multivariate version will be discussed at length in
Section 12.4. Let M denote the k × k diagonal matrix whose ( j, j)-entry is the
monomial zv

( j)
and let P(p, n) be the matrix whose (i, j)-entry is the amplitude

to go from the origin in state i at time zero to p in state j at time n. Define the
spacetime generating function

F(z) =
∑
p∈Zd

n≥0

P(p, n)(z◦)pzn
d+1 (9.28)

where z◦ = (z1, . . . , zd) are d variables tracking walk position and zd+1 is a
variable tracking walk length. The transfer matrix method easily gives

F(z) = (I − zd+1MU)−1,

and the entries Fi j are rational functions with common denominator

Q = det(I − zd+1MU) . (9.29)

Exercise 9.12. Prove that Q in (9.29) satisfies the strong torality hypothesis
from Definition 9.20.

The component B of the amoeba complement that yields a series in zd+1

whose coefficients are Laurent polynomials in z1, . . . , zd is contained in the
negative zd+1 halfspace and has the origin on its boundary. Its boundary is
smooth everywhere except the origin, where its dual cone K has nonempty in-
terior; see Figure 9.8. Recall the dual rate function β* on directions from (6.5).
Whenever 0 ∈ ∂B we may deduce that β*(r̂) ≤ 0 with equality only possible
if r̂ ∈ normal0(B). The feasible velocity region of the QRW is the set R ⊆ Rd

consisting of all (r1, . . . , rd) such that exponential growth rate β(r1, . . . , rd, 1)
from Definition 6.20 vanishes (in other words, it is the set of directions in
which the chance of finding the particle roughly at that rescaled point after a
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long time decays slower than exponentially). Then R ⊆ Ξ, where Ξ is the rd = 1
slice of normal0(B) and is computed as an algebraic dual (see Example 6.50).

Figure 9.8 The component B and its dual cone K at the origin.

Smooth boundary points correspond to directions r̂ < K satisfying |r1| +

· · ·+ |rd | < |rd+1|. For each such r̂ there is one or more minimal smooth critical
points ofV. To compute R, we start by computingV0 = V ∩ T(0). For many
QRW’s one finds this to be a smooth manifold diffeomorphic to one or more
d-tori. At any smooth point z ∈ V0, the space L(z) is the line in the direction
of ∇log Q(z). Thus, r ∈ R if and only if r is in the closure of the image when
the logarithmic Gauss map ∇log is applied toV0, so that

R = ∇log[V0] .

This allows us to plot the feasible region by parametrizingV0 by an embedded
grid and applying∇log to each point of the embedded grid, an example of which
is shown on the left of Figure 9.9.

The right of Figure 9.9 shows an intensity plot of the magnitude of the prob-
ability amplitude for the particle at time 200 for a QRW known as S (1/8). The
agreement of the shape of the empirically plotted feasible region (right) with
the theoretical prediction based on the Gauss map (left) is apparent. What is
also apparent is that not only do the regions agree but their fine structure of
darker bands and light areas agree as well.

In particular, the image of V0 under ∇log will be more intense in places
where the Jacobian determinant of ∇log is small because the density of the
image of an embedded grid is proportional to the inverse of the Jacobian de-
terminant. The Jacobian determinant of the logarithmic Gauss map is pre-
cisely the curvature, as discussed following (9.21). In Theorem 9.45, while
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Figure 9.9 Left: The log-Gauss map on an embedded grid. Right: Probability am-
plitudes of a QRW.

the P/‖ ∇log Q‖22 term varies a little, the dominant factor is the curvature term
K
−1/2. This explains why the density of the Gauss-mapped grid is a good sur-

rogate for the probability amplitudes. /

Changing the matrix U or the vectors v( j) changes the walk, hence there are
many quantum walks, most of which don’t have the symmetries of the S (1/8)
walk. Figure 9.10 shows the feasibility region for a more-or-less generic quan-
tum walk. Again, one sees an image of the logarithmic Gauss map. It is notable
that, as for many quantum random walks, the feasible region is nonconvex, in-
dicating that parts of the cone normal0(B) do not correspond to any minimal
points, but are instead in the region of exponential decay (the infeasible re-
gion).

Notes

Precursors to the derivations of the saddle point residue integrals in this chap-
ter were the multivariate asymptotic results [BR83]. Breaking the symmetry
among the coordinates, they wrote

F(z) =

∞∑
n=0

fn(z◦)zn
d

for (d−1)-dimensional series fn(z◦) and then used the fact that fn is sometimes
asymptotic to an nth power fn ∼ C · g · hn to obtain Gaussian asymptotics when
certain minimality conditions are satisfied near a smooth critical point. Their
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Figure 9.10 Intensity plot for a quantum walk without symmetries.

language is inherently one-dimensional, so geometric concepts such as smooth
point did not arise explicitly.

The results presented in this chapter were first obtained via a direct surgery
approach in [PW02], and are valid only for finitely minimal critical points.
In addition, the minimality hypothesis in [PW02, Theorem 3.5] (and in many
other results there) assumes an ordinary power series. The residue version of
these computations appeared in print first in [Bar+10]. Extending the valid-
ity of the coordinate version beyond the case of finite intersection of V with
T (xmin) was accomplished in [BP11].

Between the first and second editions of this book, a rigorous Morse theo-
retic foundation developed in [BMP22] streamlined some of the presentation of
this chapter. The finite criticality hypothesis in this second edition replaces the
strong torality hypothesis from the first edition; there, the latter is simply called
torality. The explicit formula for higher order terms in Theorem 9.40 was first
given by Raichev and Wilson [RW08]. Attempts to extend Algorithm 3 are
an ongoing topic of research by an AMS Mathematics Research Community
started in 2021.

The pictures in Figure 9.9 were first produced by a Penn graduate student,
Wil Brady, in an attempt to produce rigorous computations verifying the limit
shapes of feasible regions that were suspected from simulations. At that time,
Theorem 9.45 was not known. The fact that the fine structure of the two plots
agreed was a big surprise, and led to reformulated estimates such as (9.23) in
terms of curvature.

Another rewriting of the leading term of the basic nondegenerate smooth
point asymptotic formula is given in [Ben+12, Appendix B].
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Additional exercises

Exercise 9.13. Let Res be the residue map on meromorphic forms with simple
poles on a smooth variety V , as defined in Proposition C.6. Prove that Res is
functorial, meaning it commutes with bi-holomorphic changes of coordinate.

Exercise 9.14. Let f (x, y) = x2 − 3x + 3 − y. In Example 9.39, asymptotics in
the diagonal direction reveal a quadratic degeneracy. To see what a quadratic
degeneracy means topologically, begin by computing the critical points in the
direction r = (r, 1− r) as a function of r on the unit interval. There should usu-
ally be two critical points. At what value r∗ of r is there a single critical point
of multiplicity 2? Check whether this is the same r for which the quadratic
term of hr̂ near the critical point z(r̂) vanishes.

Exercise 9.15. Let F(x, y) = 1/(1 − x − y)`. Compute the asymptotics for the
power series coefficients a(`)

rs and find the relation between these and the asymp-
totics of the binomial coefficients a(1)

rs =
(

r+s
r,s

)
. Verify this combinatorially by

finding the exact value of a(`)
rs . Hint: When ` = 2, the bivariate convolution

of the binomial array with itself can be represented as divisions of r + s or-
dered balls into r balls of one color and s of another, with a marker inserted
somewhere dividing the balls into the two parts.

Exercise 9.16. (higher-order cube root asymptotics) In Example 9.39, dividing
the error when approximating the sequence by its leading asymptotic term by
the leading asymptotic term gives 0.00111 . . . when r = 100, hinting at the
fact that the next nonvanishing asymptotic term is r−m/3 for some m greater
than 2. Compute enough derivatives of A and φ at zero to determine the next
nonvanishing asymptotic term for arr.

https://doi.org/10.1017/9781108874144.014 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874144.014

