
5

U(1) and SU(n) gauge theory

In this chapter we make a first exploration of U(1) and SU(n) ‘pure
gauge theories’ (i.e. without electrons or quarks etc.), the static potential
and the glueball masses.

5.1 Potential at weak coupling

According to (4.206) the static potential V (r) in a gauge theory is given
by the formula

V (r) = − lim
t→∞

1
t

lnW (r, t), (5.1)

where W (r, t) is a rectangular r × t Wilson loop in a lattice of infinite
extent in the time direction (figure 5.1). We shall first evaluate this
formula for free gauge fields and then give the results of the first non-
trivial order in the weak-coupling expansion. This will illustrate that
(5.1) indeed gives the familiar Coulomb potential plus corrections.

Fig. 5.1. A rectangular Wilson loop for the evaluation of the potential.
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116 U(1) and SU(n) gauge theory

First we consider the compact U(1) gauge theory (4.182), in which the
external source Jµ(x) specified in (4.186) serves to introduce the Wilson
loop. In this case (5.1) can be rewritten as

V (r) = − lim
t→∞

1
t

ln
[
Z(J)
Z(0)

]
. (5.2)

The weak-coupling expansion can be obtained by substituting Uµ(x) =
exp[−igaAµ(x)] into the action,

S = −
∑
xµν

(
1
4
[Fµνx]2 −

1
48
g2a2[Fµνx]4 + · · ·

)
, (5.3)

Fµνx = ∂µAνx − ∂νAµx, (5.4)

and expanding the path integral in the gauge coupling g. The first term
in (5.3) is the usual free Maxwell action (non-compact U(1) theory). The
other terms are interaction terms special to the compact U(1) theory.

As usual, gauge fixing is necessary in the weak-coupling expansion.
This can be done on the lattice in the same way as in the continuum
formulation. We shall not go into details here (cf. problem (i)), and just
state that the free part of S (the part quadratic in Aµ) leads in the
Feynman gauge to the propagator

Dµν(p) = δµν
a2∑

µ(2− 2 cos apµ)
,

= δµν
1
p2
, ap→ 0. (5.5)

This is similar to the boson propagator (2.111). In position space

Dµν(x− y) ≡ Dµν
xy = δµν

∫ π/a

−π/a

d4p

(2π)4
eip(x−y) a2∑

µ(2− 2 cos apµ)

→ δµν
1

4π2(x− y)2
, (x− y)2/a2 →∞. (5.6)

The large-x behavior of Dµν(x) corresponds to the small-p behavior of
Dµν(p). This can be shown with the help of the saddle-point method for
evaluating the large-x behavior.

To leading order in g2, Z(J) is given by

Z(J) = e
1
2 g

2∑
xy Jµ(x)Dµν(x−y)Jν(y)Z(0), (5.7)

and

V (r) = −1
t

1
2
g2
∑
xy

Jµ(x)Dµν(x− y)Jν(y), t→∞. (5.8)
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5.1 Potential at weak coupling 117

Fig. 5.2. Diagram illustrating 1
2
g2∑ J D J .

Fig. 5.3. Typical contributing diagrams.

This expression leads to the diagram in figure 5.2. With the currents J
flowing according to figure 5.1, the following types of contributions can
be distinguished (figure 5.3). Diagram (d) is a self-energy contribution,

1
2
g2
∑
(d)

J D J =
1
2
g2(i)2

t/2∑
x4,y4=−t/2

D44(0, x4 − y4), (5.9)

where the times t1 and t2 in figure 5.1 have been taken as ±t/2. We
may first sum over y4. For t→∞ this summation converges at large y4
and becomes independent of x4. The summation over y4 sets p4 in the
Fourier representation for D to zero (cf. (2.90)),

1
2
g2
∑
(d)

J D J ∼ −1
2
g2t

∞∑
y4=−∞

D44(0, x4 − y4)

= −1
2
g2t

∫ π/a

−π/a

d4p

(2π)4
eip4(x4−y4)

a2∑
µ(2− 2 cos apµ)

= −1
2
g2t

∫ π/a

−π/a

d3p

(2π)3
a2∑3

j=1(2− 2 cos apj)

= −1
2
g2tv(0), (5.10)
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118 U(1) and SU(n) gauge theory

Fig. 5.4. Vertices in the compact U(1) theory.

where

v(x) =
∫ π/a

−π/a

d3p

(2π)3
eipx a2∑3

j=1(2− 2 cos apj)
(5.11)

is the lattice-regularized Coulomb potential. Its numerical value at the
origin is given by

av(0) = 0.253 · · · . (5.12)

The contribution of type (e) is given by

1
2
g2
∑
(e)

J D J ∼ 1
2
g2i(−i)

∫ t/2

−t/2

dx4 dy4
1

4π2[(x4 − y4)2 + r2]
, (5.13)

where we assumed r/a
 1 such that the asymptotic form (5.6) is valid
and the summations over x4 and y4 may be replaced by integrations.
Proceeding as for diagram (d) we get

1
2
g2
∑
(e)

J D J ∼ 1
2
g2t

∫ ∞

−∞
dy4

1
4π2[(x4 − y4)2 + r2]

=
1
2
g2t

1
4πr

. (5.14)

From these example calculations it is clear that the diagrams of types
(a), (b) and (c) do not grow linearly with t. Remembering that there are
two contributions of types (d) and (e) (related by interchanging x and
y) we find for the potential to order g2

V (x) = g2[v(0)− v(x)], (5.15)

as expected.
Let us now briefly consider higher-order corrections in the compact

U(1) theory. The series (5.3) for S leads to interaction vertices of the
type shown in figure 5.4, which are proportional to (ag)n−2. Their effect
vanishes in the continuum limit, unless the powers of a are compensated
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5.1 Potential at weak coupling 119

Fig. 5.5. A self-energy diagram in the compact U(1) theory.

by powers of a−1 coming from divergent loop diagrams. An example
of this is the self-energy diagram figure 5.5, which leads to a ‘vacuum-
polarization tensor’ (cf. problem (ii))

Πµν(p) = − 1
4g

2(δµνp2 − pµpν) +O(a2), (5.16)

and a modified propagator

D′−1
µν = p2δµν +O(a2) + Πµν(p), (5.17)

D′
µν(p) = Z(g2)δµν

1
p2

+ terms ∝ pµpν , (5.18)

Z(g2) = [1− 1
4g

2 +O(g4)]−1. (5.19)

The terms ∝ pµpν do not contribute to the Wilson loop because of gauge
invariance, as expressed by ‘current conservation’ ∂′

µJµx = 0. Further
analysis leads to the conclusion that there are no other effects of the
self-interaction in the weak-coupling-expansion continuum limit. Note
that Z(g2) is finite, i.e. it does not diverge as a→ 0.

We conclude that in the compact U(1) theory the potential is given
by

V (r) = −g2Z(g2)
1

4πr
+ constant +O(a2),→∞, (5.20)

which is just a Coulomb potential. To make contact with the free
Maxwell theory we identify the fine-structure constant α,

α =
e2

4π
=

g2Z(g2)
4π

. (5.21)

The compact U(1) theory is equivalent to the free Maxwell field at weak
coupling.
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120 U(1) and SU(n) gauge theory

Fig. 5.6. Gluon self-energy contribution to the Wilson loop.

We now turn to the SU(n) gauge theory. A calculation to order
g4 gives in this case the result for the magnitude of the force, F (r),
neglecting O(a2):

F (r) =
∂V (r)
∂r

=
1

4πr2
C2

{
g2 +

11n
48π2

g4
[
ln
(
r2

a2

)
+ c

]
+O(g6)

}
.

(5.22)
Here C2 is the value of the quadratic Casimir operator in the representa-
tion of the Wilson loop and c is a numerical constant which depends on
lattice details. Some aspects of the calculation are described in [43]. The
logarithm in (5.22) comes from the Feynman gauge self-energy contri-
bution shown in figure 5.6, which is not present in the U(1) theory. The
formula (5.22) exhibits the typical divergencies occuring in perturbation
theory. It diverges logarithmically as a → 0. This problem is resolved
by expressing physically measurable quantities in terms of each other.
Here we shall choose an intuitive definition of a renormalized coupling
constant gR at some reference length scale d, by writing

F (d) =
C2g

2
R

4πd2
. (5.23)

This gR is defined independently of perturbation theory. Its expansion
in g2 follows from (5.22),

g2R = g2 +
11n
48π2

[
ln
(
d2

a2

)
+ c

]
g4 + · · ·, (5.24)

which may be inverted,

g2 = g2R −
11n
48π2

[
ln
(
d2

a2

)
+ c

]
g4R + · · · . (5.25)

The original parameter g in the action has to depend on a if we want to
get a gR independent of a. This dependence is here known incompletely:
we cannot take the limit a→ 0 in (5.25) because then the coefficient of
g4R blows up (and similarly for the higher-order coefficients). The limit
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5.2 Asymptotic freedom 121

a → 0 will be discussed in the following sections. Insertion into (5.22)
leads to the form

F (r) =
1

4πr2
C2

[
g2R +

11n
48π2

g4R ln
(
r2

d2

)
+O(g6R)

]
, (5.26)

from which all dependence on a has disappeared to this order in gR. The
renormalizability of QCD implies that all divergences can be removed in
this way to all orders in perturbation theory.

5.2 Asymptotic freedom

The perturbative form (5.26) is useless for r → 0 or r →∞, since then
the logarithm blows up. It is useful only for r of order d, the distance
scale used in the definition of the renormalized coupling constant gR. So
let us take d = r from now on. Then gR = gR(r). We can extract
more information from the weak-coupling expansion by considering
renormalization-group beta functions, defined by

βR(gR) = −r ∂

∂r
gR, (5.27)

β(g) = −a ∂

∂a
g. (5.28)

It is assumed here that gR can be considered to depend only on r and
not on a – its dependence on a is compensated by the dependence on a

of g. Then the r- and a-dependence on the right-hand side of (5.27) and
(5.28) can be converted into a gR- and g-dependence, respectively, using
(5.25) and (5.24), giving

βR(gR) = − 11n
48π2

g3R + · · ·, (5.29)

β(g) = − 11n
48π2

g3 + · · · . (5.30)

Actually the first two terms in the expansions

β(g) = −β1g3 − β2g
5 − β2g

7 − · · ·, (5.31)

βR(gR) = −βR1g3R − βR2g
5
R − βR3g

7
R − · · · (5.32)

of the two beta functions are equal. The argument for this is as follows.
Let

gR = F (t, g), (5.33)

t = ln
(
r2

a2

)
, g = g(a), gR = gR(r), (5.34)
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122 U(1) and SU(n) gauge theory

Make a scale transformation a → λa, r → λr, which does not affect
t, and differentiate with respect to λ, setting λ = 1 afterwards. Then
∂/∂λ = a ∂/∂a = r ∂/∂r, and

−βR(gR) =
∂gR
∂λ

=
∂F

∂g

(
∂g

∂λ

)
= −∂F

∂g
β(g). (5.35)

Inserting the expansions for β(g) and

gR = g + F1(t)g3 + F2(t)g5 + · · ·, (5.36)

g = gR − F1(t)g3R + · · ·, (5.37)

gives

−βR(gR) = [1 + 3F1g2 +O(g4)][β1g3 + β2g
5 +O(g7)]

= [1 + 3F1g2R +O(g4R)][β1g3R − 3β1F1g5R + β2g
5
R +O(g7R)]

= β1g
3
R + β2g

5
R +O(g7R). (5.38)

Any coupling constant related to g by a series of the type (5.36) has the
same beta function, so we may take the coefficient β2 from calculations
in the continuum using dimensional regularization,†

β2 =
102
121

β21 , β1 =
11n
48π2

. (5.39)

The remarkable fact in these formulas is that the beta functions are
negative in a neighborhood of the origin, implying that the couplings
become smaller as the length scale decreases. This property is called
asymptotic freedom. As we shall see, it implies that g → 0 in the
continuum limit. We come back to this in a later section. It suggests
furthermore that perturbation theory in the renormalized coupling gR
becomes reliable at short distances, provided that a ‘running gR’ can be
used at the appropriate length or momentum scale. In the case of the
potential V (r) there is only one relevant length scale, r, and we can use
the r-dependence of gR(r) to our advantage, as will now be shown.

The precise dependence of gR(r) for small r follows by integrating the
differential equation (5.27),

∂gR
∂ ln r

= −βR(gR),

− ln r =
∫ gR dx

βR(x)

† Other authors write β0,1 for our β1,2.
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5.2 Asymptotic freedom 123

=
∫ gR

dx

[
−1
β1x3

+
β2
β21x

+O(x)
]

=
1

2β1g2R
+

β2
β21

ln gR + constant +O(g2R). (5.40)

The integration constant can be partially combined with ln r to form a
dimensionless quantity ln(rΛV) in a way that has become standard:

− ln(r2Λ2V) =
1

β1g2R
+

β2
β21

ln(β1g2R) +O(g2R). (5.41)

Note the ‘lnβ1 convention’. Note also that ΛV can be defined precisely
only if the β2 term is taken into account – the O(g2R) term no longer
involves a constant term. This formula can be inverted so as to give gR
as a function of r,

β1g
2
R =

1
s
− β2
β21

1
s2

ln s+O(s−3 ln s), (5.42)

s = − ln(r2Λ2V). (5.43)

Inserting this into the force formula (5.23) for d = r gives

F (r) =
C2

4πr2
β−1
1

s+ (β2/β21)s−1 ln s+O(s−2 ln s)
. (5.44)

So the short-distance behavior of the potential can be reliably com-
puted (‘renormalization-group improved’) in QCD by means of the weak-
coupling expansion. However, this expansion tells us nothing about the
long-distance behavior, because gR(r) increases as r increases, making
the first few terms of the weak-coupling expansion irrelevant in this
regime.

A second important implication of asymptotic freedom is the appli-
cation of the renormalization-group equation to the bare coupling g.
Integration of (5.28) leads to the analog of (5.41) for the bare coupling,

− ln(a2Λ2L) =
1

β1g2
+

β2
β21

ln(β1g2) +O(g2), (5.45)

where we introduced the ‘lattice lambda scale’ ΛL. The analog of (5.42),

β1g
2 ≈ 1/| ln(a2Λ2L)|, (5.46)

shows that the bare coupling vanishes in the continuum limit a→ 0. This
means that the critical point of the theory (the one that is physically
relevant, in case there is more than one) is known: it is g = 0.

https://doi.org/10.1017/9781009402705.006 Published online by Cambridge University Press

https://doi.org/10.1017/9781009402705.006


124 U(1) and SU(n) gauge theory

The inverse of (5.45) can be written as

Λ2L =
1
a2

(β1g2)−β2/β
2
1e−1/β1g

2
[1 +O(g2)]. (5.47)

This equation is sometimes accompanied by the phrase ‘dimensional
transmutation’: the pure gauge theory has no dimensional parameters
(such as mass terms) in its classical action and we may think of trans-
forming the bare coupling g into the dimensional lambda scale via the
arbitrary regularization scale 1/a. As we shall see later, all physical
quantities with a dimension are proportional to the appropriate power
of ΛL (as in (1.4)).

The ΛV and ΛL are examples of the QCD lambda scales which set the
physical scale of the theory. They are all proportional and their ratios
can be calculated in one-loop perturbation theory. Let us see how this is
done for the ratio ΛV/ΛL. The one-loop relation (5.25) can be rewritten
as

1
β1g2

=
1

β1g2R
+
[
ln
(
d2

a2

)
+ c

]
+O(g2R). (5.48)

Inserting this relation into (5.47) and letting a and d go to zero with
d/a fixed, such that g and gR go to zero, gives

Λ2L =
e−c

d2
(β1g2R)−β2/β

2
1e−1/β1g

2
R [1 +O(g2R)] (5.49)

= Λ2V e
−c. (5.50)

Hence the ratio is determined by the constant c, which depends on the
details of the regularization.

A comparison of lambda scales on the lattice and in the continuum
was done some time ago [45, 46, 47]. The relation with the popular
MS-bar scheme (modified minimal subtraction scheme) in dimensional
renormalization is

ΛMS
ΛL

= exp[(1/16n− 0.0849780n)/β1] (5.51)

= 19.82, SU(2) (5.52)

= 28.81, SU(3). (5.53)
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5.3 Strong-coupling expansion 125

A calculation [48] of the constant c in the MS-bar scheme then gave the
relation to the potential scheme ΛV, (γ = 0.57 · · · is Eulers’s constant)

ΛV
ΛL

= exp[γ − 1− (1/16n− 0.095884n)/β1] (5.54)

= 20.78, for SU(2) (5.55)

= 30.19 for SU(3). (5.56)

5.3 Strong-coupling expansion

The strong-coupling expansion is an expansion in powers of 1/g2. It has
the advantage over the weak-coupling expansion that it has a non-zero
radius of convergence. A lot of effort has been put into using it as a
method of computation, similarly to the high-temperature or hopping
expansion for scalar field theories, see e.g. [6, 44]. One has to be able to
match on to coupling values where the theory exhibits continuum be-
havior. This turns out to be difficult for gauge theories. However, a very
important aspect of the strong-coupling expansion is that it gives insight
into the qualitative behavior of the theory, such as confinement and the
particle spectrum. There are sophisticated methods for organizing the
strong-coupling expansion, but here we give only a minimal outline of
the basic ideas.

We start again with the compact U(1) theory. Let p be the plaquette
(x, µ, ν), µ < ν. We write the compact U(1) action in the form

S =
∑
p

L(Up) + constant, (5.57)

L(Up) =
1

2g2
(Up + U∗

p ), (5.58)

Up = Uµν(x) = Uνµ(x)∗. (5.59)

In the path integral we expand expS in powers of 1/g2. First consider

exp
[

1
2g2

(Up + U∗
p )
]

=
∞∑

m,n=0

1
m!n!

(
1

2g2

)m+n

Um
p U∗n

p . (5.60)
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126 U(1) and SU(n) gauge theory

Since U∗
p = U−1

p we put m = n + k and sum over n and k, k =
0,±1,±2, . . ., which gives

∞∑
n=0

(
1
n!

)2( 1
2g2

)2n
+ (Up + U−1

p )
∞∑
n=0

1
(n+ 1)!n!

(
1

2g2

)2n+1

+ · · ·+ (Uk
p + U−k

p )
∞∑
n=0

1
(n+ k)!n!

(
1

2g2

)2n+k

+ · · · . (5.61)

Recognizing the modified Bessel function Ik,

Ik(x) = I−k(x) =
∞∑
n=0

1
(n+ k)!n!

(x
2

)2n+k

, (5.62)

we find

eL(Up) =
∞∑

k=−∞
Ik

(
1
g2

)
Uk
p . (5.63)

This is actually an expansion of expL(Up) in irreducible representations
of the group U(1), labeled by the integer k. It is useful to extract an
overall factor,

eL(Up) = f
∑
k

akU
k
p , (5.64)

ak(1/g2) =
Ik(1/g2)
I0(1/g2)

, (5.65)

f(1/g2) = I0(1/g2). (5.66)

The coefficients ak are of order (1/g2)k.
Consider now the expansion of the partition function Z =

∫
DU expS.

Using (5.57) and (5.64) we get a sum of products of Uk
p ’s,

Z =
∫

DU
∑

(coefficient)
∏

Uk
p . (5.67)

Each Uk
p is a product Uk

1U
k
2U

−k
3 U−k

4 of the four link variables U1, . . ., U4
of the plaquette p, raised to the power k. A given link variable belongs
to 2d plaquettes (in d dimensions). For each link there is an integration∫
dU over the group manifold, which for the group U(1) is simply given

by ∫
dU Ur =

∫ 2π

0

dθ

2π
eirθ = δr,0, (5.68)
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5.3 Strong-coupling expansion 127

Fig. 5.7. Simple diagrams contributing to the partition function. The hatched
area in (b) belongs to the closed surface. Diagram (c) is disconnected.

Fig. 5.8. Conservation of flux in three dimensions: k + l + m = 0.

where r is an integer. Hence the group integration projects out the trivial
(r = 0) representation. Now r is the sum of the k’s belonging to the
plaquettes impinging on the link under consideration. It follows that,
after integration, the non-vanishing terms in (5.67) can be represented by
diagrams consisting of plaquettes forming closed surfaces, as in figure 5.7.
We can interpret this as follows. Each plaquette carries an amount of
electric or magnetic flux (depending on its being timelike or spacelike;
recall that it corresponds to a miniature line current), labeled by k.
The integration over the link variables enforces conservation of flux, as
illustrated in figure 5.8. If the surface is not closed, then

∫
dUr = 0 along

each link of its boundary.
Diagram (a) in figure 5.7 represents the leading contribution to Z,

Z = fV d(d−1)/2


1 +

1
3!
V d(d− 1)(d− 2)

∑
k 	=0

(ak)6 + · · ·


, (5.69)

where V is the number of lattice sites, V d(d − 1)/2 is the number of
plaquettes, V d(d − 1)(d − 2)/3! is the number of ways the cube can be
embedded in the d-dimensional hypercubic lattice (d ≥ 3) and 6 is the
number of faces of the cube.
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128 U(1) and SU(n) gauge theory

The expansion can be arranged as an expansion for lnZ containing
only connected diagrams, called polymers.

For a general gauge theory the derivation of the strong-coupling
expansion is similar. One writes

L(Up) =
β

χf(1)
Reχf(Up), (5.70)

where χf(Up) is the character of Up in the fundamental representation.
Recall (we encountered this before in section 4.7) that these characters
are orthonormal, ∫

dU χr(U)χs(U)∗ = δrs, (5.71)

and complete for class functions F (U) (which satisfy F (U) =
F (V UV −1)). Next expL is written as a character expansion,

eL(Up) = f + f
∑
r 	=0

drarχr(Up), (5.72)

where r = 0 denotes the trivial representation Up → 1 and dr = χr(1)
is the dimension of the representation r. The expansion coefficients are
given by

f =
∫

dU eL(U), (5.73)

drar =
∫
dU eL(U)χ∗

r∫
dUeL(U)

. (5.74)

For the group U(1), r = 0,±1,±2, . . ., β = 1/g2, χr(U) = exp(irθ)
and we recover (5.65) from the integral representation of the Bessel
functions

Ir(x) =
1
π

∫ π

0

dθ cos(kθ) ex cos θ. (5.75)

For the group SU(n), χf(1) = n and

β = 2n/g2. (5.76)

The leading β-dependence of af(β) is easily found,

f(β) =
∫

dU e(β/2n)(χf+χ∗
f )

= 1 +O(β2), (5.77)

naf(β) = f(β)−1
∫

dU e(β/2n)(χf+χ∗
f )χ∗

f
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Fig. 5.9. A small Wilson loop with compensating plaquettes.

=
β

2n
+O(β2), n > 2 (5.78)

=
β

n
+O(β2), n = 2. (5.79)

For SU(2) the characters are real. In terms of g2,

af =
1
g2

+ · · ·, n = 2, (5.80)

=
1
ng2

+ · · ·, n = 3, 4, . . .. (5.81)

Up to group-theoretical complications (which can be formidable) the
strong-coupling expansion for general gauge groups follows that of the
U(1) case. The graphs are the same, but the coefficients differ.

5.4 Potential at strong coupling

We now turn to the expectation value of the rectangular Wilson loop
〈U(C)〉, from which the potential can be calculated. The links on the
curve C contain explicit factors of U that have to be compensated by
plaquettes from the expansion of expS, otherwise the integration over U
gives zero. Figure 5.9 shows a simple example. The contribution of this
diagram is (the Wilson loop is taken in the fundamental representation
of U(1))

[a1(1/g2)]4, (5.82)

which is the leading contribution for this curve C. Recall that a1 is given
by

a1(1/g2) =
I1(1/g2)
I0(1/g2)

=
1

2g2
− 1

2

(
1

2g2

)3
+ · · · . (5.83)

In higher orders disconnected diagrams appear. It can be shown,
however, that disconnected diagrams may be discarded: they cancel out
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Fig. 5.10. Leading diagrams for a large Wilson loop.

between the numerator and denominator of 〈U(C)〉. The expansion can
be rewritten as a sum of connected diagrams. Figure 5.10 illustrates the
leading terms for a large Wilson loop,

W (r, t) = aA1 + 2(d− 2)AaA+41 + · · ·, (5.84)

where A is the area of the loop, in lattice units A = rt. Boundary correc-
tions are also in the · · ·. The higher orders correspond to ‘decorations’
of the minimal surface.

The potential V (r) follows now from (5.1) and A = rt,

V (r) =
1
t

lnW (r, t)

= −[ln a1 + 2(d− 2)a41 + · · ·] r. (5.85)

For r → ∞, A → ∞ and the boundary corrections become negligible.
Hence, the potential is linearly confining at large distances,

V (r) ≈ σr, r →∞, (5.86)

σ = − ln a1 − 2(d− 2)a41 + · · · . (5.87)

At strong coupling the compact U(1) theory is confining.
For other gauge theories the calculation of the leading contribution to

a Wilson loop in the fundamental representation goes similarly. A useful
formula here is∫

dU χr(UV )χs(W †U†) =
δrs
dr

χr(VW †), (5.88)

which follows from∫
dU Dr

mn(U)Dr′
m′n′(U)∗ = δrr′δmm′δnn′

1
dr
, (5.89)

seen earlier in (4.145). The use of this formula is illustrated in figure 5.11.
Successive integration in the simple Wilson-loop example in figure 5.9 is
illustrated in figure 5.12. Each arrow in figure 5.12 denotes the result of
‘integrating out a link’. The equality signs symbolize UU† = 1. Note
that the factors dr in (5.88) cancel out with those in (5.72). Hence
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Fig. 5.11. Integration of a link variable.

Fig. 5.12. Integrating the leading contribution to a 2 × 2 Wilson loop.

the numerical value of the diagram is drar(β)4, for a Wilson loop in
representation r.

Another way to see this is as follows: in figure 5.9 there are nl = 12
links, np = 4 plaquettes and ns = 9 sites. Integrating over each link
gives a factor d−nl

r by (5.89) and contracting the Kronecker deltas at
each site gives a factor dns

r . Each plaquette has a factor dnp
r by (5.72).

For a simple surface without handles, the Euler number is

−nl + ns + np = 1

⇒ leading contribution = (dr)−nl+ns [drar(β)]np = drar(β)np . (5.90)

For a Wilson loop in the fundamental representation of the SU(n)
theory the first few terms in the expansion for the string tension

σ = − ln af(β)− 2(d− 2)af(β)4 + · · · . (5.91)

are similar to the U(1) result (5.87). In higher orders the ar(β) corre-
sponding to other irreps enter. The final result may then be re-expressed
by expansion in powers of 1/ng2.
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Fig. 5.13. Flux lines for sources in the fundamental (a) and the adjoint (b)
representation.

5.5 Confinement versus screening

In the previous section we saw that the U(1) and SU(n) potentials are
confining in the strong-coupling region. From the derivation we can see
that this is true for external charges (Wilson loops) in the fundamental
representation of any compact gauge group. However, external charges in
the adjoint representation of SU(n) are not confined. This is because the
charges in the adjoint representation can be screened by the gauge field.
A adjoint source is like a quark–antiquark pair, as illustrated intuitively
in figure 5.13. We now show how this happens at strong coupling.

Let U denote the fundamental representation (as before) and R the
adjoint representation. The latter can be constructed from U and U†,

Rkl = 2 Tr (U†tkUtl), (5.92)

where the tk are the generators in the fundamental representation. Since
R is an irrep, ∫

dU Rkl(U) = 0. (5.93)

To compensate the R’s on the links of the adjoint Wilson loop

TrR(C) = Tr
∏
l∈C

Rl (5.94)

by the plaquettes from the expansion of expS, we may draw a Wilson
surface and find in the same way as in the previous section the seemingly
leading contribution

daaa(β)A, da = n2 − 1, (5.95)

with A the minimal surface spanned by C. However, there is a more
economical possibility for large A, illustrated in figure 5.14. The tube
of plaquettes is able to screen the adjoint loop. To evaluate this con-
tribution we unfold the tube as in figure 5.15. The links in the interior
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Fig. 5.14. Diagram contributing to a Wilson loop in the adjoint representation;
(b) is a close up of a piece of the circumference in (a). The wavy line indicates
the adjoint representation.

Fig. 5.15. Unfolding the tube of plaquettes. The horizontal and vertical bound-
aries are to be identified.

Fig. 5.16. Integrating out the interior.

can be integrated out as in figure 5.12, as illustrated in figure 5.16.
The first step gives a factor dfaf(β)Np with Np the number of plaquettes
(df = n). The second step gives an additional factor 1/df . There remains
the integration over the links of the Wilson loop, which leads to integrals
of the type (for n ≥ 3) (cf. (A.93) in appendix A.4)∫

dU Ua
b U

q†
p Rkl =

1
da

2(tk)ap(tl)
q
b , n > 2, (5.96)

as illustrated in figure 5.17. So we get a trace of the form

2d−1a (tk)ap (tl)
q
b 2d−1a (tl)bq (tm)rc · · · (tk)pa = 1, (5.97)

since 2 Tr (tktk) = n2 − 1 = da. This leads to a factor

af(β)4P , (5.98)

where P is the perimeter of the (large) adjoint loop in lattice units:
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Fig. 5.17. Link variables on the adjoint loop.

P = 2(r + t), and the factor 4 in the exponent reflects the fact that
there are four plaquettes per unit length.

The leading contributions of the perimeter and area type in the SU(n)
theory are given by

Wa(r, t) ∼ (n2 − 1)(aa)rt + · · ·+ 2(d− 1)(d− 2)(af)8(r+t) + · · ·, (5.99)

which by (5.1) leads to a potential

V (r) = σeff r, r ≤ V (∞)
σeff

= V (∞), r ≥ V (∞)
σeff

, (5.100)

with

σeff = − ln aa + · · ·, (5.101)

V (∞) = −8 ln af + · · ·, (5.102)

af = (ng2)−1 + · · ·,

aa =
n2

n2 − 1
(ng2)−2 + · · · . (5.103)

(This behavior of aa follows easily from (5.74) and (5.96).)
At large distances the potential approaches a constant. The sharp

crossover from linear to constant behavior (at r ≈ 4) is an artifact of
our simplistic strong-coupling calculation. Still, the calculation suggests
that there is an intermediate region where the potential is approximately
linear with some effective string tension σeff , although strictly speaking
the string tension, defined by σ = V (r)/r, r →∞, vanishes for adjoint
sources.

To decide whether static charges in an irreducible representation r can
be screened by the gauge field, we consider the generalization of (5.96),

I =
∫

dU Ds
mn(U)Ds

m′n′(U)∗Dr
kl(U), (5.104)
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where s denotes the irreps of the two screening plaquettes. If the integral
I is zero, the source cannot be screened, and vice-versa. Let Zk denote
an element of the center of SU(n), i.e. Zk ∈ SU(n) commutes with all
group elements and it is represented in the fundamental representation
as a multiple of the identity matrix,

(Zk)ab = eik2π/n δab , k = 0, 1, . . ., n− 1. (5.105)

Irreps r can be constructed from a tensor product U ⊗U · · ·U ⊗U† · · ·⊗
U†, say p times U and q times U†, so r can be assigned an integer
ν(r) = p− q mod n, from the way it transforms under U → Z1U :

Dr
kl(Z1U)→ eiν(r)2π/nDr

kl(U). (5.106)

The integer ν(r) is called the n-ality of the representation (triality for
n = 3). Making the change of variables U → Z1U in (5.104) gives

I = eiν(r)2π/n I, (5.107)

and we conclude that I = 0 if the n-ality ν(r) �= 0. Sources with non-zero
n-ality are confined; sources with zero n-ality are not confined. In QCD,
static quarks have non-zero triality and are confined.

5.6 Glueballs

The particles of the pure gauge theory are called glueballs. They may
be interpreted as bound states of gluons. Gluons appear as a sort of
photons in the weak-coupling expansion and, because of asymptotic
freedom, they manifest themselves as effective particle-like excitations
at high energies. However, gluons do not exist as free particles because
of confinement, as we shall see.

Masses of particles can be calculated from the long-distance behavior
of suitable fields. These are gauge-invariant fields constructed out of the
link variables Uµx, such as Wilson loops, with the quantum numbers of
the particles being studied. The transfer-matrix formalism shows that
an arbitrary state can be created out of the vacuum by application of
a suitable combination of spacelike Wilson loops. The simplest of these
is the plaquette field TrUmnx, m,n = 1, 2, 3. The plaquette–plaquette
expectation value (4.97) can be calculated easily at strong coupling. The
relevant diagrams consist of tubes of plaquettes, as in figure 5.18. Since
there are four plaquettes per unit of time, the glueball mass is given
by m = −4 ln af(β) + · · ·. The higher-order corrections correspond to
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Fig. 5.18. The leading strong-coupling diagram for the plaquette–plaquette
correlator. Time runs horizontally.

diagrams decorating the basic tube of figure 5.18, which will also cause
the tube to perform random walks.

The plaquette can be decomposed into operators with definite quan-
tum numbers under the symmetry group of the lattice, and such oper-
ators can in turn be embedded into representations of the continuum
rotation group of spin zero, one and two. To be more precise, the
quantum numbers JPC (J = spin, P = parity, C = charge-conjugation
parity) excited by the plaquette are 0++, 1+− and 2++, which may
be called scalar (S), axial vector (A) and tensor (T ). The description
of glueballs with other quantum numbers requires more complicated
Wilson loops. The terms in the strong-coupling series

mj = −4 lnu+
∑
k

mk
j u

k, j = S,A, T, u ≡ af(β), (5.108)

have been calculated to order u8 for gauge groups SU(2) and SU(3)
[91, 92]. See [10] for details.

Since the strong-coupling diagrams are independent of the (compact)
gauge group (but their numerical values are not), also the U(1) and e.g.
Z(n) gauge theories† have a particle content at strong coupling similar
to that of glueballs.

5.7 Coulomb phase, confinement phase

We have seen that all gauge theories with a compact gauge group such as
U(1), SU(n) and Z(n) have the property of confinement at strong cou-
pling, and the emerging particles are ‘glueballs’. On the other hand, we
have also given arguments, for U(1) and SU(n), that the weak-coupling
expansion on the lattice gives the usual universal results for renormalized
quantities found with perturbation theory in the continuum.

In particular the compact U(1) theory at weak coupling is not con-
fining and it contains no glueballs but simply the photons of the free

† Z(n) is the discrete group consisting of the center elements (5.105) of SU(n).
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Fig. 5.19. Phase diagram of the compact U(1) gauge theory (a) and the SU(n)
gauge theory, n = 2, 3 (b).

Maxwell theory. The physics of the compact U(1) theory is clearly
different in the weak- and strong-coupling regions. This can be un-
derstood from the fact that there is a phase transition as a function
of the bare coupling constant (figure 5.19). One speaks of a Coulomb
phase at weak coupling and a confining phase at strong coupling. In
the Coulomb phase the static potential has the standard Coulomb form
V = −g2R/4πr+constant, whereas in the confinement phase the potential
is linearly confining at large distances, V ≈ σr. There is a phase
transition at a critical coupling βc ≡ 1/g2c ≈ 1.01, at which the string
tension σ(β) vanishes; see for example [95].

The Wilson loop serves as an order field in pure gauge theories.
Consider a rectangular r× t Wilson loop C, with perimeter P = 2(r+ t)
and area A = rt. When the loop size is scaled up to infinity, the dominant
behavior is a decay according to a perimeter law or an area law:

W (C) ∼ e−εP , Coulomb phase, (5.109)

W (C) ∼ e−σA, confinement phase. (5.110)

Here ε may be interpreted as the self-energy of a particle tracing out
the path C in (Euclidean) space–time, and σ is the string tension
experienced by a particle.

There is no phase transition in the SU(2) and SU(3) models with
the standard plaquette action in the fundamental representation in the
whole region 0 < β <∞ (β = 2n/g2). This conclusion is based primarily
on numerical evidence (see e.g. the collection of articles in [5]) and it
is also supported by analytic mean-field calculations (see e.g. [6] for a
review). The absence of a phase transition, combined with confinement
at strong coupling, may be interpreted as evidence for confinement also
in the weak-coupling region.
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Fig. 5.20. Qualitative phase diagram of mixed-action SU(n) gauge theory for
n = 2, 3.

It should be kept in mind that the phase structure of a theory is not
universal and depends on the action chosen. Only the scaling region near
a critical point is supposed to have universal properties. For example,
in SU(n) gauge theory with an action consisting of a term in the
fundamental representation and a term in the adjoint representation,

S =
∑
p

[βfd−1f Re TrUp + βad
−1
a Re TrDa(Up)], (5.111)

the phase diagram in the βf–βa coupling plane looks schematically like
figure 5.20. This figure shows two connected phase regions; the one
relevant for QCD is the region connected to the weak-coupling region
βf/2n + βan/(n2 − 1) = 1/g2 → ∞ (recall (4.85)). For n > 3 the phase
boundary going downward in the south-east direction crosses the βf axis.
This implies that, for n > 3, the model with only the standard plaquette
action in the fundamental representation shows a phase transition. It
is, however, not a deconfining transition because we can go around it
continuously through negative values of the adjoint coupling βa.

The phase structure of lattice gauge theories is rich subject and for
more information we refer the reader to [5] and [6], and [10].

5.8 Mechanisms of confinement

As we have seen in section 5.1, the calculation of the static potential
from a Wilson loop to lowest order of perturbation in g2 gives a Coulomb
potential. In the compact U(1) theory, higher orders did not change this
result qualitatively, whereas in SU(n) gauge theory, there are logarith-
mic corrections, that can be interpreted in terms of asymptotic freedom.
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However, there is no sign of confinement in weak-coupling perturbation
theory. This can be understood from the fact that we expect the string
tension to depend on the bare coupling g2 as

√
σ = CσΛL = Cσ

1
a

(β1g2)−β2/2β
2
1e−1/β1g

2
[1 +O(g2)], (5.112)

which has no weak-coupling expansion (all derivatives ∂/∂g2 vanish at
g = 0). The physical region is at weak coupling, where the lattice spacing
is small, so how can we understand confinement in this region?

Non-perturbative field configurations have long been suspected to
do the job. Such configurations are fundamentally different from mere
fluctuations on a zero or pure-gauge background. We mention here in
particular magnetic-monopole configurations envisioned by Nambu [49],
’t Hooft [50], and Polyakov [41], and Z(n) vortex configurations put
forward by ’t Hooft [51] and Mack [52].

It can be shown that the confinement of the compact U(1) theory
is due to the fact that it is really a theory of photons interacting with
magnetic monopoles (see e.g. the first reference in [53] for a review).
These monopoles condense in the confinement phase in which the model
behaves like a dual superconductor. In a standard type-II superconduc-
tor, electrically charged Cooper pairs are condensed in the ground state,
which phenomenon causes magnetic-field lines to be concentrated into
line-like structures, called Abrikosov flux tubes. Magnetic monopoles,
if they were to exist, would be confined in such a superconductor,
because the energy in the magnetic flux tube between a monopole and an
antimonopole would increase linearly with the distance between them.

In a dual superconductor electric and magnetic properties are inter-
changed. The compact U(1) model is a dual superconductor in the
strong-coupling phase, in which the magnetically charged monopoles
condense and the electric-field lines are concentrated in tubes, such that
the energy between a pair of positively and negatively charged particles
increases linearly with distance. In this way the model is an illustration
of the dual-superconductor hypothesis as the explanation of confinement
in QCD.

At weak coupling the monopoles decouple in the compact U(1) model,
because they are point particles that acquire a Coulomb self-mass of
order of the inverse lattice spacing a−1. However, in SU(2) gauge theory,
according to [53], there are ‘fat’ monopoles that have physical sizes and
masses, and do not decouple at weak bare gauge coupling g2. They
remain condensed as g2 → 0 and continue to produce a non-zero string
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tension for all values of g2. A similar mechanism is supposed to take
place in SU(n) gauge theory for n > 2.

The mechanism for confinement in SU(n) gauge theory proposed by
Mack is condensation of fat Z(n) vortices. The latter cause an area-type
decay of large Wilson loops in much the same way as in the Z(n) gauge
theory at strong coupling.

There seems to be more than one explanation of confinement, depend-
ing on the gauge one chooses to work in. This may seem disturbing,
but, e.g. also in scattering processes, different reference frames (such
as ‘center of mass’ or ‘laboratory’) lead to different physical pictures.
Numerical simulations offer a great help in studying these fundamental
questions. Lattice XX reviews are in [54], see also [55, 56, 57, 58, 59].

5.9 Scaling and asymptotic scaling, numerical results

We say that relations between physical quantities scale if they become
independent of the correlation length ξ as it increases toward infinity.
In practice this means once ξ is sufficiently large. In pure SU(n) gauge
theory the correlation length is given by the mass in lattice units of the
lightest glueball, ξ = 1/am. For instance, glueball-mass ratios mi/mj

are said to scale when they become approximately independent of ξ.
Typically one expects corrections of order a2,

mi/mj = rij + r′ija
2m2 +O(a4). (5.113)

For the usual plaquette action am is only a function of the bare gauge
coupling g2. We can write m = CmΛL, with ΛL the lambda scale
introduced in (5.45) and Cm a numerical constant characterizing the
glueball. The correlation length is then related to the gauge coupling by

ξ−2m = a2m2 = C2
m a2Λ2L = C2

m (β1g2)−β2/β
2
1e−1/β1g

2
[1 +O(g2)],

(5.114)
for sufficiently small g2. Neglecting the O(g2), this behavior as a function
of g2 is called asymptotic scaling.

It turns out that asymptotic scaling is a much stronger property than
scaling, in the sense that scaling may set in when the correlation length
is only a few lattice spacings, whereas asymptotic scaling is not very
well satisfied yet. In the usual range of couplings, which are of order
β = 2n/g2 = 6 for SU(3) gauge theory with the plaquette action in the
fundamental representation, once β ≥ 5.7 or so, the correlation length
appears to be sufficiently large and the O(a4) corrections small enough
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for scaling corrections to be under control. However, asymptotic scaling
does not hold very well yet in this region. Apparently the O(g2) correc-
tions in (5.114) cannot be neglected. This has led to a search for ‘better’
expansion parameters, i.e. ‘improved’ definitions of a bare coupling that
may give better convergence, see e.g. [60]. Note that exp(−1/β1g2) is a
rapidly varying function of g2 because β1 = 11n/48π2 ≈ 0.070 (n = 3)
is so small. Typically ∆β ≈ 0.48 corresponds to a reduction of a2 by a
factor of four near β = 6.

The potential V (r) is a good quantity to test for scaling because it is
relatively easy to compute and there are many values V (r). As a measure
of the correlation length we may take

ξσ(β) = 1/a
√
σ, (5.115)

where a2σ is the string tension in lattice units, which goes to zero as β
approaches infinity. Assuming

√
σ = 400 MeV, for example (cf. section

1.1), the value of a
√
σ give us the lattice distance a in units (MeV)−1.

This can be used to express the potential in physical units as follows.
The potential in lattice units can be written as

aV = v
( r
a
, β
)
, (5.116)

where v is a function of the dimensionless variables r/a and β. Recall that
V contains the unphysical self-energy of the sources, which is distance
independent. Expressing the potential in physical units, as set by the
string tension, gives

V√
σ

= ξσ(β) v
(
r
√
σ

ξσ(β)
, β

)
≡ Ṽ (r

√
σ, β) + v0(β). (5.117)

These relations ‘scale’ when Ṽ becomes independent of β. Here v0(β)
is the self-energy, which can be fixed by a suitable choice of the zero
point of energy, e.g. Ṽ (1) = 0. In practice, after computing σ from the
long-distance behavior V ≈ σr + constant +O(r−1), the data points at
various β ≥ 6 can be made to form a single scaling curve by plotting
V/
√
σ versus r

√
σ with a suitable vertical shift corresponding to v0(β).

However, the accuracy of such scaling tests is limited by the fact that
σ is an asymptotic quantity defined in terms of the behavior of the po-
tential at infinity. This problem may be circumvented by concentrating
on the force F = ∂V/∂r, in terms of which we can define a reference
distance r0 by

r20F (r0) = 1.65. (5.118)
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Fig. 5.21. Scaling of the SU(3) force and the continuum limit at x = r/r0 =
0.4, 0.5, and 0.9 (left), and x = r/rc = 0.5, 0.6, and 1.5 (right) from top to
bottom. The stronger/weaker dependence on a corresponds to r1 defined in
(5.119)/(5.120). From [62].

The choice 1.65 turns out to give r0 ≈ 1/
√
σ, which is in the

intermediate-distance regime within which the potential and force can
be computed accurately [61]. The force may be computed as

F (r1) = [V (r + a)− V (r)]/a, r1 = r − a/2, (5.119)

and scaling tests can then be performed as above with
√
σ → 1/r0. There

is another choice for r1 that gives an improved definition of the force,
leading to much smaller scaling violations in the small- and intermediate-
distance region [61], namely

(4πr1)−2 = [v(r1, 0, 0)− v(r1 − a, 0, 0)]/a, (5.120)

where v(x, y, z) is the lattice Coulomb potential (5.11). The scaling test
for the force avoids ambiguities from the Coulomb self-energy in the
potential. Writing r = xr0, or r = xrc, where rc is defined as in (5.118)
with 1.65 → 0.65, a scaling analysis is carried out in [62] in the form
r20F (xr0) = f0(x) + f ′

0(a/r0)
2 + O(a4), or with r0 → rc, as shown in

figure 5.21. The values of (a/r0,c)2 correspond to β in the interval [5.7,
6.92].
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Fig. 5.22. The running coupling αqq̄(µ) = g2
R(µ)/4π, µ = 1/r plotted versus

r/r0 and compared with the dependence on r as predicted by the weak-
coupling expansion for the renormalization-group beta function (the curves
labeled RGE; dotted lines correspond to 1 σ uncertainties of ΛMS(r0). From
[64].

In the small-distance regime the running of the coupling (5.23), i.e.
g2R(µ) = 4πr2F (r)/C2, µ = 1/r, can be compared with the prediction of
the perturbative beta function, which is known to three-loop order. One
could use the perturbative expansion (5.41) in which ΛV, or equivalently
ΛMS, appears as an integration constant. This scale in units of r0,
i.e. r0ΛMS, has been determined independently in an elaborate non-
perturbative renormalization-group computation [63]. Instead of using
the perturbative expansion it is more accurate to integrate the two-
or three-loop renormalization-group equation numerically. The result
is shown in figure 5.22, where we see that perturbation theory works
surprisingly well, when it is implemented in this way, up to quite large
α’s. In physical units r0 ≈ 1/

√
σ ≈ 0.5 fm.

Note that knowledge of a non-perturbative Λ scale allows the predic-
tion of αs. Such a program has been pursued in full QCD in various ways
[66] and the resulting αs agrees well with the experimentally measured
values, see also the review in [2].
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Fig. 5.23. The potential from two values of β. The curve labeled ‘Cornell’ is
a fit of the form − 4

3
α/r + constant + σr with constant α. From [65].

An overview of numerically computed potential is given in figure 5.23.
Glueball masses have by now also been computed with good accuracy

in the SU(n) models, using variational methods for determining the
eigenvalues of the transfer matrix. It is particularly interesting to do
this for varying n, since the theory simplifies in the large-n limit in the
sense that only planar diagrams contribute [67]. The same is true in
the strong-coupling expansion [68]. Figure 5.24 shows recent results for
various n. We see that ratios with

√
σ do indeed behave smoothly as a

function of 1/n2 all the way down to n = 2.
Last, but not least, analytic computations in finite volume are theo-

retically very interesting and a comparison with numerical data is very
rewarding. For a review, see [18].

5.10 Problems

(i) Gauge fixing and the weak-coupling expansion
Consider a partition function for a U(1) or SU(n) lattice gauge-
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Fig. 5.24. Ratios of glueball masses with
√
σ, extrapolated to a → 0 and

infinite volume, as a function of 1/n2, for n = 2, 3, 4, 5. From [69].

field theory with gauge-invariant action S(U),

Z =
∫

DU exp[S(U)]. (5.121)

The action may be the standard plaquette action

S(U) = − 1
2ρg2

∑
xµν

Tr (1− Uµνx), (5.122)

it may also contain the effect of dynamical fermions in the form
ln detA(U), with A the ‘fermion matrix’, cf. section 7.1. Let O(U)
be a gauge-invariant observable, O(U) = O(UΩ),

UΩ
µx = ΩxUµxΩ

†
x+µ̂, (5.123)

and

〈O〉 =
∫
DU exp[S(U)]O(U)

Z
. (5.124)

be the average of O.
We want to evaluate the path integrals in the weak-coupling

expansion and expect to have to use gauge fixing, as in the
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continuum. We can try to restrict the implicit integration over
all gauge transformations in 〈O〉, loosely called gauge fixing, by
adding an action Sgf(U) to S(U) that is not invariant under gauge
transformations. For example,

Sgf(U) = −1
ξ

∑
x

1
2g2ρ

Tr (∂′
µ ImUµx)2, ImU ≡ U − U†

2i
,

(5.125)
with ∂′

µ = −∂†
µ the backward derivative, ∂′

µfx = fx − fx+µ̂. Let
∆(U) be defined by

∆(U)−1 =
∫

DΩ exp[Sgf(UΩ)], (5.126)

where
∫
DΩ is the integration over all gauge transformations. It

is assumed that ∆(U)−1 �= 0.
(a) Show that the Faddeev–Popov measure factor ∆(U) is gauge
invariant.

We insert 1 = ∆(U)
∫
DΩ exp[Sgf(UΩ)] into the integrands in

the above path-integral expression for 〈O〉 and make a transfor-
mation of variables U → UΩ†

. Using the gauge invariance of S(U),
O(U), and ∆(U) we get

〈O〉 =
∫
DΩ
∫
DU ∆(U) exp[S(U) + Sgf(U)]O(U)∫

DΩ
∫
DU ∆(U) exp[S(U) + Sgf(U)]

=
∫
DU ∆(U) exp[S(U) + Sgf(U)]O(U)∫

DU ∆(U) exp[S(U) + Sgf(U)]
. (5.127)

In the weak-coupling expansion we expand about the saddle
points with maximum action. We assume this maximum to be
given by Uµx = 1. There will in general be more maxima. For
example, without dynamical fermions, Uµx = U (i.e. independent
of x and µ) and Uµx = Zµ, with Zµ an element of the center
of the gauge group, give the same value of the plaquette action
as does Uµx = 1. Intuitively we expect constant modes to be
important for finite-size effects, but not important in the limit
that the space–time volume goes to infinity. Restricting ourselves
here to the latter case, we shall not integrate over constant modes
and expand about Uµx = 1, writing

Uµx = exp(−igAk
µ xtk). (5.128)

The evaluation of the integral (5.126) defining ∆(U) is also
done perturbatively. Because of the factor 1/g2 in the gauge-fixing
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action, we only need to know ∆(U) for small ∂′
µ Im TrUµx. The

integral (5.126) has a saddle point at Ωx = 1, but there are in
general many more saddle points Ωx, called Gribov copies, with
Sgf(UΩ) = Sgf(U). The study of Gribov copies is complicated.
One can give arguments that the correct weak-coupling expansion
is obtained by restriction to the standard choice Ωx = 1, and this
is what we shall do in the following. This means that, for the
perturbative evaluation of ∆(U), we can write

Ωx = exp(igωk
xtk) (5.129)

and expand in gωx. In perturbation theory we may just as well
simplify the gauge-fixing action and use

Sgf = − 1
2ξ2
∑
x

∂′
µA

k
µx∂

′
νA

k
νx. (5.130)

(In the neighborhood of the identity, Ak
µx and ωk

x are well defined
in terms of Uµx and Ωx.)

We extend the initially compact integration region over Ak
µx

and ωk
x to the entire real line (−∞,∞). The error made in doing

so is expected to be of order exp(−constant/g2), and therefore
negligible compared with powers of g, as g → 0. A typical example
is given by∫ π

−π

dx e−x2/g2
=
∫ ∞

−∞
dx e−x2/g2

+O(e−π2/g2
). (5.131)

(b) For a U(1) gauge theory show that (5.130) leads to a Faddeev–
Popov factor that is independent of U ,

∆(U) = constant× det(�), �xy = ∂′
µ∂µδ̄xy, (5.132)

with the constant independent of Aµ.
(ii) Weak-coupling expansion in compact QED

We consider first the bosonic theory given by the action

S(U) = − 1
2g2
∑
xµν

(1− Uµνx) (5.133)

and use (5.130) for gauge fixing. The bare vertex functions −V
are given by

SA + Sgf = −
∑
n

1
n!

∑
x1···xn

V x1···xn
µ1···µn

Aµ1x1 · · ·Aµnxn . (5.134)
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(a) Show that, in momentum space, for even n ≥ 2 (by convention
the momentum-conserving periodic delta function is omitted in
the definition of the Fourier transform of V x1···xn

µ1···µn
),

Vµ1···µn(k1 · · · kn) = − 1
2 (g

2)n/2−1
∑
αβ

Tαβ
µ1

(k1) · · ·Tαβ
µn

(kn)

− δn,2
1
ξ
Kµ1(k1)Kµ2(k2), (5.135)

where

Kµ(k) =
1
i
(eikµ − 1), K∗

µ(k) = −Kµ(−k), (5.136)

Tαβ
µ (k) = K∗

α(k)δβµ −K∗
β(k)δαµ. (5.137)

(b) Show that the photon propagator Dµν(k) is given by

Dµν(k) =
(
δµν −

Kµ(k)K∗
ν (k)

|K(k)|2

)
1

|K(k)|2 + ξ
Kµ(k)K∗

ν (k)
|K(k)|4 .

(5.138)
The Feynman gauge corresponds to ξ = 1.
(c) Derive (5.19), for arbitrary ξ.
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