ON A TYPE OF RIEMANNIAN SPACE

BANDANA GUPTA

(received 11 November 1963, revised 20 March 1964)

1. Introduction

In connection with Relativity, Kottler [2] introduced the space V_{4} whose metric tensor is given by

$$
\begin{align*}
& g_{11}=\phi^{2}, \quad g_{22}=-x_{1}^{2}, \quad g_{33}=-x_{1}^{2} \sin ^{2} x_{2} \\
& g_{44}=-\frac{1}{\phi^{2}}, \quad g_{i j}=0(i \neq j), \tag{1.1}
\end{align*}
$$

x_{i} being space coordinates and ϕ being a function of x_{1} only, and showed that if

$$
\phi^{2}=-\left(1+a x_{1}^{2}+\frac{b}{x_{1}}\right)^{-1}
$$

where a and b are arbitrary constants, then the V_{4} is an Einstein space. The present paper deals with a type of Riemannian space of n dimensions ($n \geqq 4$) for which the metric tensor is a generalisation of that of Kottler's space V_{4} and is given by

$$
\begin{array}{ll}
g_{11}=\phi^{2}, g_{22}=-x_{1}^{2}, \quad g_{n n}=\sin ^{2} x_{n-1} g_{n-1 n-1} & (2<h<n) \\
g_{n n}=-\frac{1}{\phi^{2}}, \quad g_{i j}=0 & (i \neq j) \tag{1.2}
\end{array}
$$

where ϕ is a function of x_{1} only.
Denoting an n-dimensional space of this kind by T_{n} the following theorems will be proved in this paper.

Theorem 1. If a. T_{n} is conformally flat, then it is of constant Riemannian curvature.

Theorem 2. If $a T_{n}$ is symmetric in the sense of Cartan, then it is of constant Riemannian curvature.

Theorem 3. If a T_{n} is Ricci-symmetric, then it is an Einstein space.

2. Proofs of Theorems 1 and 2

Let us consider an n-dimensional Riemannian space $V_{n}(n \geqq 4)$ whose metric tensor is given by (1.2). It can be easily verified that for this space $R_{h i j k}=0$ (h, i, j, k unequal) and $R_{h i i k}=0$ (Eisenhart, [1], p. 44). By actual calculations we get the nonzero components of the Riemann tensor as follows:

$$
\begin{align*}
& R_{1921}=\frac{x_{1}}{\phi} \frac{d \phi}{d x_{1}}, \quad R_{1 k k 1}=\sin ^{2} x_{k-1} R_{1 k-1 k-11} \quad(2<k<n) \\
& R_{1 n n 1}=-\frac{3}{\phi^{4}}\left(\frac{d \phi}{d x_{1}}\right)^{2}+\frac{1}{\phi^{3}} \frac{d^{2} \phi}{d x_{1}^{2}}, \quad R_{2332}=x_{1}^{2} \sin ^{2} x_{2}\left(1+\frac{1}{\phi^{2}}\right) \\
& R_{2 k k 2}=\sin ^{2} x_{k-1} R_{2 k-1 k-12} \quad(3<k<n), \quad R_{2 n n 2}=-\frac{1}{\phi^{4}} R_{1221} \tag{2,1}\\
& R_{h k k h}=\sin ^{2} x_{h-1} R_{h-1 k k h-1} \quad(2<h<k \leqq n) .
\end{align*}
$$

Put

$$
\begin{equation*}
L_{h k}=\frac{1}{2-n}\left[R_{h k}-\frac{R}{2(n-1)} g_{n k}\right] \tag{2.2}
\end{equation*}
$$

where R_{i}, is the Ricci tensor and R is the scalar curvature. It is known that if an n-dimensional Riemannian space ($n \geqq 4$) is conformally flat, then

$$
\begin{equation*}
R_{h i j k}=g_{i k} L_{n j}-g_{i j} L_{n k}+g_{n j} L_{i k}-g_{n k} L_{i j} \tag{2.3}
\end{equation*}
$$

where $L_{n k}$ is given by (2.2).
Let now T_{n} be a conformally flat space. Then from (2.3) we get

$$
\begin{equation*}
\frac{-x_{1}^{2}}{\phi} \frac{d^{2} \phi}{d x_{1}^{2}}+\frac{3 x_{1}^{2}}{\phi^{2}}\left(\frac{d \phi}{d x_{1}}\right)^{2}+\frac{2 x_{1}}{\phi} \frac{d \phi}{d x_{1}}+\left(1+\phi^{2}\right)=0 . \tag{2.4}
\end{equation*}
$$

The solution of (2.4) is given by

$$
\begin{equation*}
\phi^{2}=-\left(1+a x_{1}^{2}+b x_{1}\right)^{-1} \tag{2.5}
\end{equation*}
$$

where a and b are arbitrary constants.
As proved by Hlavatý ([3], p. 477), in a conformally flat $V_{n}(n \geqq 4)$ a consequence of (2.3) is

$$
\begin{equation*}
L_{i, k}=L_{i k, j} \tag{2.6}
\end{equation*}
$$

where comma denotes covariant differentiation with respect to $g_{i j}$. From (2.6) it follows that $b=0$. Hence from (2.5) we get $\phi^{2}=-\left(1+a x_{1}^{2}\right)^{-1}$ and therefore $R_{i j}=R / n g_{n}$. Thus the space T_{n} is a conformally flat Einstein space and therefore it is a space of constant Riemannian curvature (Eisenhart, [1], p. 93).

Let us next suppose that T_{n} is symmetric in the sense of Cartan, i.e. let

$$
\begin{equation*}
R_{h i j k, l}=0 . \tag{2.7}
\end{equation*}
$$

In consequence of (2.7) we get

$$
\begin{equation*}
\left(1+\frac{1}{\phi^{2}}\right)+\frac{x_{1}}{\phi^{3}} \frac{d \phi}{d x_{1}}=0 . \tag{2.8}
\end{equation*}
$$

Solving (2.8) we get

$$
\begin{equation*}
\phi^{2}=-\left(1+a x_{1}^{2}\right)^{-1} \tag{2.9}
\end{equation*}
$$

where a is an arbitrary constant. From (2.9) it follows that

$$
R_{h i j k}=a\left(g_{n j} g_{i k}-g_{i j} g_{h k}\right) .
$$

Hence the T_{n} is of constant Riemannian curvature.

3. Proof of Theorem 3

Let us now suppose that T_{n} is Ricci-symmetric, i.e., let $R_{i j, k}=0$. Taking covariant derivatives of $R_{i i}$ we obtain

$$
\begin{aligned}
& R_{11,1}=-\frac{1}{\phi} \frac{d^{3} \phi}{d x_{1}^{3}}+\frac{d^{2} \phi}{d x_{1}^{2}} {\left[\frac{9}{\phi^{2}} \frac{d \phi}{d x_{1}}-\frac{(n-2)}{x_{1} \phi}\right] } \\
& \quad-\frac{12}{\phi^{3}}\left(\frac{d \phi}{d x_{1}}\right)^{3}+\frac{3(n-2)}{x_{1} \phi^{2}}\left(\frac{d \phi}{d x_{1}}\right)^{2}+\frac{n-2}{x_{1}^{2} \phi} \frac{d \phi}{d x_{1}} \\
& R_{11, p}=0, \quad p \neq 1 \\
& R_{22,1}=\frac{2}{x_{1} \phi^{4}}\left[\phi x_{1}^{2} \frac{d^{2} \phi}{d x_{1}^{2}}-3 x_{1}^{2}\left(\frac{d \phi}{d x_{1}}\right)^{2}\right. \\
&\left.+(n-4) \phi x_{1} \frac{d \phi}{d x_{1}}+(n-3) \phi^{2}\left(1+\phi^{2}\right)\right] \\
& R_{22, p}=0 \quad p \neq 1, \quad R_{n h, 1}=\sin ^{2} x_{n-1} R_{h-1 n-1,1} \\
& R_{n n, p}=0 \quad p \neq 1 \quad(2<h<n) \\
& R_{n n, 1}=-\frac{1}{\phi^{4}} R_{11,1} \quad R_{n n, p}=0 \quad p \neq 1 .
\end{aligned}
$$

Since T_{n} is Ricci-symmetric

$$
\begin{equation*}
\phi x_{1}^{2} \frac{d^{2} \phi}{d x_{1}^{2}}-3 x_{1}^{2}\left(\frac{d \phi}{d x_{1}}\right)^{2}+(n-4) \phi x_{1} \frac{d \phi}{d x_{1}}+(n-3) \phi^{2}\left(1+\phi^{2}\right)=0 . \tag{3.1}
\end{equation*}
$$

Solving (3.1) we get

$$
\begin{equation*}
\phi^{2}=-\left(1+a x_{1}^{2}+b x_{1}^{3-n}\right)^{-1} \tag{3.2}
\end{equation*}
$$

where a and b are arbitrary constants.
But a T_{n} for which the value of ϕ is given by (3.2) is an Einstein space (H. Sen, [4]). Hence the T_{n} is, in this case, an Einstein space.

In conclusion, I acknowledge my grateful thanks to Dr. M. C. Chaki for suggesting the problem and for his helpful guidance in the preparation of this paper.

References

[1] Eisenhart, L. P., Riemannian Geometry, Princeton University Press, Princeton, 1949.
[2] Kottler, F., Annalen der Physik (4) 56 (1918), 401.
[3] Hlavatý, V., Differential Line Geometry, Noordhoff, Groningen, 1953.
[4] Sen, H., Bull. Calcutta Math. Soc. 49 (1957), 153-156.
Department of Pure Mathematics, Calcutta University.

