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Abstract. A subgroup H of a finite group G is called SS-supplemented in G
if there exists a subgroup K of G such that HK = G and H ∩ K is S-quasinormal
in K . In this paper, we characterize the finite groups in which every subgroup is
SS-supplemented and the influence of SS-supplementation of some subgroups on
the structure of finite groups is considered. Some recent results on SS-quasinormal
subgroups and C-supplemented subgroups are strengthened and enriched.
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1. Introduction. All groups considered in this paper are finite.
A group G is said to be factorized into its subgroups A and B if G is the product of

A and B. Obviously, the structure of the factorized group G = AB is restricted by its
subgroups A and B. There has been interest in the past in investigating the structure
of the factorized group G = AB by means of the structure of A and B. For instance,
in 1955, Itô found an impressive and very satisfying theorem. He proved in [17] that
G = AB is a metabelian group if A and B are abelian. The most famous theorem of this
type was due to Kegel (see [18]) and Wielandt (see [28, 29]) as they stated the solvability
of the factorized group G = AB if A and B are both nilpotent. It is also well-known that
the group G = AB is nilpotent if A and B are both normal nilpotent subgroups of G.
However, it is known that the factorized group G = AB is not necessary supersolvable
if both A and B are normal supersolvable subgroups of G (see [3]). Thus, the following
interesting question arises:

Let F be a formation (may be a saturated formation). What will be the conditions
needed for the subgroups A and B so that the factorized group G = AB ∈ F when
both A and B are in the formation F?

In answering the above question, Asaad and Shaalan first proved a theorem in 1989
[1] by showing that if G = HK is a factorized group with supersolvable subgroups H
and K such that every subgroup of H is permutable with every subgroup of K , then G
is supersolvable. In 1992, Maier in [23] further proved that the above result can also be
obtained by considering the general completeness property of all saturated formations
containing the class of supersolvable groups. Along this direction, Ballester-Bolinches
and some others have investigated the totally permutable products and the mutually
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permutable products of finite groups, and consequently many interesting results have
been given (for example, see [4, 6]).

Motivated by the above results, we now call a subgroup H of a group G SS-
supplemented in G if there exists a subgroup K of G such that G = HK and H ∩ K
is an S-quasinormal subgroup in K . In this case, the subgroup K is said to be an
SS-supplement of H in G.

Recall that a subgroup H of a group G is S-quasinormal in G if H permutes with
every Sylow subgroup of G. After the introduction of the above concept by Kegel (see
[19]), the structure of a group has been extensively investigated under some additional
assumptions on the subgroups of a given group (see [2, 24]). On the other hand, a
subgroup H of a group G is called a complemented subgroup of G if there exists
another subgroup K of G such that G = HK and H ∩ K = 1. By using the concept
of complemented subgroups, Hall established a fundamental theorem for solvable
groups in [14] by proving that a group G is solvable if and only if every Sylow subgroup
is complemented. Recently, the authors have also investigated the finite p-nilpotent
groups with some subgroups c-supplemented in [13]. Research on the complemented
subgroups of a given group still continues and many related results have been recently
obtained (see [5, 11, 12]).

In this paper, we first describe the relationship between the SS-supplemented
subgroups and the complemented subgroups or S-quasinormal subgroups of a given
group G. Next, we study the structure of the finite groups whose subgroups are SS-
supplemented. Some applications of our results are considered so that a number of
related results in the literature are extended and generalized.

2. Preliminaries. In this section, we first discuss the properties of SS-
supplemented subgroups and give some lemmas which will be used in the sequel. For the
sake of convenience, we recall that a subgroup H of a group G is C-supplemented in G if
there exists a subgroup K of G such that G = HK and H ∩ K ≤ HG (see [7]), where HG

is the core of H in G. It is obvious that a subgroup H of a group G is C-supplemented in
G if and only if there exists a subgroup K1 of G such that G = HK1 and H ∩ K1 = HG.
Hence, the concept of C-supplemented subgroups can be regarded as a generalization
of both C-normal subgroups and complemented subgroups; therefore, it is worthwhile
to investigate the structure of a group by considering its C-supplemented subgroups.
On the other hand, we recall a new concept (see [21]), which is a generalization of
S-quasinormality. A subgroup H of a group G is called to be SS-quasinormal in G
if there is a subgroup K of G such that G = HK and H permutes with every Sylow
subgroup of K . Many interesting results on SS-quasinormality of a group have been
recently given by Li and others (for instance, see [21, 22]).

DEFINITION 2.1. A subgroup H of a group G is said to be SS-supplemented in G
if there exists a subgroup K of G such that G = HK and H ∩ K is S-quasinormal in
K . In this case, we say that K is an SS-supplement of H in G.

It is clear that a C-supplemented subgroup of a group G must be SS-supplemented
in G. We now assume that H is a SS-quasinormal subgroup of a group G. Then,
there exists a subgroup K of G such that G = HK and H permutes with every Sylow
subgroup of K . Let P be a Sylow subgroup of K . Then, by HP = PH, we deduce that
(H ∩ K)P = P(K ∩ H). This shows that H must be SS-supplemented in G. On the
other hand, a SS-quasinormal subgroup of a group may not be C-supplemented and a
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C-supplemented subgroup of a group may not be SS-quasinormal (see Example 2.2).
Furthermore, the following Example 2.3 illustrates that a SS-supplemented subgroup
of a group may be neither C-supplemented nor SS-quasinormal. Hence the class of
all SS-supplemented subgroups in a group contains properly both the class of all C-
supplemented subgroups and the class of all SS-quasinormal subgroups in the group.

EXAMPLE 2.2. Let G = S4 be the symmetric group of degree 4 and let H = 〈(34)〉.
Then, H is C-supplemented in G since G = HA4 and H ∩ A4 = 1. However, H is not
SS-quasinormal in G because HP �= PH when P = 〈(123)〉.

Let P = 〈x, y : x16 = y4 = 1, xy = x3〉. Then, �(P) = 〈x2, y2〉 = 〈x2〉 × 〈y2〉. It is
easy to see that H = 〈y2〉 is S-quasinormal in P and so SS-quasinormal in P. However,
H is not C-supplemented in P.

EXAMPLE 2.3. Let G be the direct product of S4 and P with S4 and P as in
Example 2.2. Now let H = C2 × P1, K = A4 × P, where C2 = 〈(34)〉, P1 = 〈y2〉 and
A4 is the alternating group of degree 4. Then, G = HK and H ∩ K is S-quasinormal
in K since H ∩ K ∼= P1. Hence, H is SS-supplemented in G. However, H is neither
C-supplemented nor SS-quasinormal in G.

We now give some basic properties of SS-supplemented subgroups.

LEMMA 2.4. Let G be a group and H an SS-supplemented subgroup of G. Then, the
following statements hold:

(1) If M is a subgroup of G and H ≤ M, then H is SS-supplemented in M.
(2) If N is a normal subgroup of G and N ≤ H, then H/N is SS-supplemented in

G/N.
(3) Let π be a set of primes. If H is a π -subgroup of G and N is a normal π

′
-subgroup

of G, then HN/N is SS-supplemented in G/N.
(4) If L is a subgroup of G and H ≤ �(L), then H is S-quasinormal in G.

Proof. By the hypotheses, there exists K ≤ G such that HK = G and H ∩ K is
S-quasinormal in K . Let K1 = M ∩ K . Then, M = HK1 and H ∩ K1 = H ∩ K is S-
quasinormal in K1. This shows that H is SS-supplemented in M and thus (1) is proved.

It follows from G = HK that H/N · KN/N = G/N. By using the well-known
Dedekind identity, we have H/N ∩ KN/N = N(H ∩ K)/N. For any prime number p,
it is well known that any Sylow p-subgroup of KN/N has the form KpN/N, where
Kp is a Sylow p-subgroup of K . Thus, (H/N ∩ KN/N)(KpN/N) is a subgroup of G/N
since (H ∩ K)Kp is a subgroup of G. This implies that H/N ∩ KN/N is S-quasinormal
in KN/N. Therefore, H/N is SS-supplemented in G/N and (2) is proved.

Since (|N|, |H|) = 1, N ≤ K and NH ∩ K = N(H ∩ K). This shows that NH ∩ K
is S-quasinormal in K , and hence, NH is SS-supplemented in G. By (2), HN/N is
SS-supplemented in G/N and (3) follows.

Since H ≤ �(L), L = H(L ∩ K) = L ∩ K . It follows that K = G and H is S-
quasinormal in G. Thus, (4) holds and the proof is completed. �

The following lemmas are known results of S-quasinormal subgroups of a given
group G.

LEMMA 2.5. ([19]) Let G be a group and H ≤ G. If H is S-quasinormal in G, then H
is subnormal in G.

LEMMA 2.6. ([24]) If H is a p-subgroup of a group G for some prime p, then H is
S-quasinormal in G if and only if Op(G) ≤ NG(H).
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LEMMA 2.7. ([8]) If A is subnormal in G and B is a minimal normal subgroup of G,
then B ≤ NG(A).

Recall that a class F of groups is called a formation if G ∈ F and N � G then
G/N ∈ F , and if G/Ni ∈ F , i = 1, 2, then G/N1 ∩ N2 ∈ F . In addition, if G/�(G) ∈
F implies G ∈ F , then we call F a saturated formation. A well-known example of
saturated formations is the class U of supersolvable groups.

Concerning saturated formations, we have the following known results.

LEMMA 2.8. ([25]) Let F be a saturated formation containing U , let G be a group
with a normal subgroup H such that G/H ∈ F . If H is cyclic, then G ∈ F .

LEMMA 2.9. ([26]) Let F be a saturated formation containing U and G a group with
a solvable normal subgroup H such that G/H ∈ F . If for every maximal subgroup M of
G, either F(H) ≤ M or F(H) ∩ M is a maximal subgroup of F(H), then G ∈ F .

3. SS-supplemented subgroups of a group. A group G is said to be SS-
supplemented if every subgroup of G is SS-supplemented in G. In this section, we
first investigate the solvability of groups by using SS-supplemented subgroups and
then the SS-supplemented group will hence be characterized.

THEOREM 3.1. Let G be a group. Then, G is solvable if and only if every Sylow
subgroup of G is SS-supplemented in G.

Proof. If the given group G is solvable, then every Sylow subgroup of G is
complemented and hence G is SS-supplemented.

Conversely, we assume that every Sylow subgroup P of G is SS-supplemented in G.
Then, by definition, there exists K ≤ G such that PK = G and P ∩ K is S-quasinormal
in K . By Lemma 2.5, P ∩ K is subnormal in K . Note that since P ∩ K is a Sylow
subgroup of K , we can easily see that P ∩ K is also a normal Sylow subgroup of K . By
applying the Schur–Zassenhaus theorem [9, Theorem 6.2.1], we have K = (P ∩ K)Kp′ ,

where Kp′ is a Hall p′-subgroup of K . Now G = PK = PKp′ and P ∩ Kp′ = 1. Hence P
is complemented in G. The theorem is proved. �

By using the same arguments as in Theorem 3.1, we deduce the following corollary.

COROLLARY 3.2. Let G be a group and H a Hall subgroup of G. Then H is
complemented in G if and only if H is SS-supplemented in G.

If we only assume that all maximal subgroups are SS-supplemented in a group
G, then G need not be solvable. In fact, L2(7), L2(11) and L5(2) are nonabelian simple
groups in which every maximal subgroup is complemented (see [20], main theorem).
However, we have the following result.

THEOREM 3.3. Let G be a group. Then, G is solvable if and only if every maximal
subgroup of G has a subnormal SS-supplement in G.

Proof. Let G be a solvable group and H a maximal subgroup of G. We now
proceed to show that H has a subnormal SS-supplement in G. Assume that HG �= 1.
Consider G/HG. By using induction on |G|, we know that H/HG has a subnormal
SS-supplement K/HG in G/HG. Clearly, K is a subnormal SS-supplement of H in G.
Assume that HG = 1. Let N be a minimal normal subgroup of G. Then, HN = G and
H ∩ N ≤ HG = 1. Hence, N is a normal SS-supplement of H in G.
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Conversely, assume that the result is not true so that we can let G be a
counterexample of minimal order. Consider a maximal subgroup H of G. Then there
exists a subnormal subgroup K of G such that HK = G and H ∩ K is S-quasinormal
in K . If G is a nonabelian simple group, then K = G since H �= G. By Lemma 2.5, we
know that H is subnormal in G and hence H = 1. It follows that G is solvable, which
is a contradiction. Now, we let N be a minimal normal subgroup of G. Then, it is easy
to see that the hypothesis is still true for the quotient group G/N. By the minimality
of G, we infer that G/N is solvable. Furthermore, we may assume that N is the unique
minimal normal subgroup of G and N is not contained in �(G). Then, in this case,
we can let M be a maximal subgroup of G with MG = 1. By our hypothesis, there
exists a subnormal subgroup K of G such that MK = G and M ∩ K is S-quasinormal
in K . Since K is subnormal in G, Lemma 2.5 implies that M ∩ K is subnormal in
G. Assume M ∩ K �= 1, then we may take a minimal subnormal subgroup L of G
contained in M ∩ K . Since L ∩ N � L, either L ∩ N = 1 or L ≤ N. By Lemma 2.7, N
normalizes L. If L ∩ N = 1, it follows that NL = N × L and L ≤ CG(N) = 1. Suppose
L ≤ N, then LG = LNM = LM ≤ MG = 1. We also get L = 1, a contradiction. Hence
M ∩ K = 1. By using the same arguments, we can similarly prove that all minimal
subnormal subgroups of G are contained in N. Let N = N1 × · · · × Nr, where each Ni

is isomorphic to a fixed nonabelian simple group. Then, it is easy to see that N1, . . . , Nr

coincide with all minimal subnormal subgroups of G. Without loss of generality, we
may assume that N1 ≤ K . Then, there exists a prime p such that p divides |G : M| = |K|.
By applying [3, Lemma 3, P.121], we obtain that N is solvable, a contradiction. The
proof is now completed. �

The following corollary is a direct consequence of Theorem 3.3.

COROLLARY 3.4. ([19]) A group G is solvable if and only if for every maximal subgroup
M of G, there exists a subnormal subgroup K of G such that G = MK and M ∩ K ≤ MG.

REMARK. From the proof it can be noted that Theorem 3.3 is also valid if
‘subnormal’ is replaced by ‘normal’. The same is valid for Corollary 3.4.

If a group G has a solvable maximal subgroup M such that M is SS-supplemented
in G, then G need not be solvable, for instance, A5. However, we have the following
result.

THEOREM 3.5. Let G be a group. Then, G is solvable if and only if G has a solvable
maximal subgroup H such that H has a normal SS-supplement K in G.

Proof. If G is solvable, then G has a normal maximal subgroup H. It is easy to see
that H has a normal SS-supplement K in G, namely G. Conversely, assume that the
theorem is not true. Then, we let G be a counterexample of minimum order. If HG �= 1,
then H/HG is a solvable maximal subgroup of G/HG and KHG/HG is a normal SS-
supplement of H/HG in G/HG. The choice of G implies that G/HG is solvable and
therefore G is solvable, a contradiction. Hence, HG = 1. Let N be a minimal normal
subgroup of G and C = CG(N). Then, it follows from [8, A, 17.2] that either N is the
unique minimal normal subgroup of G and C ≤ N or G has precisely two minimal
normal subgroups N and R so that N 
 R is nonabelian, and hence, R = C and
N ∩ H = 1 = R ∩ H. By our hypotheses, we deduce that H ∩ K is S-quasinormal in
K and therefore, by Lemma 2.5, we know that H ∩ K is subnormal in K and is hence
in G. Now, assume that H ∩ K �= 1 and let L be a minimal subnormal subgroup of
G contained in H ∩ K . If L ≤ N, then LG = LNH = LH ≤ HG = 1, a contradiction.
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This shows that L is not contained in N and L is analogously not contained in R. It
hence follows that N ∩ L = 1 = R ∩ L. On the other hand, by Lemma 2.7, we have
NL = N × L and therefore L ≤ C, which contradicts C ≤ N or C = R. Hence, we
conclude that H ∩ K = 1. This implies that G = [K ]H and K is a minimal normal
subgroup of G.

Now, we let T be a minimal normal subgroup of H. Then, T is clearly an elementary
abelian p-group for some p ∈ π (H). Since CK (T) is normalized by both H and K , we
know that CK (T) � G. If CK (T) = K , then T ≤ HG, a contradiction. Hence, CK (T) =
1. It now follows from [9, Theorem 6.2.2] that K is a p′-group. By [9, Theorem 6.2.3], K
contains a unique T-invariant Sylow q-subgroup Q for every prime q ∈ π (K). For any
h ∈ H, we have (Qh)T = (QT )h = Qh, that is, Qh is also a T-invariant Sylow q-subgroup
of K , and thereby Q = Qh. Consequently, we have [Q]H = G = [K ]H and so K = Q is
a q-group. This implies that G is a solvable group, a contradiction. Thus, the proof is
completed. �

We now characterize the SS-supplemented groups.

THEOREM 3.6. Let G be a group. Then, the following statements are pairwise
equivalent.

(1) G is an SS-supplemented group.
(2) G is supersolvable, every Sylow subgroup of G/�(G) is elementary abelian and

every subgroup of �(G) is S-quasinormal in G.
(3) every subgroup of G/�(G) is complemented and every subgroup of �(G) is S-

quasinormal in G.

Proof. (1) ⇒ (2). We first prove that G is supersolvable. By the hypotheses and
Theorem 3.1, G is solvable. Let N be a minimal normal subgroup of G. Then, N is
an elementary abelian p-group for some prime p. By Lemma 2.4(2), it is known that
G/N is SS-supplemented and hence G/N is supersolvable by induction. It follows that
in order to prove that G is supersolvable, it suffices to prove that N = 〈x〉 is cyclic.
Let P be a Sylow p-subgroup of G and let x ∈ N ∩ Z(P) with |x|= p. Then, there
exists K ≤ G such that 〈x〉K = G and 〈x〉 ∩ K is S-quasinormal in K . Since 〈x〉 ∩ K
is nomalized by all p′-elements of K and centralized by P, It follows that 〈x〉 ∩ K is
a normal subgroup of G. By minimality of N, 〈x〉 ∩ K = 1 or N ≤ K . Assume that
〈x〉 ∩ K = 1. By order considerations, it follows that N = 〈x〉. Assume now that N ≤ K .
Then 〈x〉 = 〈x〉 ∩ K ≤ N and so N = 〈x〉.

Let P be a Sylow p-subgroup of G and H is a subgroup of �(P). Then by Lemma
2.4(4), H is S-quasinormal in G. By Lemma 2.6, we deduce that �(P) is normal in G.
Hence, �(P) ≤ �(G) and, therefore every Sylow subgroup of G/�(G) is elementary
abelian. The last argument follows from Lemma 2.4(4).

(2)⇒ (3). This part follows from [15, Theorem 2].
(3)⇒ (1). Assume that every subgroup of G/�(G) is complemented and every

subgroup of �(G) is S-quasinormal in G. Let H be a subgroup of G. Then, there
exists a subgroup K/�(G) of G/�(G) such that (H�(G)/�(G))(K/�(G)) = G/�(G)
and (H�(G)/�(G)) ∩ (K/�(G)) = (H ∩ K)�(G)/�(G) = 1. It follows that HK = G
and H ∩ K ≤ �(G). Hence, H ∩ K is S-quasinormal in G. By definition, H is SS-
supplemented in G and hence G is an SS-supplemented group. The proof of theorem
is now complete. �
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4. Applications. In this section, we concentrate on the structure of a group under
the assumption that some subgroups of Sylow subgroups are SS-supplemented. Many
known results will be generalized. In our first result, the p-nilpotency of a group is
studied.

THEOREM 4.1. Let G be a group and let p be the smallest prime divisor of |G|. Let P
be a Sylow p-subgroup of G. If every maximal subgroup of P is SS-supplemented in G,
then G is p-nilpotent.

Proof. Assume that the theorem is false and let G be a counterexample of
minimal order. Then, it follows from [16, IV, 2.8] that P is not cyclic. Let P1 be a
maximal subgroup of P. Then, there exists K ≤ G such that P1K = G and P1 ∩ K is
S-quasinormal in K . It follows from Lemma 2.6 and |P ∩ K : P1 ∩ K| ≤ p that P1 ∩ K
is normal in K . Applying [16, IV, 2.8] again, K/P1 ∩ K is p-nilpotent with normal Hall
p

′
-subgroup H/P1 ∩ K . Then, by the Schur-Zassenhaus theorem [9, Theorem 6.2.1],

we know that P1 ∩ K has a p-complement M in H. By using the Frattini argument,
we deduce that K = HNK (M) = (P1 ∩ K)NK (M) and hence G = P1NG(M). By the
choice of G, it implies that NG(M) < G and P ∩ NG(M) < P. Now, choose a maximal
subgroup P2 of P such that P ∩ NG(M) ≤ P2. By repeating the above argument once
again, we can show that there also exists K1 ≤ G such that P2K1 = G and P2 ∩ K1

is S-quasinormal in K1 and G = P2NG(M1), where M1 is a Hall p
′
-subgroup of G.

If p = 2, then by applying the Gross theorem [10, main theorem], we obtain that
Mg

1 = M for some g ∈ P. If p > 2, then the odd order theorem implies the same
conclusion. Therefore, G = P2NG(M1) = (P2NG(M1))g = P2NG(M). It follows that
P = P2(P ∩ NG(M)) = P2, a contradiction. The proof is completed. �

THEOREM 4.2. Let F be a saturated formation containing the class U of all
supersoluble groups and H a normal subgroup of a group G such that G/H ∈ F . If
all maximal subgroups of every non-cyclic Sylow subgroup of H are SS-supplemented in
G, then G ∈ F .

Proof. Let p be the smallest prime divisor of |H| and P a Sylow p-subgroup of H.
If P is cyclic, then by [16, IV, 2.8], H is p-nilpotent. If P is non-cyclic, then by Lemma
2.4 (1) and Theorem 4.1, we deduce that H is p-nilpotent. By using the same argument
and induction, we may conclude that H is a Sylow tower group.

Now, let q be the largest prime dividing |H| and Q a Sylow q-subgroup of H. Then,
Q is normal in G. If Q1 is a normal subgroup of G with 1 �= Q1 ≤ Q, then, by Lemma
2.4 (2) or (3), G/Q1 satisfies the hypotheses of the theorem and therefore we have
G/Q1 ∈ F , by induction. If Q1 ≤ �(G), then it follows from G/Q1 ∈ F that G ∈ F .
Hence, in this case, we may assume that Q is not contained in �(G) and Q is a minimal
normal subgroup of G. If Q is not a cyclic group, then we let {N1, . . . , Nt} be the set of
all maximal subgroups of Q. For each Ni, by the hypotheses, there exists Ki ≤ G such
that NiKi = G and Ni ∩ Ki is S-quasinormal in Ki. Hence, we have Q = Ni(Q ∩ Ki)
and Q ∩ Ki � G. By the minimality of Q, we deduce that Q ∩ Ki = 1 or Q ≤ Ki. If
Q ∩ Ki = 1, then Q = Ni, a contradiction. Thus, Q ≤ Ki and so Ni is S-quasinormal
in G. Now, Lemma 2.6 implies that |G : NG(Ni)| = qk for some nonnegative integer
k. It hence follows from [16, III, 8.5(d)] that some maximal subgroup of N is normal
in G, which is a contradiction. This shows that Q is a cyclic group of order q. By
Lemma 2.8, we conclude that G ∈ F . The proof is completed. �

The following corollary follows immediately from Theorem 4.2.
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COROLLARY 4.3. Let N be a normal subgroup of a group G such that G/N is
supersolvable. If every maximal subgroup of every Sylow subgroup of N is c-supplemented
in G, then G is supersolvable.

THEOREM 4.4. Let F be a saturated formation containing the formation U of all
supersoluble groups and H a solvable normal subgroup of a group G such that G/H ∈ F .
If all maximal subgroups of every Sylow subgroup of the Fitting subgroup F(H) of H are
SS-supplemented in G, then G ∈ F .

Proof. Let M be a maximal subgroup of G not containing F(H). Then, by
Lemma 2.9, it suffices to prove that F(H) ∩ M is maximal in F(H). To proceed
with the proof, let P be a Sylow p-subgroup of F(H) not contained in M and
let Gp be a Sylow p-subgroup of G. Then, PM = G and Gp ∩ M < Gp. Choose a
maximal subgroup G1 of Gp such that Gp ∩ M ≤ G1 and let P1 = G1 ∩ P. Then, P1 is
a maximal subgroup of P and P1 ∩ M = P ∩ M. Now, we suppose that P ∩ �(G) �= 1.
Then, we can let N be a minimal normal subgroup of G contained in P ∩ �(G). In
this case, we have F(H)/N = F(H/N) and G/N satisfies the hypotheses. By using
induction, we know that G/N ∈ F and therefore G ∈ F . Hence, we may assume
that P ∩ �(G) = 1 and therefore �(P) = 1. Thus, P ∩ M � G and P ∩ M ≤ (P1)G.
It hence follows that (P1)GM < G and so P ∩ M = (P1)G. By the hypotheses, there
exists K1 ≤ G such that P1K1 = G and P1 ∩ K1 is S-quasinormal in K1. If Q is a
Sylow q-subgroup of K1 with q �= p then it is clear that Q normalizes P1 ∩ K1. On the
other hand, since PK1 = G and P is abelian, we have that P ∩ K1 is normal in G. It
follows from Gp = PG1 that P1 ∩ K1 = G1 ∩ P ∩ K1 is normalized by Gp. Therefore,
we have P1 ∩ K1 � G and P1 ∩ K1 ≤ (P1)G. Let K = K1(P1)G. Then, P1 ∩ K = (P1)G.
The maximality of M implies that (P ∩ K)M = M or (P ∩ K)M = G. If (P ∩ K)M =
M, then P ∩ K ≤ P ∩ M = (P1)G and therefore P ∩ K = (P1)G = P1 ∩ K . It follows
that P1 = P, a contradiction. Hence, (P ∩ K)M = G. It follows that P ∩ K = P by
order considerations and so P ≤ K . This proves that P1 = P1 ∩ K = (P1)G = P ∩ M.
Consequently, |F(H) : F(H) ∩ M| = |P : P ∩ M| = p and F(H) ∩ M is maximal in
F(H), as required. �

COROLLARY 4.5. ([12]) Let F be a saturated formation containing U . Let H be a
solvable normal subgroup of a group G such that G/H ∈ F . If all maximal subgroups of
every Sylow subgroup of F(H) are complemented in G, then G ∈ F .

Now we want to delete the solvability of H in the assumption of Theorem 4.4 by
replacing F(H) by F∗(H), the generalized Fitting subgroup of H.

THEOREM 4.6. Let G be a group with a normal subgroup H such that G/H is
supersolvable. If every maximal subgroup of every Sylow subgroup of F∗(H) is SS-
supplemented in G, then G is supersolvable.

Proof. Suppose that the theorem is false and let G be a counterexample of minimal
order. Then, every proper normal subgroup of G containing F∗(H) is supersolvable.
In fact, let N be a proper normal subgroup of G containing F∗(H). Then, N/N ∩
H ∼= NH/H is supersolvable. Since F∗(H) = F∗(F∗(H)) ≤ F∗(H ∩ N) ≤ F∗(H), we
see F∗(H ∩ N) = F∗(H). Hence, every maximal subgroup of every Sylow subgroup of
F∗(H ∩ N) is SS-supplemented in G and therefore in N by Lemma 2.4(1). So, N with
the normal subgroup N ∩ H satisfies the hypotheses of the theorem. The choice of G
implies that N is supersolvable.
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If H < G, then H is supersolvable. In this case, F∗(H) = F(H). Theorem 4.4
implies that G is supersolvable, a contradiction. Thus, H = G. If F∗(G) = G, then G
is supersolvable by Theorem 4.2 for the special case F = U , a contradiction. Thus,
F∗(G) < G. By the above proof, F∗(G) is supersolvable and so F∗(G) = F(G).

Let P be a Sylow p-subgroup of F(G). Suppose that P ∩ �(G) �= 1, and let N be
a minimal normal subgroup of G contained in P ∩ �(G). Then, F(G)/N = F(G/N)
and G/N satisfies the hypotheses. By the minimality of G, G/N is supersolvable and so
does G. Hence, P ∩ �(G) = 1, and therefore �(P) = 1 and P is abelian.

Let P1 be a maximal subgroup of P. Then, there exists K ≤ G such that
P1K = G and P1 ∩ K is S-quasinormal in K . Thus, Op(K) ≤ NG(P1 ∩ K) and so
P1 ∩ K � POp(K). Obviously, F(G) ≤ POp(K). Assume that POp(K) < G. Then,
POp(K) is supersolvable. Since POp(K) � PK = G and G/POp(K) is a p-group, G
is solvable. By Theorem 4.4, G is supersolvable, a contradiction. Hence POp(K) =
G and P1 ∩ K � G. Therefore, P1 is C-supplemented in G. Now applying [27,
Theorem 1.1], we get G is supersolvable, the final contradiction. The proof is hence
completed. �

THEOREM 4.7. Let F be a saturated formation containing the class U of all
supersoluble groups and let G be a group with a normal subgroup H such that G/H ∈ F .
If every maximal subgroup of every Sylow subgroup of F∗(H) is SS-supplemented in G,
then G ∈ F .

Proof. By Lemma 2.4(1), every maximal subgroup of every Sylow subgroup
of F∗(H) is SS-supplemented in H. Thus, H is supersolvable by Theorem 4.6. In
particular, H is solvable and so F∗(H) = F(H). Now Theorem 4.4 implies that G ∈ F ,
as desired. �

THEOREM 4.8. Let G be a group and p the smallest prime divisor of |G|. If every
cyclic subgroup of G with order p and order 4 (if p = 2) is SS-supplemented in G, then G
is p-nilpotent.

Proof. Assume that the theorem is false and let G be a counterexample of minimal
order. Then, by Lemma 2.4(1), G is a minimal non-p-nilpotent group (that is, G is not
p-nilpotent but every proper subgroup of G is p-nilpotent). Now by invoking a known
result of Itô [16, III, 5.4], we know that G is a minimal non-nilpotent group. According
to a result of Schmidt in [16, III, 5.2], G has a normal Sylow p-subgroup P such that
G = PQ for a Sylow q-subgroup Q (q �= p).

Let P0 ≤ P with order p. Then, there exists K ≤ G such that P0K = G and P0 ∩ K
is S-quasinormal in K . If P0 ∩ K = 1, then K � G and K is nilpotent. Thus, Q � G,
which is a contradiction. If P0 ≤ K , then P0 is S-quasinormal in G and therefore P0Q
is a group. By the choice of G, we have P0Q < G and hence P0Q = P0 × Q. It follows
that Q centralizes �1(P). If CG(�1(P)) < G, then CG(�1(P)) is nilpotent and so Q � G,
again a contradiction. This leads to CG(�1(P)) = G and �1(P) ≤ Z(G). If exp P = p,
then G is p-nilpotent, a contradiction. Thus, p = 2 and exp P = 4. Let x ∈ P with
|〈x〉| = 4. Then, there exists T ≤ G such that 〈x〉T = G and 〈x〉 ∩ T is S-quasinormal
in T . If |G : T | = 4, then 〈x2〉T � G and hence Q � G, again a contradiction. In the
case |G : T | = 2, we also have Q � G, the same contradiction. Therefore T = G and 〈x〉
is S-quasinormal in G. By the choice of G, we have 〈x〉Q < G and hence 〈x〉 centralizes
Q. Thus, again we have Q � G, a contradiction. The proof is completed. �
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Finally, we formulate another new theorem which also gives some other conditions
for a finite group to be p-nilpotent.

THEOREM 4.9. Let G be a group which is A4-free and let p be the smallest prime
divisor of |G|. If every subgroup of G having order p2 is SS-supplemented in G, then G is
p-nilpotent.

Proof. Assume that the theorem is false and let G be a counterexample of minimal
order. Let M be a maximal subgroup of G. Assume |M|p ≤ p. Then, by [16, IV, 2.8 ], M
is p-nilpotent. If |M|p > p, then by Lemma 2.4 (1) and the choice of G we can deduce
that M is p-nilpotent. Thus, G is a minimal non-p-nilpotent group, and consequently,
G has a normal Sylow p-subgroup P such that G = PQ, where Q is a Sylow q-subgroup
of G with q �= p.

Let H ≤ G with |H| = p2. Then, there exists K ≤ G such that HK = G and H ∩
K is S-quasinormal in K . Without loss of generality, we may assume that Q ≤ K .
Suppose H ∩ K = 1, then K is nilpotent. Let Kp be a Sylow p-subgroup of K and
P1 is a maximal subgroup of P containing Kp. Then, NK (Kp) contains P1 and Q.
It follows that |G : NK (Kp)| ≤ p. If |G : NK (Kp)| = p, then NK (Kp) � G. However, it
follows that Q is normal in G, a contradiction. Assume that Kp � G. We consider
the group G = G/Kp. Clearly, G/CG(P) is isomorphic to a subgroup of Aut(P) so
that q | p2 − 1 = (p − 1)(p + 1). This implies that p = 2 and q = 3. Hence, G/�(Q) is
isomorphic to A4, a contradiction.

If |H ∩ K| = p, then K � G. Hence Q � G, again a contradiction.
Now, we have H ≤ K and thereby H is S-quasinormal in G. If HQ = G, then

P = H is not cyclic. Clearly, CG(P) < G. Now, G/CG(P) is isomorphic to a subgroup
of Aut(P) so that p = 2 and q = 3. Hence, G/�(Q) is isomorphic to A4, which is a
contradiction. Thus, HQ < G and HQ is nilpotent. It follows that P normalizes Q,
which is a contradiction. Thus the proof is completed. �
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