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Abstract
All space–time coupling effects arising in an asymmetric optical compressor consisting of two non-identical pairs of
diffraction gratings are described analytically. In each pair, the gratings are identical and parallel to each other, whereas
the distance between the gratings, the groove density and the angle of incidence are different in different pairs. It is shown
that the compressor asymmetry does not affect the far-field fluence and on-axis focal intensity. The main distinctive
feature of the asymmetric compressor is spatial noise lagging behind or overtaking the main pulse in proportion to
the transverse wave vector. This results in a degraded contrast but reduces beam fluence fluctuations at the compressor
output. Exact expressions are obtained for the spectrum of fluence fluctuations and fluence root mean square that depends
only on one parameter characterizing compressor asymmetry. The efficiency of small-scale self-focusing suppression at
subsequent pulse post-compression is estimated.

Keywords: self-focusing suppression; space–time overlapping; spatial and temporal self-filtering; symmetric and asymmetric compressors

1. Introduction

Present-day high-power femtosecond lasers[1] work at
a fluence tens of percent lower than the laser damage
threshold, as spatial noise inevitably leads to both intensity
and fluence fluctuations. The spectrum of spatial noise
covers scales from several wavelengths to the beam size,
which is tens of centimeters in ultra-high-power lasers. The
noise increasing during the propagation in a medium with
cubic nonlinearity due to small-scale self-focusing, also
known as the Bespalov–Talanov filamentary instability[2],
plays an important role in this spectrum. The most hazardous
spatial scale that leads to the so-called hot spots is of the
order of 30 µm[3,4]. This noise restricts the use of post-
compression after a diffraction grating compressor[4,5], as
well as any other transmissive optical elements (frequency
doublers, quarter-wave plates, polarizers, beam splitters).
All of these elements greatly expand the applicability
range of ultra-high-power lasers. To suppress filamentation
instability, it is necessary to decrease the noise field
intensity at the time of the maximum main pulse (maximum
nonlinearity).
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Even if transmissive optics are not used after the
compressor, the maximum achievable energy of the output
pulse is limited by the breakdown threshold of the diffraction
gratings, which is especially true for the projects of
100 PW lasers proposed in China[6,7], the United States[8,9],
Japan[10–12] and Russia[13] (see also the review papers[1,14]).
The weakest link is the last, fourth grating, since the
breakdown threshold of a femtosecond pulse is much lower
than the breakdown threshold of a nanosecond pulse[15],
for example, 228 versus 600 mJ/cm2[16]. Reliable and safe
operation of the compressor demands the fluence at the
fourth grating to be less than the threshold with some margin.
The required margin depends on fluence fluctuations. The
smaller the fluctuations, the less the margin and the higher
the maximum energy and laser power. Fluence fluctuations
are determined by the entire spectrum of spatial noise. Note
that the standard deviation of the fluence is determined by the
integral of the fluctuation spectrum to which low-frequency
noise makes a more significant contribution. At the same
time, the magnitude of the maximum overshoot depends
significantly on high-frequency noise[17].

Thus, it is highly important to reduce both the fluctua-
tions of laser beam intensity and fluence. To do this, high-
power femtosecond lasers use spatial[3,18,19] and temporal[5,20]

self-filtering at free propagation in a vacuum. The term
‘self-filtering’ is used to emphasize that no devices are
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required for this, only propagation in a vacuum over a
certain length. Physically, self-filtering is explained by the
fact that spatial noise propagates at an angle to the wave
vector of the principal wave. That is why the noise lags
behind the pulse of the principal wave and walks off the
aperture of the principal wave beam, thus leading to temporal
and spatial self-filtering, respectively. The detailed theoret-
ical and experimental studies carried out in Refs. [21,22]
showed that free space acts as a spectral filter of fluence
fluctuations, with the filter transmittance being equal to the
intensity autocorrelation function for spatial self-filtering
and to the square of the field autocorrelation function for the
temporal one.

It is obvious that the compressor, in which the beam passes
a considerable distance, is also a fluence fluctuation filter,
but the properties of this filter have not been studied before.
Moreover, to smooth fluence fluctuations it was recently
proposed to use a pair of prisms[23] and an asymmetric four-
grating compressor (AFGC)[24], as well as a compressor
with one pair of gratings[25,26], which is a particular case of
the AFGC. Numerical simulations were carried out in Refs.
[24–26] but no analytical theory was constructed.

The purpose of this paper is to provide an analytical theory
aimed at quantifying the smoothing efficiency of intensity
and fluence in both symmetric and asymmetric compressors
and to compare self-filtering and AFGC filtering.

2. The field at the compressor output

We will consider a compressor consisting of two pairs of
parallel gratings (Figure 1), on which a laser beam with
an arbitrary temporal and spatial spectrum is incident. The
z-axis coincides with the beam trajectory at the compressor

input with kx,y = 0 and ω = ω0 = ck0, where ω0 and k0 are,
respectively, the carrier frequency and the wave vector. The
angles α1,2 and β1,2 of this beam are related by the grating
expression as follows:

sinβ1,2 = m
2π

kz (ω0)
N1,2 + sinα1,2, (1)

where N1,2 is the groove density, m is the diffraction order
and k2

z = k2
0 − k2

x − k2
y . Hereinafter, the subscripts ‘1’, ‘2’

refer to the first and second pair of gratings, respectively.
The magnitudes of α,N and L in the second pair of gratings
may be either like in the first pair or different from them.
In the first case, the compressor will be called a symmetric
or Treacy compressor (TC)[27]. In the second case, it will be
called an asymmetric compressor or AFGC[24]. The AFGC
is employed in the ARC (advanced radiographic capability)
picosecond laser[28,29], but asymmetry is used to make the
compressor more compact, while smoothing of fluctuations
is not discussed.

The ray with arbitrary kx and ω in Figure 1 is shown by the
red color. The angle of incidence on the first grating for this
ray is α+�α(ω,kx), where �α = arctan

(
kx

kz(ω)

)
. The angle

of the ray reflection from the grating is θ (ω,kx). It depends
on kx and ω, with θ (ω = ω0,kx = 0) = β. The angles of
reflection θ and β are counted to the right of the normal
(i.e., for a mirror, β = α). In the minus first diffraction order
(m = −1), the angles θ and β are negative: β < 0, θ < 0;
therefore, the minus sign is indicated in the figure.

Let the real electric field at the compressor input at the
point D1 be εin (t,x,y) = Re

{
Ein (t,x,y)eiω0t−ik0z

}
, where

Ein (t,x,y) is the complex amplitude. The relationship
between Ein (t,x,y) and the complex amplitude at the point
D2 at the compressor output Eout (t,x,y) is more readily
found in the spectral representation. Hereinafter, the spectra

Figure 1. AFGC scheme. Gratings in each pair are parallel and identical. Distances between the gratings L, groove densities N and incidence angles α are
different in different pairs.
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will be designated by the same characters but with different
arguments:

Ein,out
(
ω,kx,ky

)= F
{
Ein,out (t,x,y)

}
,

Ein,out (t,x,y)= F−1 {Ein,out
(
ω,kx,ky

)}
, (2)

where F and F−1 are the forward and inverse 3D Fourier
transforms. Our consideration is restricted to the case of
parallel and identical gratings in each pair. This ensures that
the input and output wave vectors are parallel. In other words,
the input and output wave vectors are always equal, and so
are the frequencies. Hence, Eout and Ein are related by the
following

Eout
(
ω,kx,ky

)= exp
(
i	
(
ω,kx,ky

)) ·Ein
(
ω,kx,ky

)
, (3)

Eout (t,x,y)= F−1 {exp
(
i	
(
ω,kx,ky

)) ·F{Ein (t,x,y)}
}
,

(4)

where 	
(
ω,kx,ky

)
is the phase incursion between the input

and output planes. For simplicity, in Equation (3) it is
assumed that there are no losses and the absolute value of
the transmission coefficient is equal to unity. Before passing
to the expression for 	

(
ω,kx,ky

)
, an important general note

should be made that follows directly from Equation (3)
and Parseval’s theorem. The compressor changes the near-
field distribution Eout

(
ω,kx,ky

)
,Eout

(
t,kx,ky

)
, but in no way

affects the fluence in the far-field:∫ ∣∣Eout
(
t,kx,ky

)∣∣2dt =
∫ ∣∣Ein

(
t,kx,ky

)∣∣2dt.

This result was obtained numerically for specific exam-
ples[24,25]. We showed analytically that this statement is
true for any compressor, independent of its parameters.
Analogously it can be proved that the intensity on the beam
axis in the far-field

∣∣Eout
(
t,kx = ky = 0

)∣∣2 does not depend
on the compressor symmetry either. The only necessary
condition for this is parallel and identical gratings in each
pair, otherwise Equation (3) does not hold.

The expression for	
(
ω,kx,ky

)
(the derivation is presented

in the Appendix) has the following form:

	
(
ω,kx,ky

)= L1
ω

c

(
cosθ1 + cos

(
α1 + kxc

ω

))

+L2
ω

c

(
cosθ2 + cos

(
α2 − kxc

ω

))

+Lf
ω

c
− c

2ω
k2

x Lf − c
2ω

k2
y

× (Lf +
(
cos

(
θ1
(
kx,y = 0

))+ cosα1
)

L1

+(cos
(
θ2
(
kx,y = 0

))+ cosα2
)

L2
)
, (5)

where

sinθ1,2
(
ω,kx,ky

)= m
2πc
ω

N1,2

(
1+ c2

2ω2 k2
y

)
+ sin

(
α1,2 ± kxc

ω

)
.

(6)

Here, L1,2 is the distance between the gratings along the
normal and Lf is the distance between the input and out-
put planes of the compressor (Figure 1). The first two
terms in Equation (5) depend, among others, on the first
power of kx. For the TC, that is, for L2 = L1, α2 = α1,

N2 = N1 and θ2 (kx)= θ1 (−kx), this dependence disappears,
while it remains for the AFGC. This is the difference
between the AFGC and the TC. A compressor with a single-
grating pair (single-pass single-grating pair (SSGC))[25] is a
particular case of an AFGC with L2 = 0.

Equation (4) with allowance for Equations (5) and (6) is
sufficient for numerical simulation. To continue the ana-
lytical analysis, we will expand Equation (5) in a Taylor
series.

3. Expanding 	(ω,kx,ky) in a Taylor series

By expanding Equation (5) in a Taylor series with respect to
kx,ky and 
= ω−ω0, we obtain the following:

	
(
ω,kx,ky

)= ψ ′′
xω
kx + 1

2
ψ ′′′

xωω

2kx + 1

2
ψ ′′

xxk2
x + 1

2
ψ ′′

yyk2
y

+ 1
2
ψ ′′′

xxω
k2
x + 1

2
ψ ′′′

yyω
k2
y, (7)

where

ψ ′′
xω = − 1

ω0
(A1L1 −A2L2), A = cosα

cos3β
(sinα− sinβ),

(8)

1
2

·ψ ′′′
xωω = 1

ω2
0
(B1L1 −B2L2),

B = A
(

1− 3
2

sinβ
sinα− sinβ

cos2β

)
, (9)

1
2

·ψ ′′
xx = − c

ω0

1
2
(C1L1 +C2L2 +Lf),

C = cos2α

cos3β
− tanβ sinα+ cosα, (10)

1
2

·ψ ′′
yy = − c

ω0

1
2
(D1L1 +D2L2 +Lf), D = 1+ cos (α+β)

cosβ
(11)

1
2

·ψ ′′′
xxω = c

ω2
0

1
2
(E1L1 +E2L2 +Lf),

E = C + sinα− sinβ
cos3β

(
sinα−3sinβ

cos2α

cos2β

)
, (12)

1
2

·ψ ′′′
yyω = c

ω2
0

1
2
(F1L1 +F2L2 +Lf),

F = D+ (sinβ− sinα)2

cos3β
, (13)

A1,2 = A
(
α1,2,β1,2

) ; B,C,D,E,F − analogously. (14)
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The lower-case letter ψ designates the values of the
corresponding derivatives for kx = ky = 0 and ω = ω0; for
example:

ψ ′′
xω = ∂2	

(
ω,kx,ky

)
∂kx∂ω

∣∣∣∣∣
kx,y = 0;ω = ω0

. (15)

Some terms are omitted in Equation (7). These include
terms with the first derivative with respect to ky that
are equal to zero, since 	 depends only on k2

y . Next,
	
(
ω = ω0,kx = ky = 0

)
is a constant that may also be put

equal to zero. We omit ψ ′
ω
, that is, the time delay, which

does not depend on kx,y, and ψ ′
xkx, that is, the
-independent

shift along the x-axis. These terms are equivalent to the shift
of the origin of the t- and x-axes, which is of no importance.
Also, we omit all the terms containing derivatives only with
respect to ω: 1

2ψ
′′
ωω


2, 1
6ψ

′′′
ωωω


3 and so on. These terms
correspond to different degrees of time dispersion for a field
with kx = 0. In this work aimed at studying the space–time
effects, we will omit the above-mentioned terms and will
assume that the dispersion introduced by the compressor
corresponds to the pulse dispersion at its input. Therefore, for
the zero spatial frequency kx = 0, the output pulse is Fourier-
transform-limited. Note that for compensating higher order
dispersion, the AFGC provides even more opportunities than
the TC, since the AFGC has six degrees of freedom: L1,2,
N1,2 and α1,2, whereas the TC has only three: L, N and α.
Finally, we neglect all terms with derivatives with respect
to kx,y higher than the second one, as well as all derivatives
higher than the third one in view of their smallness.

Let us now address the remaining six terms in Equation (7)
and the respective physical effects. The first two terms are
proportional to the first power of kx: ψ ′′

xω
kx is the time lag
by ψ ′′

xωkx or the shift along the x-axis by distance ψ ′′
xω
;

1
2ψ

′′′
xωω


2kx is the pulse stretching (GVD = 1
2ψ

′′′
xωωkx) or the

shift along the x-axis by distance 1
2ψ

′′′
xωω


2. As seen from
Equations (8) and (9), these terms in the TC are equal to zero.
The second two terms in Equation (7), 1

2ψ
′′
xxk2

x and 1
2ψ

′′
yyk2

y ,
correspond to diffraction that is different along the x- and y-
axes, as well as to spatial self-filtering, that is, to the shift
along the x- and y-axes by distance 1

2ψ
′′
yykx,y. Finally, the

last two terms in Equation (7) correspond to temporal self-
filtering, that is, the time lag by 1

2ψ
′′′
xxω,yyωk2

x,y. Note that
the last four terms and the corresponding effects occur not
only in a compressor but also in free space. Unlike the
case of the compressor, in free space they are isotropic. The
expressions in parentheses for ψ in Equations (10)–(13) may
be interpreted as the effective compressor length in terms
of the corresponding effect. For example, C1L1 + C2L2 + Lf

is the effective length in terms of diffraction along the x-
axis, and F1L1 +F2L2 +Lf is the effective length in terms of
temporal self-filtering along the y-axis. Values of the A to F
constants for compressors borrowed from some works are

Table 1. Parameters of the compressors: TC[13], AFGC[24] and
SSGC[25].
Parameter TC AFGC SSGC
α, deg 45.5 61.0 61.0 57.0
N, 1/mm 1200 1400 1400 1400
L, mm 1850 1401 1079 2300
A 0.97 0.84 0.84 1.00
B 1.66 1.67 1.67 2.12
C 1.61 1.20 1.20 1.40
D 2.07 1.99 1.99 2.10
E 3.49 3.35 3.35 3.88
F 3.58 4.24 4.24 4.48
�L, mm 0 271 2303
�L′, mm 0 539 4881

given by way of example in Table 1. Let us go into the details
of these effects in different compressors.

4. The Treacy compressor as a filter of spatial
frequencies

The derivatives in Equations (8) and (9) vanish in the TC,
and only two effects remain in Equation (7) (spatial self-
filtering and temporal self-filtering that are proportional to
k2

x,y). Thus, from the point of view of spatial effects, the TC is
similar to free space, but it introduces astigmatism, because
the x- and y-axes are no longer equivalent. It is seen from
Equations (10) and (11) that, in terms of spatial self-filtering
and diffraction, the TC supplements the free space length
Lf with an additional length that is different for the x- and
y-axes: 2C1L1 for the x-axis and 2D1L1 for the y-axis.
With this astigmatism taken into account, the compressor is
equivalent to free space with different lengths on the x- and
y-axes:

Lsx = 2C1L1 +Lf, Lsy = 2D1L1 +Lf. (16)

Thus, the TC is an anisotropic transmissive filter. The
transmission coefficient of such a filter can be obtained
by generalizing expressions from Refs. [21,22] to the
anisotropic case.

In free space, the time lag τ of the pulse propagating at an
angle to the z-axis is proportional to k2

x + k2
y . In a symmetric

compressor, the coefficients of proportionality for k2
x and k2

y
are not the same (see Figure 2). From Equations (12) and (13)
we obtain the following:

τ
(
kx,ky

)= 1
2
ψ ′′′

xxωk2
x + 1

2
ψ ′′′

yyωk2
y = Ltx

2c
k2

x

k2
0

+ Lty

2c

k2
y

k2
0
, (17)

where

Ltx = 2E1L1 +Lf, Lty = 2F1L1 +Lf. (18)

Thus, from the point of view of temporal self-filtering,
the TC adds to the free space length Lf a supplementary
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Figure 2. Schematic representation of the field after propagation in free
space (a), the TC (b) and the AFGC (c), (d) in three domains. Solid magenta
lines depict the intensity front.

length that is different for the x- and y-axes: 2EL for the
x-axis and 2FL for the y-axis. The Ltx − Lty difference may
be quite significant. Contrary to the case of free space
propagation, these curvatures do not coincide after the TC.
As shown in Figure 2, all other fronts are always convex
because C,D,E,F > 0.

5. The asymmetric four-grating compressor as a filter of
spatial frequencies

The effects considered in Section 4 for the TC are exactly the
same as those in the AFGC. The only difference is that the
effective lengths (Equations (16) and (18)) have the following
form:

Lsx = C1L1 +C2L2 +Lf, Lsy = C1L1 +C2L2 +Lf, (19)

Ltx = E1L1 +E2L2 +Lf, Lty = F1L1 +F2L2 +Lf, (20)

which directly follows from Equations (10)–(13). The most
important distinctive feature of the AFGC is that Equations
(8) and (9) are not zeroed, and there appear in Equation (7)
two terms and, hence, two effects proportional to the first
power of kx: ψ ′′

xω
kx, that is, the time lag proportional to kx

or shift along the x-axis proportional to
 (spatial chirp), and
also 1

2ψ
′′′
xωω


2kx, that is, GVD (pulse stretching) proportional
to kx or shift along the x-axis quadratic with respect to
. As
seen from Equations (8) and (9), the measure of compressor

asymmetry is two parameters having the dimension of the
following length:

�L = A1L1 −A2L2, �L′ = B1L1 −B2L2.

5.1. Time lag proportional to kx or shift along the x-axis
proportional to Ω: ψ ′′

xωΩkx

The physical meaning of this term becomes transparent if
we write ψ ′′

xω
kx = X (
) kx = τA (kx) ·
, where X (
) =
ψ ′′

xω
 is the beam shift along the x-axis (spatial chirp) and
τA (kx)=ψ ′′

xωkx is the time lag. These two representations are
equivalent and are illustrated in Figure 2 for clarity. From the
point of view of spatial noise, this effect reduces to temporal
filtering, and it is convenient to consider it in terms of the
pulse time lag with kx �= 0:

τA (kx)= − kx

k0
· �L

c
. (21)

Unlike temporal self-filtering, the time lag here is
proportional to the first rather that the second (Equation
(17)) power of kx, which makes the effect much stronger.
However, for �L � Lx

kx
k0

, the effects are comparable. The
second difference is that the sign of the lag depends on the
sign of kx, that is, the spatial noise for which kx�L > 0 will
overtake the main pulse rather than lag behind it (Figure 2).
Lagging and overtaking have an identical impact on fluence
smoothing. At the same time, the pulses propagating ahead
of the main pulse reduce the time contrast. Note that this
parasitic effect is especially strong in an SSGC. For instance,
for a compressor with the parameters listed in Table 1,
even large-scale (usually highly energetic) noise with
kx = 10−4k0 overtakes the main pulse by 0.77 ps. According
to the contrary assertion made in Ref. [25], the integrated
contrast does not degrade, which is evidently due to the
neglect of the space–time coupling effects considered
above.

It is important to note that the mentioned contrast decrease
concerns only the power contrast, that is, integrally through-
out the beam. From the practical point of view, contrast at
the focal point is important. This contrast will not deteri-
orate, as the noise components overtaking the main pulse
in the focal plane will be far away from the beam axis.
Consequently, these components will damage the target at
the beam periphery, whereas on the beam axis the target
may remain intact up to the arrival of the main pulse. A
quantitative study of this effect is outside the scope of this
paper.

5.2. Chirp (GVD) proportional to kx: ψ ′′′
xωωkxΩ

2

The physical meaning of this term is quite obvious – pulses
with a wave vector kx acquire, in addition to the principal
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wave with kx = 0, a chirp (GVD) proportional to kx:

1
2
ψ ′′′

xωωkx

2 = GVD(kx) ·
2 = kx�L′ · 


2

ω2
0

.

If the main pulse (with kx = 0) at the compressor output
is Fourier-transform-limited, then the noise with kx �= 0
will be extended in time independent of the sign of kx

(Figure 2). This reduces filtering caused by the noise time
lag or overtaking, as stretching of the lagging or overtaking
noise pulse increases its time overlap with the main pulse.

A proper choice of L1,2, N1,2 and α1,2 allows controlling
the values of �L and �L′, thus creating complex space–
time distributions of the field in the focal plane. In particular,
the combinations �L′ = 0, �L �= 0 or �L′ �= 0, �L = 0
demonstrated in Figure 2 can be implemented. Such dis-
tributions may be useful for charged particle acceleration
or other applications. For instance, in the case depicted in
Figure 2(d), the pulse duration in the focal plane at the points
above and below the z-axis (x �= 0) will be longer than the
duration of the Fourier-transform-limited pulse on the z-axis
(x = 0).

6. Reducing fluence fluctuations at the asymmetric
four-grating compressor output

As mentioned above, all the effects proportional to the
second power of kx,y in a TC as well as in an AFGC
may be reduced to analogous effects in free space. The
suppression of fluence fluctuations at free space propagation
was analyzed analytically in Refs. [21,22]. These earlier
results may be generalized taking into account Equations
(10)–(13). Here, we will not dwell on this; instead, to clearly
demonstrate the effect of compressor asymmetry, we will
focus on the effects proportional to the first power of kx,
specific for the AFGC. To do this, in Equation (7) we will
neglect the last four terms proportional to k2

x,y and leave only
the first two terms. Let us compare fluence fluctuations at
the AFGC output with a reference, namely a TC that is a
particular case of an AFGC with�L =�L′ = 0. In this case,
the field Eref (t,x,y) at the TC output may be written as a sum
of the main E0 (x,y)U(t) and noise Eref,n (t,x,y)fields:

Eref (t,x,y)= E0 (x,y)U(t)+E0 (x,y)U(t)f (x,y), (22)

where f (x,y) is a complex function and | f (x,y) | �
1; ∫ f (x,y)dS = 0. From Equations (3) and (7)–(9) we obtain
the following:

Eout
(
ω,kx,ky

)= Eref
(
ω,kx,ky

)
exp

(
i

(
−�L
ω0

+ �L′

ω2
0

2

)
kx

)
.

(23)

The fluence wout (x,y) may also be represented as a sum of
the main wout,0 (x,y) and noise wout,n (x,y) fluences:

wout (x,y)=
∫

|Eout (t,x,y)|2dt = wout,0 (x,y)+wout,n (x,y) .

(24)

By substituting Equations (22) and (2) into Equation (23)
and the result into Equation (24) we find wout,n (x,y), from
which we obtain an expression for the spectrum of fluence
fluctuations wout,n

(
kx,ky

)
:

∣∣wout,n
(
kx,ky

)∣∣2 = T (kx) ·
∣∣wref,n

(
kx,ky

)∣∣2, (25)

where

T (kx)=

∣∣∣∣∣∣∣∣
∫ |U (
)|2 · exp

(
i
(

−�L
ω0

+ �L′

ω2
0

2
)

kx

)
d
∫ |U (
)|2d


∣∣∣∣∣∣∣∣

2

,

(26)

where T (kx) has the meaning of the spectrum filter trans-
mittance. Two terms in the exponent correspond to two
effects – lag (overtaking) and GVD. If we neglect the latter,
that is, if 


ω0
� �L

�L′ , then from Equation (26) we obtain
a result fully analogous to temporal self-filtering[21,22]: the
filter transmittance is equal to the square of the modulus of
the autocorrelation function of the field At with the argument
equal to the time lag τA (Equation (21)):

∣∣wout,n
(
kx,ky

)∣∣2 = |At (τA)|2 · ∣∣wref,n
(
kx,ky

)∣∣2, (27)

where

At (τ )=
∫

U(t)U∗ (t − τ)dt∫ |U(t)|2dt
. (28)

The difference from the temporal self-filtering is that the
time lag τA (Equation (21), as distinct from τ (Equation (17),
is proportional to the first (rather than the second) power
of kx; besides, τA does not depend on ky. As a reference
noise spectrum wref,n

(
kx,ky

)
, we take the frequently used

model[30,31]:

∣∣wref,n
(
kx,ky

)∣∣2 = const(
h2 + k2

x + k2
y

)γ , (29)

where γ is a constant that takes on a value from 1 to 2
(usually 1.28), and the spatial scale � = 2π/h is smaller
but commensurable with the beam size. By integrating
Equation (27) with respect to ky, with Equation (29)
taken into account, we obtain for a Gaussian pulse
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Figure 3. One-dimensional fluence fluctuation spectrum S (kx) at the
AFGC output for a pulse having duration τp = 30 fs (γ = 1.28). The
difference between the colored and black curves shows the efficiency of
fluence smoothing at a given kx. The efficiency of small-scale self-focusing
suppression for a pulse with duration τp = 21.2 fs will be equal to the
efficiency of fluence smoothing S (kx) (see the text).

U(t)= exp
(
−
(

t2/τ 2
p

)
a 1D spectrum:

S (kx)=
∫ ∞

−∞

∣∣wout,n
(
kx,ky

)∣∣2ky

= const · B
( 1

2 ;γ − 1
2

)
(
h2 + k2

x

)γ− 1
2

· exp

(
−
(
�L
cτp

· kx

k0

)2
)
,

(30)

where B(a;b) is a B-function. The S (kx) spectrum for
τp = 30 fs is plotted in Figure 3 at different values of �L.
Figure 3(a) clearly demonstrates filtering of high spatial fre-
quencies in the AFGC (cf. the colored and the black curves).
Knowing the fluence fluctuation spectrum

∣∣wn
(
kx,ky

)∣∣2, one
can find the root mean square (rms) of the fluctuations:

rms = σout,ref =
√∫ ∞

−∞

∣∣wn;ref,out
(
kx,ky

)∣∣2dkxdky, (31)

which is a convenient quantitative characteristic of filtering
efficiency: the σout/σref ratio shows how many times the flu-
ence fluctuation rms will decrease by the AFGC compared to
the TC. The substitution of Equation (30) into Equation (31)
and integration with respect to dkx yield the following:

(
σout

σref

)2

= 2
B
( 1

2 ;γ −1
)∫ ∞

0

exp
(

−
(
λ
�
�L
cτp

· x
)2
)

(
1+ x2

)γ−1/2 dx. (32)

For a given γ , the σout
σref

ratio depends only on one
parameter, λ

�
�L
cτp

. The corresponding dependences are plotted

Figure 4. Reducing the rms of fluence fluctuation σout
σref

.

in Figure 4. One can see from the figure that the value of
γ is not very important and at large λ

�
�L
cτp

the value of σout
σref

is proportional to
√

λ
�
�L
cτp

. Note that for beams of a smaller
diameter (smaller �), the high-frequency components have
larger values and, hence, filtering is more efficient. It is clear
from Equation (32) and Figures 3 and 4 that the filtering
efficiency is determined by the ratio of time �L/c to the
pulse duration at the compressor output τp, which once
again emphasizes the relevance of the used term ‘temporal
filtering’.

To conclude, we note that to find the probability for the
fluence to exceed the threshold value, it is sufficient to know
the fluctuation spectrum

∣∣wn
(
kx,ky

)∣∣2[17].

7. Suppressing small-scale self-focusing by means of the
asymmetric four-grating compressor

Exact computation of the efficiency of small-scale self-
focusing demands solution of a nonlinear nonstationary
Schrödinger equation in which the field at the compressor
output (Equation (4)) is used as a boundary condition at
z = 0. This requires numerical simulation, which is out-
side the scope of the present work. However, the results
obtained allow us to assess the efficiency of temporal filter-
ing. For suppressing small-scale self-focusing it is necessary
to reduce noise intensity In (rather than noise fluence) at
the time of the maximum main pulse, that is, at the time
of maximum nonlinearity. Consequently, the reduction of
Iout,n

(
t = 0,kx,ky

)
will be a good estimate. After the cor-

responding computations for Iout,n
(
t = 0,kx,ky

)
, similarly

to Section 6 we will obtain an expression analogous to
Equation (27):

Iout,n
(
t = 0,kx,ky

)=
∣∣∣∣U
(

t = − kx

k0

�L
c

)∣∣∣∣
2

Iref,n
(
t = 0,kx,ky

)
.

(33)
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Thus, from the point of view of suppressing small-scale
self-focusing, an AFGC is a filter with the transmittance
equal to the normalized pulse intensity at the time − kx

k0

�L
c .

For a Gaussian pulse, |U(t)|2 =
∣∣∣At

(
t/

√
2
)∣∣∣2. Therefore,

with Equations (27) and (33) taken into account, the filtering
efficiency for the intensity will be the same as for the
fluence shown in Figure 3, but for a

√
2 times shorter pulse

duration, that is, 21.2 fs instead of 30 fs. As mentioned
above, of primary importance is the reduction of the value
of the noise intensity spectrum In

(
t = 0,kx,ky

)
at spatial

frequencies kmax, for which the instability increment is the
largest. For high-power femtosecond lasers, kmax/k0 is of
the order of 0.03[3,4], that is, as seen in Figure 3, a small
compressor asymmetry �L is quite sufficient for effective
filtering.

8. Conclusion

For reducing beam fluence fluctuations it was proposed[24]

to use a compressor in which the diffraction gratings in
two pairs are different, whereas all the other parameters
are the same. However, this effect was investigated only
numerically. In the presented paper, an analytical theory
has been constructed that describes all space–time coupling
effects arising in an asymmetric optical compressor, in which
pairs of gratings may differ not only by the distance between
the gratings but also by the groove density and angle of
incidence. It has been shown that no compressor asymmetry
affects the far-field fluence and on-axis focal intensity. Given
that the gratings in each pair are parallel and identical, this
conclusion is true for any compressor, including one with a
single-grating pair.

From the point of view of beam cleanup from spatial noise,
a symmetric compressor is ‘similar’ to free space in that
it also accomplishes spatial and temporal self-filtering of
a beam. The difference is that both these effects become
anisotropic: the compressor is an anisotropic transmissive
filter. In particular, it introduces astigmatism.

In an asymmetric compressor, there appear two additional
effects proportional to the first power of the transverse wave
vector, which are shown schematically in Figure 2. The
spatial noise (i) lags behind/overtakes the main pulse, which
is equivalent to a linear spatial chirp, and (ii) acquires a
temporal chirp (GVD), which is equivalent to a squared spa-
tial chirp. The first effect reduces beam fluence fluctuations
at the compressor output. Exact expressions for the fluence
fluctuation spectrum and fluence rms have been obtained,
with the latter being dependent only on one parameter char-
acterizing compressor asymmetry. The second effect reduces
filtering induced by the first effect, as noise pulse stretching
increases its time overlap with the main pulse. By choosing
adequate grating parameters it is possible to control these
two effects independently, for example, for creating complex

space–time field distributions in the focal plane that may be
interesting for different applications.

The asymmetric compressor is also interesting for sup-
pressing small-scale self-focusing, for example, at subse-
quent post-compression. In this case, it is necessary to reduce
the noise intensity rather than its fluence, which should be
done at high spatial frequencies. The constructed theory
made it possible to estimate the efficiency of suppression of
small-scale self-focusing and showed that it may be orders of
magnitude, even with a slight asymmetry of the compressor.

The disadvantages of an asymmetric compressor include
the degradation of temporal contrast. The theory of this
inevitable parasitic effect will be considered elsewhere.

Appendix A. Phase incursion in a compressor from point
D1 to point D2
As a pulse is propagating from point A1 to point C1
(Figure 1) there occurs phase incursion:

	1 = L1kzx

(
cosθ1 + cos

(
α1 + arctan

kx

kz

))
(34)

where L1 is the distance between the gratings along the
normal, k2

zx = (
ω
c

)2 − k2
y , and θ is found from the grating

equation:

sinθ1 (ω,kx)= m
2π

kzx (ω)
N1 + sin

(
α1 + arctan

kx

kz (ω)

)
.

(35)

The choice of the position of points A1 and C1 on the
z-axis is arbitrary, but it is important that they should have
the same coordinates on the z-axis, that is, C1 must be strictly
above A1. The expression in Equation (34) was derived in
the classical work by Treacy[27] in other notation. Note that
sometimes (see, e.g., Ref. [25]), instead of Equation (34) it is
assumed that 	1 = ω

c p, where p is the path length from A1
to C1, which contradicts Equation (34). Taking into account

that kzx ≈ ω
c

(
1− k2

y

2(ω/c)2

)
from Equations (34) and (35) to

an accuracy of k3
x,y, we obtain the following:

	1
(
ω,kx,ky

)= L1
ω

c

(
cosθ1 + cos

(
α1 + kxc

ω

))

−L1
c

2ω
k2

y

(
cos

(
θ1
(
kx,y = 0

))+ cosα1
)
,

(36)

sinθ1
(
ω,kx,ky

)= m
2πc
ω

N1

(
1+ c2

2ω2 k2
y

)
+ sin

(
α1 + kxc

ω

)
.

(37)

The second pair of gratings from point A2 to point C2
is equivalent to the first pair from point A1 to C1 accurate
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to the replacement of �α by −�α or kx by −kx, since
for �α > 0,α1 increases but α2 decreases, which is well-
described in Figure 1. In other words, the x-axis changes
the direction (the x-axis is always directed outward from
the grating, rather than inward), and the vector kx does not
change direction, as the gratings are parallel. Thus, from
point A2 to point C2, there is spectral phase incursion 	2 =
	1 (−kx), with all subscripts ‘1’ in the expression for 	1

(Equation (36)) replaced by ‘2’.
During pulse propagation from the input point D1 to the

output point D2 the phase incursion is 	 = 	1 +	2 +	f,
where 	f is the phase incursion in free space of length Lf:

	f
(
ω,kx,ky

)= Lf
ω

c
−Lf

c
2ω

(
k2

x + k2
y

)
, (38)

where Lf = |D1A1| + |C1A2| + |C2D2|. As seen from
Figure 1, Lf is the distance between the input and output
planes of the compressor. The choice of these planes is
arbitrary but it is important that the distance between them is
Lf. Finally, from Equations (36)–(38) we obtain the following
expressions (Equations (5) and (6)):

	
(
ω,kx,ky

)= L1
ω

c

(
cosθ1 + cos

(
α1 + kxc

ω

))

+L2
ω

c

(
cosθ2 + cos

(
α2 − kxc

ω

))

+Lf
ω

c
− c

2ω
k2

x Lf − c
2ω

k2
y

(
Lf

+
(

cos
(
θ1

(
kx,y = 0

))
+ cosα1

)
L1

+ (cos
(
θ2
(
kx,y = 0

))+ cosα2
)

L2

)
,

sinθ1,2
(
ω,kx,ky

)= m
2πc
ω

N1,2

(
1+ c2

2ω2 k2
y

)

+ sin
(
α1,2 ± kxc

ω

)
.
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