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Kakutani (2) has proved a very general theorem, giving necessary and 
sufficient conditions for two infinite product measures to be mutually absolutely 
continuous. To formulate Kakutani's result, let us first recall that a measurable 
space is a pair (£, 23), where B denotes a Borel field (also called o--ring) of 
subsets of E, and a measure m on this space is a countably additive set function 
on B (see Halmos (1)). m is a probability measure if it is non-negative and 
m(E) = 1. If wi and m2 denote two probability measures on the same space 
which are mutually absolutely continuous and / denotes the Radon-Nikodym 
derivative of m2 with respect to m\ (so that m2(S) = jsf dmi for S G 23), we 
define the Hellinger-Kakutani functional 

D(mi, m2) = fsf^ dm\. 

It is easily shown that 2)(mi, m2) = D(m2, mi) and 0 < D(mi, m2) S 1 
with equality only if mi = m2 (see 2, p. 215). Kakutani's remarkable theorem 
is then the following (2, p. 218). 

THEOREM (Kakutani). For each n — 1, 2, . . . , let (Enj Bn) be a measurable 
space, and mn, mn

r mutually absolutely continuous probability measures on it. 
Let (E, B) be the infinite product of these spaces, and M, M' the corresponding 
product measures. Then 

(a) M and M1 are either mutually absolutely continuous or mutually singular \ 
(b) The necessary and sufficient condition that M and M' be mutually 

absolutely continuous is that 

ft D(mn,mn') > 0. 

In the present paper we consider the special case when each En is a finite 
set, and mn' is the uniform distribution on En. Thus, if En has kn points, mn

r 

gives to each of these the measure ^w
_1, and mn gives to the ith point a positive 

measure ani, 
Tin 

X) ani = 1. 

Then, Kakutani's theorem gives, as the necessary and sufficient condition that 
M and M' be mutually absolutely continuous, 

oo / ÎCn \ 

(1) E[ l*»~* £ aj) > 0. 
n=l \ i=l / 
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Now, (JE, B) can be identified in a natural way (measure theoretically, not 
topologically, of course) with the unit interval / and M' with the Lebesgue 
measure on / . Therefore, if kn and the ani are so chosen that the product on the 
left side of (1) is zero, the measure on /associated with M will be singular with 
respect to Lebesgue measure. In other words, Kakutani's theorem gives a 
method for constructing a large class of singular measures (or singular func
tions) on the unit interval. 

Our aim in the present paper is to explore this situation. We shall not use 
Kakutani's theorem (which could, however, also have been used as the basis 
for our work) but shall give another method tailored to the special situation, 
and work with functions (the primitive functions) rather than measures. Our 
method is based on notions from probability theory. We shall not explicitly 
deal with product measures, nor make the identification just referred to of the 
interval with an infinite product of discrete spaces. As an application of our 
main theorem, we construct (Theorem 4) an increasing singular function 
whose modulus of continuity is 0(tp(t)), where pit) is any function which 
increases without limit as / tends to zero. 

Actually, I had completed this work without knowledge of Kakutani's paper. 
My attention was drawn to Kakutani's work by A. L. Shields, and indepen
dently by A. M. Vershik of the Leningrad State University, whom I wish to 
thank also for a most enlightening conversation on the subject. 

1. A general method for constructing singular functions. Let there 
be given for each n = 1, 2, . . . a finite sequence ani (i = 1, 2, . . . , kn) of 
non-negative numbers with ^iam = 1- Define step functions gn(x) on [0,1) by 

Kn Kn 

Extend gn(x) to 0 S oc < œ by periodicity, and define 

/»(*) = Et gt(rtx), Fn(x) = f„(t)dt, 0 ^ x ^ 1, 

where rx = 1, rt = IIj= i kj-i for i ^ 2. Clearly, Fn(x) is continuous and non-
decreasing. Since 

»i 

gn(x) dx = 1 

and the gz(r^x) are easily seen to be statistically independent, we have that 
Fn(l) = 1. 

Let us now show that for m > n, Fm(x) = Fn(x), whenever x is an integral 
multiple of (rw+i)_1. Indeed, writing h = ( rw + i ) - 1 we have, for integral q, that 

dx 
Q-l f*(i+l)h 

Fmigh) = X) fmipc) 
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and 

J»(ï+i)A n(t+i)h 

fm(x) dx = I fn(x)gn+i(rn+ix) . . • gm(rmx) dx. 
in v in 

Since for j S n, gj(rj x) is constant for ih < x < (i + l)h, the same is true for 
fn(x) and therefore the last integral equals 

U J ^ ^ / \ J gn+iOv+ix) . . . gm(rmx) dx) = 

\ J* ^ ^ ^ / U Jo gn+1^n^ ' ' ' Zn^ntà dX) » 

and the last integral is just 

»i 

gn+l(t)gn+2(kn+lt) • • • gm(kn+l • • • km-\t) dt, J" 
• / 0 which equals one (because of the statistical independence of the factors in the 

integrand), and thus finally, 

<z-i nd+i)h 

Fm(qh) = J2 I fn(x)dx = Fn(qh), 
i=o •/ ^ 

as asserted. 
Now, let Rn denote the set of numbers {i/rn}, i = 0, 1, . . . , rn, and R = 

URn. Clearly, R is dense in [0, 1]. We define, for x £ R, 

F(x) = \imFn(x). 

This definition is meaningful since, as we just showed, if x G R, the sequence 
{Fn(x)} is constant from some point on. Finally, let us extend F(x) to all of 
[0, 1] by 

F(x) = sup F(y). 

We have thus defined a function F(x), which is non-decreasing on [0, 1], such 
that F(0) = 0, F(l) = 1. 

THEOREM 1. The necessary and sufficient condition that F(x) be continuous is 
that 

(1) K m r ï At = 0, 
n-yco 1=1 

where An = maXj ani. 

Proof. Suppose first that (1) holds. We shall prove continuity at each point 
t i R; when t Ç R, a trivial modification of the argument is necessary, which 
we leave to the reader. Since F is non-decreasing, it is sufficient to show, for 
every e > 0, that there exist points X\ < t and x2 > t with 

F(x2) - Ffa) < e. 
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Now, for each n we can find i such that 

ih < t < (i + l)h (h = (rn+i)-1). 

Hence, 

J >(i+l)h n 

f.(x)dxg IT A„ 
ih i=l 

and since this is less than e for large n, the result follows. Suppose now, to 
prove the necessity of (1), that F is continuous. Then it is uniformly continu
ous, and therefore 

J»(i+i)a 
fn(x) dx 

ih 

tends to zero as n —> oo. This quantity is, however, precisely ILn
i=i A u and the 

theorem is proved. 

It may be well to interpret the construction of F{x) in terms of measures. 
Since F(x) is already defined precisely, we may permit ourselves a somewhat 
intuitive description. We start with Lebesgue measure on [0, 1]. At the first 
stage we break up [0, 1] into k\ equal subintervals and redistribute the original 
unit mass so that these subintervals receive (permanently) the masses a11} 

. . . , aUl, uniformly distributed within the respective subintervals. At the 
second stage we break up each of these intervals into k2 equal subintervals, and 
redistribute the mass within each interval of the first subdivision in proportion 
to the numbers a2i, . . . , a2k2. Proceeding in this manner, each interval with 
end points in R is eventually assigned a fixed measure. The limiting measure 
is that which corresponds to the function F(x). Condition (1) assures that 
intervals of small lengths are assigned measures which tend to zero; thus there 
are no "mass points" in the limit measure. 

As a simple example we may consider the classical Lebesgue function 
constructed in terms of the Cantor ternary decomposition. Here, kn = 3 for 
all n and ani = anZ = | , an2 = 0. Thus, the functions we construct may be 
thought of as generalizing Lebesgue's construction. Note, however, that if all 
ani are positive, the function obtained is strictly increasing. 

Before formulating our main result, it will be helpful to introduce some 
further notation. Let {Xn} be a sequence of discrete independent random 
variables with the following distribution. The event Xn = t has non-zero 
probability if and only if t is one of the numbers \knani}, i = 1, 2, . . . , kn, and 
in that case it has probability m/kn, where m is the number of occurrences of 
t in the sequence. 

THEOREM 2. F{x) is singular if and only if the random variables 

Yn = ft Xt 
i=l 

tend in probability to zero. 
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Proof. Suppose first that Yn tends to zero in probability, that is, for every 
positive e and ô we have that 

Pr(Yn > Ô) < e îorn ^ N(e, 8). 

Consider now the set Eh where F' (x) exists and Fr (x) > 8. We shall show that 
Ed has (Lebesgue) measure zero for every ô > 0. Let us define En>8 to be the 
union of those intervals of the form [i/rn+i, (i + l)/rn+i] with respect to which 
F(x), or, which is the same thing, Fn(x), has difference quotient greater than 8. 
From the definition of Yn, it is readily seen that the measure of En,$ is just 
Pr (F n > 5), and hence less than e for n large enough. 

Now, each x Ç £5 lies in every En>s from some value of n (depending on x) 
onwards. Thus, E8 = U ^ A j , where Gnt8 = r\fënEj,t. Since Gn,s is an 
increasing family of sets, each having measure less than e, £5 has measure not 
exceeding e. Since e is arbitrary, E§ has measure zero. Since 8 is arbitrary, it 
follows that F'(x) = 0 almost everywhere. Suppose, on the other hand, that 
the Yn do not tend in probability to zero. Then there exist positive numbers 
60, do such that 

Pr (F n > ôo) > eo 

for an infinite sequence of n. That is, £n,s0 has measure greater than or equal to 
e0 for an infinite sequence of n. Hence, there is a set H of measure greater than 
or equal to e0, each point of which belongs to infinitely many of the Eni8o. For 
almost all points x e H, we have that F'{x) ^ ôo, and therefore F(x) is not 
singular. Theorem 2 is proved. 

Remark. I t follows from Kakutani's theorem that F is absolutely continuous 
whenever the hypothesis of Theorem 2 is not satisfied, once one identifies the 
present set-up with that of infinite product measures as discussed in the 
introduction. 

Theorem 2 enables us to compute effectively whether F(x) is singular, in 
particular cases. We shall carry out a detailed analysis only in the following 
case, fully sufficient for the application we have in mind. Let kn = 2 for all n, 
and an\ = J ( l + Xn), an2 = J ( l — Xw). Flere we assume that 0 ^ Xn ^ J, so 
that (1) is satisfied and F(x) is continuous. 

THEOREM 3. The necessary and sufficient condition that F(x) be singular is that 
00 

(2) E XB
2= » . 

1 

Proof. Sufficiency. In the present case, Xn takes the values 1 + Xw and 
1 — \n with equal probability J. The random variable log Xn has mean 

Mn = £log(l - X„2) 
and dispersion 

n \(. 1 + xnv 

Thus, recalling that \n ^ | , we readily verify that Mn S —h^n2 and Dn ^ 8\n
2. 

https://doi.org/10.4153/CJM-1968-143-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-143-9


1430 HAROLD S. SHAPIRO 

Thus, log Yn has mean not exceeding — \B^ and standard deviation not 
exceeding ?>Bn, where Bn

2 = X)iX*2. By the Cebysev inequality, the probability 
that log Yn exceeds — N, where N is any positive number, does not exceed 
(Wn/(\Bn* - iV))2 which tends t o O a s w - ^ œ if (2) holds. 

Necessity. The characteristic function of log Xn is 

#n(»0 = è[exp(ilog(l + Xjx) + exp(ilog(l - Xjx)]. 

I t is easy to verify that Un=i<t>n(x) converges uniformly on every finite 
x-interval, if £XW

2 < °° • Thus, if (2) does not hold, the distribution functions 
of the variables log Yn converge to a limiting distribution, and Yn cannot tend 
in probability to zero. 

Remark. Theorem 3 is a special case of Kakutani's theorem, once the 
necessary identifications are made. On the left side of equation (1) of the 
introduction, take kn = 2, ani = | ( 1 + Xw), an2 = J ( l — \n) and we obtain as 
the necessary and sufficient condition for singularity the divergence of 

oo 

IT KV(i + x») + V(i - A»)) 

which is equivalent to (2). 
As an application of Theorem 3, we prove the following theorem. 

THEOREM 4.* Let p(t) be any function defined and decreasing for 0 < / ^ 1 
such that lim t^p if) = °°. Then there exists an increasing singular function 
F(x) on [0, 1] such that, for 0 ^ Xi < x2 ^ 1, 

(3) F(x2) — F(xi) ^ hp(h), where h = x2 — Xi. 

Proof. We shall show that \n can be found satisfying (2) such that (3) 
holds. We may obviously assume, without loss of generality, that p{t) > 3. 
Now, consider a fixed choice of x± and x2. Let n be the unique positive integer 
such that 

Tjn Sh < yn=i , h = X2 — Xi, 

and let i be the largest integer not exceeding 2w#i. Then 

x2 — Xi -+- n <^ n -f- n_! — n , 

(4) F(x2) - F(Xl) < F\^) - F{^) = 

Pn\^r) - Fn(±) ^ 3-2~n IJ (1 + A<) ̂  3Ae*\ 
where 5n = £î=iX*. 

* Added in proof. This theorem was proved, using other methods, by P. Hartman and 
R. Kershner {The structure ofmonotone functions, Amer. J. Math. 59 (1937), 809-822). We also 
take this opportunity to refer the reader to forthcoming papers by J.-P. Kahane (in Enseigne
ment Math.) and the author (in Michigan Math. J.) where the analogous problem for the 
second-order modulus of smoothness is solved. 
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We wish to make the last quantity in (4) not greater than hp(h), and for 
this it suffices to show that permissible {\n} can be chosen such that for all 
» è l , 3eSn S p(l/2n~1), since the last quantity does not exceed p(h). Now, 
writing 

we see that {Tn} is an increasing sequence of positive numbers and Tn —» œ, 
and to complete the proof we have only to arrange Sn S Tn for all n. Define 
now An to be zero if there is no integer m such that Tn g m < Tn+h and 
\i = i> otherwise. I t is readily seen that K = i 4A* ^ Tn. Moreover, since 
Tn —> oo, \n = J infinitely often; therefore, (2) holds and the theorem is 
proved. 

REFERENCES 

1. P. Halmos, Measure theory (Van Nostrand, Princeton, N.J., 1950). 
2. S. Kakutani,Ow equivalence of infinite product measures, Ann. of Math. (2) 1+9 (1948), 214-226. 

The University of Michigan, 
Ann Arbor, Michigan 

https://doi.org/10.4153/CJM-1968-143-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1968-143-9

