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A Stochastic Calculus Approach
for the Brownian Snake
Jean-Stéphane Dhersin and Laurent Serlet

Abstract. We study the “Brownian snake” introduced by Le Gall, and also studied by Dynkin, Kuznetsov,
Watanabe. We prove that Itô’s formula holds for a wide class of functionals. As a consequence, we give a
new proof of the connections between the Brownian snake and super-Brownian motion. We also give a new
definition of the Brownian snake as the solution of a well-posed martingale problem. Finally, we construct
a modified Brownian snake whose lifetime is driven by a path-dependent stochastic equation. This process
gives a representation of some super-processes.

1 Introduction

The aim of this paper is to develop a notion of stochastic calculus for the Brownian snake.
The Brownian snake is a Markov process which takes its values in the set of stopped paths
in Rd, that will be rigorously defined later. This process, introduced by Le Gall [7], [6], is
closely connected with super-Brownian motion, introduced by Watanabe, and has been in-
tensively studied this last decade by Dynkin, Dawson, Le Gall, Perkins, and many other
authors. The Brownian snake has already been used successfully to investigate various
properties of super-Brownian motion: It is a way to give an explicit construction of super-
Brownian motion, and to obtain many of its path properties. It also shares with super-
Brownian motion connections with a class of semi-linear partial differential equations.

Heuristically, super-Brownian motion models the behavior in space and time of a cloud
of particles with spatial evolution a Brownian motion in Rd, and that may split or die ac-
cording to a certain rate. For a fixed time t , super-Brownian motion gives the “density” of
the cloud. One problem of this model is that though super-Brownian motion gives a good
description of this density for each time, it does not describe the underlying genealogical
structure of the particles. For this reason, Dynkin, Dawson and Perkins have introduced
the notion of historical process [2], [3]. The values of the historical process at time t are
measures which describe the paths used by the particles from time 0 to time t . One other
way to describe the whole evolution of the particles is given by the Brownian snake, which
gives a parameterization of the tree of the paths of the particles. This is a nice tool to study
properties of super-Brownian motion. Moreover, it gives a slightly easier expression for
the probabilistic representation of solutions of the semi-linear partial differential equation
∆u = u2. However, if we exclude Le Gall and Le Jan’s recent Levy snake construction,
the Brownian snake only enables us to study superprocesses with a quadratic branching
mechanism.

Connections between the Brownian snake and super-Brownian motion have been es-
tablished by Le Gall [6]. The idea of the proofs is to compare the discrete approximations
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The Brownian Snake 93

of the Brownian snake—using a parameterization of Brownian excursions by trees—and
the discrete approximations of super-Brownian motion. One interest of our work is that it
gives a direct proof of these connections, without speaking of discrete approximations: It
only uses stochastic calculus for the Brownian snake.

In the first part, we give an explicit expression of the generator of the Brownian snake,
in terms of the generator of the Markov process which describes the spatial motion. This
naturally leads to an Itô’s formula, and a definition of the Brownian snake as a solution
of a well-posed martingale problem. We then use this new characterization to give a di-
rect rebuilding of super-Brownian motion from the Brownian snake. Finally, we define a
modified Brownian snake which allows us to obtain a larger class of super-processes.

Before giving a rigorous expression of our results, let us briefly recall the definition of
the Brownian snake. For a more detailed presentation, one can refer to Le Gall [6], [7].

Let x ∈ Rd be a fixed point. We denote by Wx the set of all stopped paths in Rd started
at x. A stopped path is a couple (w, ζ), where ζ ≥ 0 is called the lifetime of the path, and
w : R+ → Rd is a continuous mapping, which is constant on [ζ,+∞), such that w(0) =
x. We denote by W =

⋃
x∈Rd Wx the set of all stopped paths. When there is no risk of

confusion, we often write w for (w, ζ), and ζ(w) or ζw for the lifetime. The distance on
W is d(w,w ′) = supt≥0 |w(t) − w ′(t)| + |ζw − ζw ′ |, so W is a Polish space. We denote by
ŵ = w(ζw) the endpoint of w, and x̃ the path of lifetime 0 started at x. Finally, we denote
by w≤r or w≤r the path of lifetime ζw ∧ r such that for u ≥ 0, w≤r(u) = w(u ∧ r).

Let us fix (ξt , t ≥ 0) a Feller diffusion with values in Rd, and let us denote by A its
generator. The Brownian snake started at x with spatial motion (ξt , t ≥ 0) is the strong
Markov continuous process W = (Ws, s ≥ 0) with values in Wx characterized by the
following properties:

1. The lifetime process ζs = ζ(Ws) is a reflecting Brownian motion in R+;
2. Conditionally on (ζs, s ≥ 0), the distribution of (Ws, s ≥ 0) is that of an inhomogeneous

Markov process whose transition kernels are described as follows: For every s < s ′,

• Ws ′(t) =Ws(t) for every t ≤ m(s, s ′) = inf[s,s ′] ζr.

•
(

Ws ′
(
m(s, s ′) + t

)
, 0 ≤ t ≤ ζs ′ − m(s, s ′)

)
is independent of Ws conditionally on

Ws

(
m(s, s ′)

)
and has the law of a diffusion in Rd with generator A, starting from

Ws

(
m(s, s ′)

)
and stopped at time ζs ′ −m(s, s ′).

Heuristically, the path Ws can be seen as a path in Rd with random lifetime ζs evolving like
reflecting Brownian motion. When ζs “decreases”, the path is erased. When it “increases”,
we put small independent pieces of process ξ. at its tip.

In what follows, we may and will assume that the process W is the canonical process
on the space C(R+,W) of all continuous functions on R+ with values in W. We denote by
(Fs, s ≥ 0) the associated σ-algebra completed the usual way. For every w ∈ W, Pw is the
law of the Brownian snake started at w, and when w 
= x̃, P∗w the law of the Brownian snake
killed when its lifetime process hits 0. As defined above, W≤t

s is the path Ws truncated at
time t .

Throughout the paper, we will use the notion of infinitesimal generator of path val-
ued Markov processes. The easiest example of this kind of process—and that will be
important—is the so-called A-path associated with the Rd-valued Markov process ξ. This
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94 Jean-Stéphane Dhersin and Laurent Serlet

process has been widely studied by Wentzell [11]. See also Dawson [1, p. 202]. The law Pw

of the A-path associated with ξ, started at w ∈W, is characterized by: Under Pw,

• W0 = w;
• if s ≥ 0, then ζs = ζw + s, W≤ζw

s = w and the distribution of process
(
Ws(ζw + u), u ∈

[0, s)
)

is that of the process ξ started at ŵ.

We will denote by L the generator of the A-path. For certain regular functions F, LF can
be easily described using A. For example, if we suppose that for (w, ζ) ∈W, F(w) = h(ζ, ŵ)
where h : R+ × Rd → R is a bounded continuous function such that

(
∂
∂t + A

)
h exists and

is also bounded, then it is easy to show that

LF(w) =

(
∂

∂t
+ A

)
h(ζ, ŵ).

If F is defined by F(w) =
∫ ζ

0 g(w≤r) dr where g : W → R is a continuous function then
LF(w) = g(w).

Then the infinitesimal generator of the Brownian snake can be given in terms of the
generator L. This is the next result, which is also given in Theorem 1 in a more precise
setting.

Notation We denote by D the set of functions F : W→ R defined by

F(w) =

∫ ζ(w)

0
g(w≤r) dr,

such that the function g : W→ R is in the domain of L and g and Lg are bounded contin-
uous functions. We denote Dx the set of F ∈ D such that g(x̃) = 0. Then, for every F ∈ D,
the generator of the Brownian snake at F is 1

2 Lg. In particular, the process

Ms(F) = F(Ws)− F(W0)−
1

2

∫ s

0
Lg(Wr) dr

is a (Fs)-martingale. More precisely, Theorem 2 gives the following Itô’s formula: For all
F ∈ D, under Pw, if s ≥ 0,

F(Ws) = F(W0) +

∫ s

0
g(Wr) dζr +

1

2

∫ s

0
Lg(Wr) dr.

An other problem is the definition of the Brownian snake as a solution of a martingale
problem. More precisely, if a path-valued process satisfies: For all F ∈ Dw(0), the process

Ms(F) = F(Ws)− F(w)−
1

2

∫ s

0
Lg(Wr) dr

is a martingale with quadratic variation

〈M(F)〉s =

∫ s

0
g(Wr)

2 dr,
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The Brownian Snake 95

is it the Brownian snake starting from w? The answer to this question is yes, as explained in
Theorem 3.

One interesting application of the previous results is the rebuilding of super-Brownian
motion from the Brownian snake. To this aim, we recall the definition of super-Brownian
motion, and the associated historical process, as solutions of well-posed martingale prob-
lems. For a more detailed presentation of this definition of super-Brownian motion as
solution of a martingale problem, one can refer to Dawson [1]. An (A, z2)-historical pro-
cess is a process (Ht , t ≥ 0) with values in the set MF(W) of all finite measures on W

which is the solution of the well-posed following martingale problem: For every function
g : W→ R+ in the domain of L such that g and Lg are bounded, then the process

Mt (g) = 〈Ht , g〉 − 〈H0, g〉 −

∫ t

0
ds〈Hs, Lg〉, t ≥ 0

is a martingale with quadratic variation

〈M(g)〉t = 4

∫ t

0
ds〈Hs, g

2〉.

(In the usual definition of the historical process, there is no 4. However, our definition will
give results which are easier to write.)

An (A, z2)-super-process is the process (Xt ) with values in the space MF(Rd) of all finite
measure on Rd, associated with the process (Ht ) by:

〈Xt , ϕ〉 =

∫
Ht (dw)ϕ(ŵ), t ≥ 0

for every bounded measurable function ϕ : Rd → R+. In fact, one can prove that the dis-
tribution of the (A, z2)-super-Brownian motion is the solution of the well-posed following
martingale problem: If ϕ : Rd → R+ is in the domain of A, and the functions ϕ and Aϕ are
bounded, then

Mt (ϕ) = 〈Xt , ϕ〉 − 〈X0, ϕ〉 −

∫ t

0
ds〈Xs,Aϕ〉, t ≥ 0

is a martingale with quadratic variation

〈M(ϕ)〉t = 4

∫ t

0
ds〈Xs, ϕ

2〉.

Let us now recall how these processes can be rebuilt from the Brownian snake. Under
the probability measure Px̃, for s ≥ 0, t ≥ 0, we denote by Lt

s(ζ) the local time of the
lifetime process (ζ.) at level t , and time s, and τ1 = inf{s ≥ 0; L0

s (ζ) > 1} the first time the
local time at level 0 hits 1. For t ≥ 0, we introduce the measures defined on Rd and W by:

Xt =

∫ τ1

0
dsL

t
s(ζ)δŴs

and Ht =

∫ τ1

0
dsL

t
s(ζ)δWs
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where dsLt
s(ζ) is the measure associated with the increasing process s �→ Lt

s(ζ). We give in
Theorem 7 a new proof that, under Px̃, the process (Ht ) is a (A, z2)-historical process, and
the process (Xt ) is the associated super-Brownian motion started at δx.

In Proposition 12 we give the definition of the modified Brownian snake. The lifetime
of a such snake (ζs,Ws) is no longer a reflecting Brownian motion, but a diffusion such that
on {ζs > 0},

dζs =
1

c(Ŵs)
dγs − θ(Ws) ds

where (γs) is a linear Brownian motion, and c, θ two nonnegative functions on Rd and
W respectively. Heuristically, thinking at the process (Ws) as a model for a tree of paths
of particles, the coefficient 1/c may be seen as a modification of the branching rate of
the particles. Moreover, this modification depends on where the particles are. The term
−θ(Ws) ds may be seen as a killing coefficient, with intensity depending on the path the
particle has used. Notice that existence of such processes does not follow from usual general
theorems on stochastic differential equations: The lifetime process does depend on the
spatial evolution of the whole process, so that it does not seem possible to construct the
lifetime process first, and then to construct the spatial evolution. For these reasons, we
have to define this snake as the solution of a well-posed martingale problem. Its spatial
evolution is then not as clear as for the standard Brownian snake, but a powerful byproduct
is that we have an Itô’s formula, which is well adapted for studying the associated super-
processes. The effective construction of this snake uses an idea by Watanabe [10]—which
is based on a change of time for each path—and a Girsanov Theorem.

We finally prove that this modified Brownian snake can be used to build a more gen-
eral set of super-processes—that will be called

(
A, c(x)z2, b

)
-super-processes. Heuristically,

these super-processes are models for the evolution of a cloud of particles which have a spa-
tial motion described by the generator A, each particle branching according to a rate which
depends of its position, and each particle being killed with a rate b which depends on the
path the particle has used to reach its position. More precisely, the associated historical
process is the solution of the following well-posed martingale problem: For every bounded
function ψ in the domain of L, the process

Mt (ψ) = 〈Zt , ψ〉 −

∫ t

0
ds〈Zs, Lψ〉 −

∫ t

0
ds〈Zs, bcψ〉, t ≥ 0(1)

is a martingale with quadratic variation

〈M(ψ)〉t = 4

∫ t

0
ds〈Zs, cψ

2〉.(2)

In (1) and (2), the function c is extended on W by c(w) = c(ŵ).

2 Generator of the Brownian Snake

Let us recall that L denotes the generator of the A-path process, and D the set of test func-
tions defined in the introduction.
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Theorem 1 Let F ∈ D. Then, for all w ∈W such that ζ(w) > 0, we have

lim
s↓0

1

s

(
Ew[F(Ws)]− F(w)

)
=

1

2
Lg(w).

This result still holds if ζ(w) = 0 and g(w≤0) = 0.

Proof Let us fix w ∈ W such that ζw > 0. Under Pw, we have Ws(u) = w(u) for 0 ≤ u ≤
ms = inf[0,s] ζ . Hence

F(Ws)− F(w) =

∫ ζs

ms

g(W≤r
s ) dr −

∫ ζ

ms

g(w≤r) dr,

and then

Ew[F(Ws)]− F(w) =

∫
Pw(ζs ∈ db,ms ∈ da)

×

(∫ b

a
drEw[g(W≤r

s ) | ζs = b,ms = a]−

∫ ζ

a
g(w≤r) dr

)
.

We know the explicit law of the process (Ws) knowing (ζs), as recalled in introduction:
Under Pw(· | ζs = b,ms = a), for r ∈ [a, b], the path W≤r

s is obtained by extending the
path w≤a with a path which generator is A, until time r. It is then the law of a A-path (W ′

u)
at time r − a, starting from the path w≤a. Hence we get

Ew[g(W≤r
s ) | ζs = b,ms = a] = Ew≤a

[g(W ′
r−a)]

= g(w≤a) +

∫ r−a

0
Ew≤a

[Lg(W ′
u)] du.

Then,

Ew[F(Ws)− F(w)]

=

∫
Pw[ζs ∈ db,ms ∈ da]

∫ b

a
dr

∫ r−a

0
du Ew≤a

[Lg(W ′
u)] + R1 − R2,

(3)

with

R1 =

∫
Pw[ζs ∈ db,ms ∈ da]

∫ b

a
dr g(w≤a),

and

R2 =

∫
Pw[ms ∈ da]

∫ ζ

a
dr g(w≤r).
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The law of (ζs,ms) is easy to get (see [6]):

Pw[ζs ∈ db,ms ∈ da]

=
2

√
2πs3

(ζ + b− 2a) exp−

(
(ζ + b− 2a)2

2s

)
1{0<a<ζ∧b} da db

+
2
√

2πs
exp−

(
(ζ + b)2

2s

)
δ0(da) db.

(4)

Then, we obtain for R1:

R1 =

∫ ζ

0
da g(w≤a)

∫ +∞

a
dr

2
√

2πs
exp−

(
(ζ + r − 2a)2

2s

)

+ g(w≤0)

∫ +∞

0
db

2
√

2πs
b exp−

(
(ζ + b)2

2s

)

From the law of (ζs,ms), we immediately deduce the law of ms, and then

R2 =

∫ ζ

0
dr g(w≤r)

∫ +∞

ζ−r
dv

2
√

2πs
exp−

(
v2

2s

)
.

Hence, for every p ≥ 0,

R1 − R2 = g(w≤0)

∫ +∞

0
db

2
√

2πs
b exp−

(
(ζ + b)2

2s

)
= O(sp).

(We have used that ζ > 0.) Then, it follows from equation (3) that

1

s

(
Ew[F(Ws)]− F(w)

)
=

1

s
Ew

[∫ ζs

ms

dr

∫ r−ms

0
du Ew≤ms

[Lg(W ′
u)]

]
+ O(s)

=
1

s
Ew

[
(ζs −ms)2

2

]
Lg(w) + O(s)

+
1

s
Ew

[∫ ζs

ms

dr

∫ r−ms

0
du Ew≤ms

[Lg(W ′
u)− Lg(w)]

]
.

It is easy to see that the last term of this formula tends to 0 by dominated convergence. It
remains to estimate Ew[(ζs − ms)2]. If (ζs, s ≥ 0) was a standard non-reflecting Brownian
motion (Bs, s ≥ 0), Lévy’s Theorem would lead to the result:

E[(Bs − inf
[0,s]

B)2] = E[B2
s ] = s.

In our case, (ζs) is a reflected Brownian motion started from ζ > 0. It is quite easy to see
that E[(ζs −ms)2] = s + o(s), which achieves the proof when ζ(w) > 0. The case ζ(w) = 0
is easier.
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3 Itô’s Formula for the Brownian Snake

Theorem 2 Let F ∈ D, and w ∈W. Then, under Pw, we have for every s ≥ 0,

F(Ws) = F(W0) +

∫ s

0
g(Wr) dζr +

1

2

∫ s

0
Lg(Wr) dr.

Proof We can and will assume that g(w≤0) = 0. The general case can be immediately
deduced from this particular situation by considering g(·)− g(w≤0). Using Theorem 1, we
get that

F(Ws)− F(w)−
1

2

∫ s

0
Lg(Wr) dr, s ≥ 0

is a (Fs)-martingale. To prove the theorem, we only have to show that this martingale is
equal to ∫ s

0
g(Wr) dζr.

Notice that as the process (ζs, s ≥ 0) is a reflecting Brownian motion, this stochastic integral
can be defined. Moreover, using that the finite variation part of the semi-martingale (ζs, s ≥
0) is its local time, and that g(w≤0) = 0, we get that this stochastic integral is in fact a
martingale. Let us introduce the martingale (Ns, s ≥ 0) defined by

Ns = F(Ws)−

∫ s

0
g(Wr) dζr.

To prove that N = 0, it is sufficient to obtain that its quadratic variation satisfies 〈N〉s = 0,
for every s ≥ 0.

Let us fix s ≥ 0, and ∆n = [0 = sn
0 ≤ sn

1 ≤ · · · ≤ sn
k(n) ≤ sn

k(n)+1 = s] be a sequence of
subdivisions such that the modulus of∆n tends to 0 and

〈N〉s = lim
n→+∞

k(n)∑
i=0

(Nsn
i+1
− Nsn

i
)2.

In order to make expressions more readable, we write si for sn
i . We note that

Nsi+1 − Nsi = F(Wsi+1 )− F(Wsi )−

∫ si+1

si

g(Wr) dζr

=

∫ ζsi+1

mi

g(W≤r
si+1

) dr −

∫ ζsi

mi

g(W≤r
si

) dr −

∫ si+1

si

g(Wr) dζr,

with mi = infu∈[si ,si+1] ζu. We obviously have

∫ si+1

si

g(Wsi ) dζr =

∫ ζsi+1

mi

g(Wsi ) dr −

∫ ζsi

mi

g(Wsi ) dr.
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Hence, we can write Nsi+1 − Nsi = Ai − Bi −Ci where

Ai =

∫ ζsi+1

mi

(
g(W≤r

si+1
)− g(Wsi )

)
dr,

Bi =

∫ ζsi

mi

(
g(W≤r

si
)− g(Wsi )

)
dr,

Ci =

∫ si+1

si

(
g(Wr)− g(Wsi )

)
dζr.

Notice that (Nsi+1 − Nsi )
2 ≤ 3(A2

i + B2
i + C2

i ). We thus have three terms to bound.
For the third term, we notice that

Ew

[∑
i

C2
i

]
= Ew

[∑
i

∫ si+1

si

(
g(Wr)− g(Wsi )

)2
dr

]

which tends to 0 by dominated convergence.
For the first term, we write

Ew

[∑
i

A2
i

]
≤
∑

i

Ew[M(ζsi+1 −mi)
2]

where
M = sup

i
sup

r∈[mi ,ζsi+1 ]
|g(W≤r

si+1
)− g(Wsi )|

2.

By the Cauchy-Schwarz inequality, we have

Ew

[∑
i

A2
i

]
≤ (Ew[M2])1/2

∑
i

(
Ew[(ζsi+1 −mi)

4]
)1/2

.

The second term of the right hand side is bounded. Notice that M is bounded, so it re-
mains to prove that M almost surely tends to 0 when n tends to∞. But it is obvious that
{W≤r

u ; u ∈ [0, s], r ≥ 0} is compact. Using that the function g is uniformly continuous on
this compact set, we get that M tends to 0, a.s.

The proof for the upper bound for Ew[
∑

i B2
i ] is similar. Hence we have proved that

Ew[
∑

i(Nsi+1 − Nsi )
2] tends to 0. Using Fatou’s Lemma this implies that for s ≥ 0,

Ew[〈N〉s] = 0, which achieves the proof.

4 Martingale Problem for the Brownian Snake

In this section, we prove that we can give a characterization of the Brownian snake using a
martingale problem.

For x ∈ Rd, let us recall that Dx is the set of functions F : w →
∫ ζ

0 g(w≤r) dr such that
F ∈ D and g(x̃) = 0.
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Theorem 3 Let w0 ∈ W and x0 = w0(0). Let us assume that the process (Ws, s ≥ 0) with
values in Wx0 satisfies W0 = w0 and the following assumption, denoted by (H): For every
function F ∈ Dx0 , the process

M(F)s = F(Ws)−
1

2

∫ s

0
Lg(Wr) dr

is a martingale with quadratic variation

〈M(F)〉s =

∫ s

0
g2(Wr) dr.

Then the law of (Ws, s ≥ 0) is Pw0 , i.e., it is a Brownian snake starting from w0.

Proof First of all, let us notice that it is easy to prove that the process (ζs, s ≥ 0) is a
reflecting Brownian motion. Indeed, if f : R+ → R is a function of class C2 such that
f ′(0) = 0, then applying assumption (H) with g(w) = f ′

(
ζ(w)

)
, we get that the process

f (ζs)−
1

2

∫ s

0
f ′ ′(ζr) dr, s ≥ 0

is a martingale. This proves (see e.g. [5]) that the process (ζs, s ≥ 0) is a reflecting Brownian
motion.

Let us denote by (Gs, s ≥ 0) the semi-group of the Brownian snake. We first suppose
proved the following result.

Lemma 4 For every T > 0, and every bounded continuous function H : W→ R, the process(
GT−sH(Ws), 0 ≤ s ≤ T

)
is a martingale.

Then, if T > 0, s ∈ [0,T] and w ∈W, the martingale property at time T gives

GTH(w) = Ew[GTH(w)] = Ew[G0H(WT)] = Ew[H(WT )],

which proves that the process (Ws, s ≥ 0) and the Brownian snake have the same finite-
dimensional distributions. This implies (see [4, th. 4.2 p. 184]) that the process (Ws; s ≥ 0)
is a Brownian snake. Hence, Theorem 3 will be proved as soon as we have proved Lemma 4.

We first give an explicit expression of the semi-group of the Brownian snake. To simplify
notations, we introduce

p(1)(s, x) =
1
√

2πs
exp−

x2

2s
, s > 0, x ∈ R,

the transition densities of the linear Brownian motion, and denote by (Qb, b ≥ 0) the
semi-group of the A-path.
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Lemma 5 The semi-group (Gs, s ≥ 0) of the Brownian snake is characterized by: if s ≥ 0,
H : W→ R is a bounded continuous function, and w ∈W, then

GsH(w) = −2

∫ ζ

0
da

∫ ∞
0

db ∂2 p(1)(s, ζ + b− a)QbH(w≤a)

+ 2

∫ ∞
0

db p(1)(s, ζ + b)QbH(x̃).

Proof Following Section 2, if s ≥ 0 we denote by ms = infr∈[0,s] ζr the minimum of the
lifetime process before time s. Then

GsH(w) = Ew[H(Ws)]

=

∫
Pw[ζs ∈ db,ms ∈ da]Ew[H(Ws) | ζs = b,ms = a]

=

∫
Pw[ζs ∈ db,ms ∈ da]Qb−aH(w≤a).

Now, notice that formula (4) can be written

Pw[ζs ∈ db,ms ∈ da]

= −2∂2 p(1)(s, ζ + b− 2a)1{0<a<ζ∧b} da db + 2p(1)(s, ζ + b)1{b>0} δ0(da) db.

This achieves the proof of the Lemma.

Proof of Lemma 4 Using Lemma 5, we see that if T > 0 and s ∈ [0,T], we have

GT−sH(w) = Ew[H(WT−s)] =

∫ ζ

0
da h(s, ζ,w≤a) + θ(s, ζ),

where

h(s, ζ,w ′) = −2

∫ ∞
0

db ∂2 p(1)(T − s, ζ + b− ζ ′)QbH(w ′)

θ(s, ζ) = 2

∫ ∞
0

db p(1)(T − s, ζ + b)QbH(x̃).

(5)

Hence,

GT−sH(Ws) =

∫ ζs

0
da h(s, ζs,W

≤a
s ) + θ(s, ζs),(6)

We first study the process
(
θ(s, ζs), s ≥ 0

)
. To this aim, we introduce the Tanaka represen-

tation of the reflecting Brownian motion (ζs, s ≥ 0)

ζs = βs +
1

2
L0

s (ζ), s ≥ 0,
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where the process (βs, s ≥ 0) is a linear Brownian motion and L0
s (ζ) is the local time at time

s and level 0 of the process (ζ.). Hence, using Itô’s formula, we get

θ(s, ζs) = θ(0, ζ0) +

∫ s

0

(
∂1θ +

1

2
∂2

2,2θ

)
(r, ζr) dr +

∫ s

0
∂2θ(r, ζr) dβr

+
1

2

∫ s

0
∂2θ(r, 0) dL0

r (ζ).

As we have (
∂1 +

1

2
∂2

2,2

)
p(1)(T − s, ζ + b) = 0,(7)

it remains

θ(s, ζs) = θ(0, ζ0) +

∫ s

0
∂2θ(r, ζr) dβr +

1

2

∫ s

0
∂2θ(r, 0) dL0

r (ζ)

= θ(0, ζ0) +

∫ s

0
∂2θ(r, ζr) dβr

+

∫ s

0
dL0

r (ζ)

∫ ∞
0

db ∂2 p(1)(T − r, b)QbH(x̃).

(8)

Now, let us study the process
(∫ ζs

0 da h(s, ζs,W≤a
s ), s ≥ 0

)
. First of all, let us prove that

assumption (H) is in fact satisfied for a larger class of functions.

Lemma 6 Let

h : R+ × R+ ×Wx → R

(s, ζ,w ′) �→ h(s, ζ,w ′)

be a bounded function such that, if w ′ ∈ Wx, the function h(·, ·,w ′) is of class C2, and if
(s, ζ) ∈ R+×R+, the function h(s, ζ, ·) is in the domain of the generator L and Lh is bounded.
If s ≥ 0, let us introduce the function Fs defined on W by

Fs(w) =

∫ ζ

0
da h(s, ζ,w≤a).

Then, the process

Fs(Ws)−

∫ s

0
dr

∫ ζr

0
da

(
∂1h +

1

2
∂2

2,2h

)
(r, ζr,W

≤a
r )−

1

2

∫ s

0
dL0

r (ζ)h(r, 0, x̃0)

−

∫ s

0
dr

(
∂2h +

1

2
Lh

)
(r, ζr,Wr), s ≥ 0

is a martingale.
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Proof We can and will suppose that the function h can be written

h(s, ζ,w ′) = f (s)ϕ(ζ)g(w ′)

where f , ϕ and g are very regular functions. The general case is then obtained by using the
monotone class Theorem. Let us introduce the function

F(w) =

∫ ζ

0
g(w≤a) da =

∫ ζ

0

(
g(w≤a)− g(x̃)

)
da + g(x̃)ζ.

Applying assumption (H) with the function w �→
∫ ζ

0

(
g(w≤a) − g(x̃)

)
da, and using the

decomposition ζs = βs + (1/2)L0
s (ζ), we get:

F(Ws) = Ms +
1

2

∫ s

0
Lg(Wr) dr +

1

2
g(x̃)L0

s (ζ),

where (Ms, s ≥ 0) is a martingale.

Now, let us apply Itô’s formula (15) for Fs(Ws) = f (s)ϕ(ζs)F(Ws).

d
(
Fs(Ws)

)
= f ′(s)ϕ(ζs)F(Ws) ds + f (s)ϕ ′(ζs)F(Ws) dζs + f (s)ϕ(ζs) d

(
F(Ws)

)
+

1

2
f (s)ϕ ′ ′(ζs)F(Ws) d〈ζ〉s + f (s)ϕ ′(ζs) d〈ζ, F(W.)〉s

= f (s)ϕ(ζs) dMs + f (s)ϕ ′(ζs)F(Ws) dβs + f ′(s)ϕ(ζs)F(Ws) ds

+
1

2
f (s)ϕ ′(0)F(Ws) dL0

s (ζ) +
1

2
f (s)ϕ(ζs)Lg(Ws) ds

+
1

2
f (s)ϕ(ζs)g(x̃) dL0

s (ζ) +
1

2
f (s)ϕ ′ ′(ζs)F(Ws) ds + f (s)ϕ ′(ζs)g(Ws) ds

= f (s)ϕ(ζs) dMs + f (s)ϕ ′(ζs)F(Ws) dβs

+

[∫ ζs

0
da

(
f ′(s)ϕ(ζs)g(W≤a

s ) +
1

2
f (s)ϕ ′ ′(ζs)g(W≤a

s )

)]
ds

+
1

2
f (s)ϕ(ζs)g(x̃0) dL0

s (ζ) +

(
f (s)ϕ ′(ζs)g(Ws) +

1

2
f (s)ϕ(ζs)Lg(Ws)

)
ds,

which are the terms announced in Lemma 6.

Let us apply this result with the function h defined in equation (5). First, notice that
thanks to equation (7), we have ∂1h + 1

2∂
2
2,2h = 0. We then use the explicit expression of Lh

https://doi.org/10.4153/CJM-2000-004-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-004-3


The Brownian Snake 105

and ∂2h, that L is the generator of (Qb), and finally an integration by parts, to get:

1

2
Lh(s, ζ,w ′) + ∂2h(s, ζ,w ′) =

∫ ∞
0

db ∂2
2,2 p(1)(T − s, ζ + b− ζ ′)QbH(w ′)

−

∫ ∞
0

db ∂2 p(1)(T − s, ζ + b− ζ ′)L
(

w ′ → QbH(w ′)
)

− 2

∫ ∞
0

db ∂2
2,2 p(1)(T − s, ζ + b− ζ ′)QbH(w ′)

= −

∫ ∞
0

db ∂2
2,2 p(1)(T − s, ζ + b− ζ ′)QbH(w ′)

−

∫ ∞
0

db ∂2 p(1)(T − s, ζ + b− ζ ′)
∂

∂b
QbH(w ′)

= −∂2 p(1)(T − s, ζ − ζ ′)H(w ′).

If we apply this result when w ′ = w we get

1

2
Lh(s, ζ,w) + ∂2h(s, ζ,w) = 0.

Hence, using Lemma 6, there exists a martingale (Ms, 0 ≤ s ≤ T) such that, if s ∈ [0,T],∫ ζs

0
da h(s, ζs,W

≤a
s ) =

1

2

∫ s

0
dL0

r (ζ)h(r, 0, x̃) + Ms

= −

∫ s

0
dL0

r (ζ)

∫ ∞
0

db ∂2 p(1)(T − r, b)QbH(x̃) + Ms.

Combining this formula with equations (6) and (8), we get that the process
(
GT−sH(Ws),

0 ≤ s ≤ T
)

is a martingale, which completes the proof of Lemma 4.

5 Construction of the (A, z2)-Super-Process

Let us fix x ∈ Rd. We recall that x̃ is the path starting from x with lifetime 0. Hence,
under the probability measure Px̃, the process (ζs,Ws) is a Brownian snake starting from x̃,
and its lifetime process is a reflecting Brownian motion starting from 0. We also recall the
notation τ1 = inf{s; L0

s (ζ) > 1} for the first hitting time of 1 by the local time at level 0,
and we introduce the change of time:

At
r = inf

{
s > 0;

∫ s

0
1{ζu≤t} du > r

}
∧ τ1,

and the filtration (Gt ) defined by

Gt = σ(WAt
r
, r ≥ 0).

The definition of the (A, z2)-historical super-process as solution of a martingale problem is
recalled in the introduction.
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Theorem 7 Under Px̃, let us introduce the process (Ht , t ≥ 0) which takes values in
MF

(
C(R+,Rd)

)
defined by: for every t ≥ 0, and every nonnegative measurable function

ϕ : C(Rd,R+)→ R,

〈Ht , ϕ〉 =

∫ τ1

0
d(s)L

t
s(ζ)ϕ(Ws).

Then the process (Ht , t ≥ 0) is a (A, z2)-historical super-process adapted to the filtration (Gt )
with initial condition H0 = δx̃.

Before proving this Theorem, we need three lemmas.

Lemma 8 Let (ζs, s ≥ 0) be a reflecting Brownian motion on R+, starting from a ∈ R+

under Pa.

1. Let us denote by τ1 = inf{s ≥ 0; Lo
s (ζ) > 1} the first hitting time of 1 by the local time at

level 0 of the process (ζs). Then, for every t > 0 and every nonnegative real θ ≤ π
4t ∧ 1, we

have

E0

[
exp

(
θ2

2

∫ τ1

0
1(0,t](ζs) ds

)]
≤ e(9)

E0

[
exp

(
θ

2

∫ τ1

0
1(0,t](ζs) dζs

)]
≤ exp

1

2
.(10)

2. Let r, a and t be such that 0 ≤ r < a < t, and Tr = inf{s ≥ 0; ζs = r} be the first hitting
time of r by the process (ζs). Then, for every nonnegative real θ ≤ π

3t we have

Ea

[
exp

(
θ2

2

∫ Tr

0
1(r,t](ζs) ds

)]
≤ 2.(11)

Proof 1. First of all, notice that the process
(∫ s

0 1(0,t](ζu) dζu, s ≥ 0
)

is a (Fs)-martingale

with quadratic variation
∫ s

0 1(0,t](ζu) du. Hence, if θ ≥ 0, the process

exp

(
θ

∫ τ1∧s

0
1(0,t](ζu) dζu −

θ2

2

∫ τ1∧s

0
1(0,t](ζu) du

)
, s ≥ 0

is a local martingale. Moreover, using Novikov’s criterion (see e.g. [9, p. 318]) it is in fact a
martingale if (9) is satisfied. Hence, using the Cauchy-Schwarz inequality, assertion (10) is
true. It remains to prove that assertion (9) is satisfied. Using the occupation times formula,
and Ray-Knight Theorem, we get

E0

[
exp

(
θ2

2

∫ τ1

0
1(0,t](ζr) dr

)]
= E0

[
exp

(
θ2

2

∫ t

0
Lx
τ1

(ζ) dx

)]

=

(
E

[
exp

(
θ2

2

∫ t

0
Rx dx

)])2
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where (Rx, x ≥ 0) is the square of a 0-dimensional Bessel Process starting from 1. But we
know the exact Laplace transforms of the process

∫ t
0 Rx dx (see e.g. [9, cor. II.1.8 p. 425]): if

λ ≥ 0,

E

[
exp

(
−λ

∫ t

0
Rx dx

)]
= exp[−2

√
2λ th(t

√
2λ)].

The right part of this equality is an analytic function of λ, at least when |λ| is small. As∫ t
0 Rx dx is positive, using a monotone convergence argument, we get that on the domain

of analyticity of the right side, the left side is also analytic. Then, if 0 ≤ θ ≤ π
4 t ∧ 1,

E0

[
exp

(
θ2

2

∫ t

0
Rx dx

)]
= exp

(
2θ tan(tθ)

)
≤ exp

1

2
,

which proves (9).
2. This part of the Lemma is easier to prove. We have to show that the time the process

(ζs) stay in (r, t] before time r has an exponential moment. But if we “erase” the parts of
the process above t it remains a Brownian motion reflecting when it hits t . Hence,

Ea

[
exp

(
θ2

2

∫ Tr

0
1(r,t](ζs) ds

)]
≤ E0

[
exp

(
θ2

2
Tt−r

)]

≤ E0

[
exp

(
θ2

2
Tt

)]
.

But (see e.g. [9, exercise II.3.10]), if 0 ≤ θ ≤ π
6t , we have

E0

[
exp

(
θ2

2
Tt

)]
≤

1

cos(θt)
≤ 2,

which achieves to prove the result.

Lemma 9 Let (ζ,w) ∈ W, and r, t and ε such that t > ζ = r + ε > r ≥ 0. Under Pw,
we denote by Tr = inf{s ≥ 0; ζs = r} the first hitting time of r by the process (ζs). Then, if
0 ≤ θ ≤ π

3t ‖ϕ‖
−1
∞ ,

Ew

[
exp

(
θ

∫ Tr

0
1(r,t](ζs)ϕ(Ws) dζs −

θ2

2

∫ Tr

0
1(r,t](ζs)ϕ(Ws)

2 ds

)]
= 1.

Proof The process
(∫ Tr∧s

0 1(r,t](ζu)ϕ(Wu) dζu, s ≥ 0
)

is a (Fs)-martingale with quadratic

variation
∫ Tr∧s

0 1(r,t](ζu)ϕ(Wu)2 du, hence

exp

(
θ

∫ Tr∧s

0
1(r,t](ζu)ϕ(Wu) dζu −

θ2

2

∫ Tr∧s

0
1(r,t](ζu)ϕ(Wu)2 du

)
, s ≥ 0,

is a (Fs)-local martingale. Moreover, using Novikov’s criterion again, we know that it is a
martingale if

Ew

[
exp

(
θ2

2

∫ Tr

0
1(r,t](ζs)ϕ(Ws)

2 ds

)]
<∞,

which is true if 0 ≤ θ ≤ π
3 t ‖ϕ‖

−1
∞ (see Lemma 8).
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Lemma 10 Under Px̃, the process

Mt (ϕ) =

∫ τ1

0
1(0,t](ζr)ϕ(Wr) dζr, t ≥ 0

is a (Gt )-martingale with quadratic variation

At (ϕ) =

∫ τ1

0
1(0,t](ζr)ϕ(Wr)

2 dr.

Proof Using [8, proposition 1.17], it is sufficient to prove that

(i) the processes
(
Mt (ϕ), t ≥ 0

)
and

(
At (ϕ), t ≥ 0

)
and (Gt )-adapted;

(ii) for every t > 0, there exists θ0 > 0 such that for every θ ∈ [0, θ0], the process

Xθ
r = exp

(
θMr(ϕ)−

θ2

2
Ar(ϕ)

)
, r ∈ [0, t]

is a (Gr)-martingale which satisfies Ex̃

[
exp
(
θMt (ϕ)

)]
<∞.

(i) First of all, let us verify that the process
(
Mt (ϕ), t ≥ 0

)
is (Gt )-adapted. Let us fix

ε > 0, and introduce the sequence of (Fs)-stopping times (U ε
k , k ≥ 0) and (V ε

k , k ≥ 0)
defined by U ε

0 = 0, and for k ≥ 0,

V ε
k = inf{s ∈ (U ε

k , τ1); ζs = t},

U ε
k+1 = inf{s ∈ (V ε

k , τ1); ζs = t − ε},

with by convention inf ∅ = τ1. We set Kε = max{k; U ε
k < τ1}. A second order moment

calculus proves that

Mt (ϕ) = L2 − lim
ε→0

Kε∑
k=0

∫ V ε
k

U ε
k

ϕ(Wu) dζu.

Hence, we can find a sequence of positive numbers εn decreasing to 0, such that Px̃-p.s.,

Mt (ϕ) = lim
εn→0

Kεn∑
k=0

∫ V εn
k

U εn
k

ϕ(Wu) dζu.

But the random variables of the right hand side are measurable for the σ-algebra generated
by the processes (W(U ε

k +·)∧V ε
k
; k ≥ 0), which is included in the σ-algebra Gt . Hence Mt (ϕ)

is Gt -measurable. A similar argument proves that At (ϕ) is also Gt -measurable.
(ii) Let us prove that for every fixed t0 > 0, there exists θ0 > 0 such that if θ ∈ [0, θ0],

the process

Xθ
r = exp

(
θMr(ϕ)−

θ2

2
Ar(ϕ)

)
, 0 ≤ r ≤ t0,
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is a (Gr)-martingale. To this aim, it is sufficient to prove that if 0 ≤ r ≤ t ≤ t0, then

Ex̃

[
exp

(
θ

∫ τ1

0
1(r,t](ζs)ϕ(Ws) dζs −

θ2

2

∫ τ1

0
1(r,t](ζs)ϕ(Ws)

2 ds

) ∣∣∣ Gr

]
= 1.(12)

In a first step, we mimic the proof of the previous part. If ε > 0, we introduce the sequences
of (Fs)-stopping times (Sεk, k ≥ 0) and (Tε

k , k ≥ 0) defined by Tε
0 = 0, and if k ≥ 1,

Sεk = inf{s ∈ (Tε
k−1, τ1); ζs = r + ε},

Tε
k = inf{s ∈ (Sεk, τ1); ζs = r},

with the same convention inf ∅ = τ1. We set Nε = max{k; Tε
k < τ1}. The integer Nε

k is
in fact the number of excursions of the process (ζs) above level r, which hit level r + ε. For
k ∈ {1, . . . ,Nε}, we set

Bεk = exp

(
θ

∫ Tε
k

Sεk

1(r,t](ζs)ϕ(Ws) dζs −
θ2

2

∫ Tε
k

Sεk

1(r,t](ζs)ϕ(Ws)
2 ds

)

the contribution of the k-th excursion. Let us prove that

Ex̃

[ Nε∏
k=1

Bεk | Gr

]
= 1.(13)

This can be proved using the monotone class Theorem, and applying the following result
by induction: For every FSεk

-measurable bounded random variable U and for every G mea-
surable nonnegative function defined on C(R+,W),

Ex̃[U 1{Sεk<τ1}BεkG(WTε
k +·)] = Ex̃[U 1{Sεk<τ1}G(WTε

k +·)].(14)

Using the strong Markov property at time Tε
k , we can write EWTε

k
(G) instead of G(WTε

k +·) in

the left hand side. As WTε
k
=W≤r

Sεk
, if we apply one more time the strong Markov property,

at time Sεk, we get

Ex̃[U 1{Sεk<τ1}BεkG(WTε
k +·)]

= Ex̃

[
U 1{Sεk<τ1}EW≤r

Sε
k

[G]EWSε
k

[
exp

(
θ

∫ Tr

0
1(r,t](ζs)ϕ(Ws) dζs

−
θ2

2

∫ Tr

0
1(r,t](ζs)ϕ(Ws)

2 ds

)]]
.

Now, applying Lemma 9, and the strong Markov property (in the other side this time), we
obtain equality (14), and hence equality (13). To get equality (12) from equality (13), we
use the following result. If U and V are random variables, then

Ex̃

[
|Ex̃[exp(U ) | Gr]− Ex̃[exp(V ) | Gr]|

]
≤
(

Ex̃[|U −V |2]
)1/2

(Ex̃[exp(2U ) + exp(2V )])1/2 .
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Let us set

U = θ

∫ τ1

0
1(r,t](ζr)ϕ(Ws) dζs −

θ2

2

∫ τ1

0
1(r,t](ζs)ϕ

2(Ws) ds

and

V =
Nε∑

k=1

{
θ

∫ Tε
k

Sεk

1(r,t](ζs)ϕ(Ws) dζs −
θ2

2

∫ Tε
k

Sεk

1(r,t](ζs)ϕ(Ws)
2 ds

}
.

Using Lemma 8, if θ ≤ θ0 =
1
2

(
π
4 t ∧ 1

)
‖ϕ‖−1

∞ , then

Ex̃[exp(2U ) + exp(2V )] ≤ 2Ex̃

[
exp

(
1

2

( π
4t
∧ 1
)2
∫ τ1

0
1(0,t](ζs) ds

)]
≤ 2e.

Moreover, using the occupation times formula, and second Ray-Knight Theorem, we have

Ex̃[|U −V |2] ≤ 2

(
θ‖ϕ‖∞ +

θ2

2
‖ϕ‖2

∞

)
Ex̃

[∫ τ1

0
1(r,r+ε](ζs) ds

]

≤ 2

(
‖ϕ‖∞ +

1

2
‖ϕ‖2

∞

)∫ r+ε

r
Ex̃[Lu

τ1
(ζ)] du

≤ 2

(
‖ϕ‖∞ +

1

2
‖ϕ‖2

∞

)
ε.

Letting ε tends to 0, we get inequality (10). Hence we have proved that the process (Xθ
r , 0 ≤

r ≤ t) is a (Gr)-martingale if θ ≤ θ0. To achieve the proof of the Lemma, it is enough to
prove that for θ ≤ θ0/2, we have Ex̃

[
exp
(
θMt (ϕ)

)]
< ∞. But we have proved that the

process (X2θ
r , 0 ≤ r ≤ t) is a (Gr)-martingale. Hence, using the Cauchy-Schwarz inequality,

we have

Ex̃

[
exp
(
θMt (ϕ)

)]
≤ (Ex̃[X2θ

t ])1/2
(

Ex̃

[
exp
(
2θ2At (ϕ)

)])1/2

≤

(
Ex̃

[
exp

(
θ2

2

∫ τ1

0
1(0,t](ζs) ds

)])1/2

≤ e1/2,

thanks to Lemma 8, which achieves the proof of the Lemma.

Proof of Theorem 7 For t > 0 and ε > 0, let us consider the continuous function equal
to 1 on [ε, t] and 0 on (−∞, 0]∪ [t + ε,+∞) and which is linear on [0, ε] and on [t, t + ε],
and denote by gε an approximation of this function which is of class C1. We denote by ϕ a
bounded function defined on W which belongs to the domain of the generator L. We then
apply Itô’s formula to the function

Fε(w) =

∫ ζ(w)

0
gε(r)ϕ(w≤r) dr

between times 0 and τ1. We get

0 =

∫ τ1

0
gε(ζr)ϕ(Wr) dζr +

1

2

∫ τ1

0
g ′ε(ζr)ϕ(Wr) dr +

1

2

∫ τ1

0
gε(ζr)Lϕ(Wr) dr.
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We will now make ε decrease to 0. Using the well-known result of approximation of the
local time, we have

lim
ε↓0

∫ τ1

0
g ′ε(ζr)ϕ(Wr) dr = lim

ε↓0

1

ε

∫ τ1

0
1[0,ε](ζr)ϕ(Wr) dr −

1

ε

∫ τ1

0
1[t,t+ε](ζr)ϕ(Wr) dr

=

∫ τ1

0
dL0

s (ζ)ϕ(Ws)−

∫ τ1

0
dLt

s(ζ)ϕ(Ws) = 〈H0, ϕ〉 − 〈Ht , ϕ〉.

Hence, when ε ↓ 0 we obtain

0 =

∫ τ1

0
1(0,t](ζr)ϕ(Wr) dζr +

1

2
〈Ht , ϕ〉 −

1

2
〈H0, ϕ〉 +

1

2

∫ τ1

0
1[0,t](ζr)Lϕ(Wr) dr.

Moreover, using the occupation times formula, we get that for every bounded continuous
function ψ, ∫ t

0
〈Hs, ψ〉 ds =

∫ τ1

0
1[0,t](ζr)ψ(Wr) dr.

We also obtain that

〈Ht , ϕ〉 − 〈H0, ϕ〉 −

∫ t

0
〈Hs, Lϕ〉 ds = Mt (ϕ)

where

Mt (ϕ) = 2

∫ τ1

0
1(0,t](ζr)ϕ(Wr) dζr.

But using Lemma 10, we know that the process
(

Mt (ϕ)
)

is a (Gt )-martingale with quadratic
variation 4

∫ τ1

0 1(0,t](ζr)ϕ(Wr)2 dr. This achieves the proof of Theorem 7.

6 Modified Brownian Snake

First of all, let us introduce some notations. Let us fix x0 ∈ Rd, c : Rd → R a continuous
function which is bounded above and below by two positive constants, and b : W → R a
bounded measurable function. For w ∈W, we set

φ(w, s) =

∫ s

0

dr

c
(
w(r)

) , ϕ(w, s) =

∫ s

0
c
(
w(r)

)
dr.

For every w ∈W, the function φ(w, ·) is a strictly increasing continuous function(in fact of
class C1), which is then one to one from R+ into R+. For r ≥ 0, let us introduce φ−1(w, r) =
inf{s ≥ 0, φ(w, s) = r} and ϕ−1(w, r) = inf{s ≥ 0, ϕ(w, s) = r}. For w1 ∈ W, we write
w2 = w1 ◦ φ−1(w1, ·) for the path defined by w2(r) = w1

(
φ−1(w1, r)

)
. Notice that it is a

one to one transformation, as it is described below:

Lemma 11 The two following assertions are equivalent:

(i) w2 = w1 ◦ φ−1(w1, ·) and ζ2 = φ(w1, ζ1);
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(ii) w1 = w2 ◦ ϕ−1(w2, ·) and ζ1 = ϕ(w2, ζ2).

Proposition 12 Let w ∈ Wx0 . There exists a unique probability measure Pb,c
w on C(R+,W)

such that, under Pb,c
w , the canonical process (ζs,Ws) is the only solution of the following martin-

gale problem, denoted by PM(b, c): for every function g : W→ R, let the function F : W→ R
be defined by

F(w) =

∫ ζ

0
g(w≤r) dr;

if

h(w) =
g
(
w ◦ φ−1(w, ·)

)
c(ŵ)

is a bounded function which belongs to the domain of L and satisfies h(x̃0) = 0, and if Lh is
also a bounded continuous function, then

M(F)s = F(Ws)− F(W0)−
1

2

∫ s

0
Lh
(
Wr ◦ ϕ

−1(Wr, ·)
)

dr

− 2

∫ s

0

g(Wr)b(Wr)

c(Ŵr)
dr

is a (Fs)-martingale with quadratic variation

〈M(F)〉s =

∫ s

0

g2(Wr)

c2(Ŵr)
dr.

Moreover, under Pb,c
w , the lifetime process (ζs) is a diffusion which solves

dζs −
1

2
dL0

s (ζ) =
1

c(Ŵs)
dγs + θ(Ws) ds,

where (γs) is a linear Brownian motion, and the function θ is defined by

θ(w) =
1

2c(ŵ)
A

(
1

c

)
(ŵ)− 2b(w).

Proof There will be two steps in this proof. In the first step, we prove the result for b =
0. To this aim, we follow an idea due to Watanabe [10]: we make a change of time for
each path Ws. This modification of speed is, in terms of a particle system, a modification
of the branching rate of the system. In the equation solved by the lifetime process, the
consequence of this modification is the appearance of the coefficient 1/c(Ŵs). In a second
step, we introduce a killing term. For that, we use Girsanov Theorem, which adds a drift
θ(Ŵs) for the lifetime process.

First Step We suppose that b = 0. To prove the existence of solutions of the martingale
problem PM(b, c), we will give an explicit construction using the standard Brownian snake.
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Let us consider under Pw a Brownian snake (ζ∗s ,W
∗
s ) with spatial motion a Markov process

of generator 1
c A. The reason for the coefficient 1/c will appear later. We then define

ζs = φ(W ∗
s , ζ

∗
s ), Ws =W ∗

s ◦ φ
−1(W ∗

s , ·).

Notice that thanks to Lemma 11 this is equivalent to

ζ∗s = ϕ(Ws, ζs), W ∗
s =Ws ◦ ϕ

−1(Ws, ·).

Now, using the change of variable r = φ(W ∗
s , u) in the definition of F, we get

F(Ws) =

∫ ζs

0
g(W≤r

s ) dr = F∗(W ∗
s )

where

F∗(w) =

∫ ζ

0
h(w≤r) dr.

Applying Itô’s formula given by Theorem 2 for the standard Brownian snake (W ∗
s ), we

obtain

F(W ∗
s ) = F(W ∗

0 ) +
1

2

∫ s

0
Lh(W ∗

r ) dr +

∫ s

0
h(W ∗

r ) dζ∗r .

This implies

F(Ws) = F(W0) +
1

2

∫ s

0
Lh
(
Wr ◦ ϕ

−1(Wr, ·)
)

dr +

∫ s

0

g(Wr)

c(Ŵr)
dζ∗r(15)

Hence the process (ζs,Ws) solves the martingale problem PM(0, c) given by Proposition 12.
Conversely, if the process (ζs,Ws) solves the martingale problem PM(0, c) then the pro-

cess (ζ∗s ,W
∗
s ) defined by the one to one transform

ζ∗s = ϕ(Ws, ζs), W ∗
s =Ws ◦ ϕ

−1(Ws, ·)

solves the martingale problem for the standard Brownian snake given in Theorem 3. As it
is well posed, this implies that the martingale problem PM(0, c) is also well posed.

Second Step Let us denote by Pc
w the law of the process (ζs,Ws) starting from w we have

built in the previous step. Let us introduce one more time the semi-martingale decom-
position of the reflecting Brownian snake (ζ∗s ): ζ∗s = βs + 1

2 L0
s (ζ∗) where (βr) is a (Fs)-

linear Brownian motion under Pc
w, and L0

s (ζ∗) is the local time at level 0 of the reflect-
ing Brownian motion (ζ∗s ). Notice that we have supposed g(x̃0) = 0. Hence we get that
{ζr = 0} = {ζ∗r = 0} which implies that

∫ s

0

g(Wr)

c(Ŵr)
dζ∗r =

∫ s

0

g(Wr)

c(Ŵr)
dβr.(16)
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Let us introduce the (Fs)-martingale Ls = −2
∫ s

0 b(Wr) dβr, s ≥ 0. Its quadratic variation

is given by 〈L〉s = 4
∫ s

0 b2(Wr) dr. Hence we can (see e.g. [9, appendice (6.1) p. 521]) define
a probability measure Pb,c

w on C(R+,W) locally equivalent to Pc
w, by setting, for every s > 0,

dPb,c
w

dPc
w

∣∣∣
Fs

= E(L)s = exp−2

(∫ s

0
b(Wr) dβr +

∫ s

0
b2(Wr) dr

)
.

Using Girsanov Theorem, we then know that the process defined by

γs = βs − 〈L, β〉s = βs + 2

∫ s

0
b(Wr) dr

is under Pb,c
w a (Fs)-linear Brownian motion. Hence if we write dγs − 2b(Ws) ds for dβs in

formula (16), we get

F(Ws) = F(W0) +
1

2

∫ s

0
Lh
(
Wr ◦ ϕ

−1(Wr, ·)
)

dr

− 2

∫ s

0

g(Wr)b(Wr)

c(Ŵr)
dr +

∫ s

0
h
(
Wr ◦ ϕ

−1(Wr, ·)
)

dr.

This implies that Pb,c
w is solution of the martingale problem PM(b, c).

Conversely, using again the same Girsanov transform, but with the function−b instead
of b, we can build from any solution of the martingale problem Pb,c a solution of the mar-
tingale problem PM(0, c). The uniqueness of solutions of this problem immediately prove
that the problem Pb,c is well posed.

Proposition 13 The probability measure Pb,c
w is absolutely continuous with respect to the

probability measure Pc
w, on Fτ1 (a case we will denote by (AC)) if at least one of these conditions

is true:

1.
(
E(L)s∧τ1 ; s ≥ 0

)
is uniformly integrable;

2. Ec
w

[
exp
(

2
∫ τ1

0 b2(Wr) dr
)]
< +∞;

3. ∃T > 0, ∀w ∈W, b(w) ≤ π
8T 1{ζ(w)≤T};

4.
(

exp−2
(∫ τ1∧s

0 b(Wr) dβr

)
; s ≥ 0

)
is uniformly integrable;

5. ∀w ∈W, b(w) = b0 with b0 ≥ 0.

Proof It is well known that the first property is equivalent to absolute continuity (AC). The
second point is a version of Novikov’s criterion. The third point is an example of function
b such that Novikov’s criterion can be used. The fourth point is a version of Kazamaki’s
criterion. The last point is an example of function b such that 1 holds. Indeed, for such a
function b,

E(L)s∧τ1 = exp
(
−2b0ζ

∗
s∧τ1

+ b0L0
s∧τ1

(ζ∗)− 2b0(s ∧ τ1)
)
≤ exp(b0).
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7 Construction of a
(
A, c(x)z2, b

)
Super-Process

We have already explained how to give an explicit construction of a (A, z2)-super-process
using the Brownian snake. In this section, we will see that we can also construct a more
general class of super-processes—that will be denoted by

(
A, c(x)z2, b

)
super-processes—

using the modified Brownian snake. The rigorous definition of these processes has been
given in introduction. To construct it from the modified Brownian snake, we proceed as
we did for super-Brownian motion from the standard Brownian snake. Let us reuse the
notations introduced in the previous section. Under the probability measure Pc

w, we have

ζs = ζ0 +

∫ s

0

1

c(Ŵr)
dζ∗r +

1

2

∫ s

0

1

c(Ŵr)
A

(
1

c

)
(Ŵr) dr.(17)

This result is an immediate consequence of the definition of ζr, applying Itô’s formula (15).
In particular, under the probability measure Pc

w, the lifetime process (ζs) is a semi-martin-
gale. Hence it is also a semi-martingale under the probability measure Pb,c

w , thanks to Gir-
sanov Theorem. This proves that we can define a family of local times Lt

s(ζ). Moreover, we
have

Lt
s(ζ) = lim

ε↓0

1

ε

∫ s

0
1{ζr∈(t,t+ε)} d〈ζ〉r.

Notice that under Pc
w, or under Pb,c

w , the quadratic variation is given by d〈ζ〉r = dr/c2(Ŵr).
In fact, following Watanabe [10], it is more relevant to use a slightly different increasing
process. Let us introduce

l(s, t) = lim
ε↓0

1

ε

∫ s

0
1
(
ϕ(W ∗

r , t) ≤ ϕ(W ∗
r , ζr) ≤ ϕ(W ∗

r , t) + ε
)

dr.

This process is closely connected with the process
(
Lt

s(ζ), s ≥ 0, t ≥ 0
)
: Under Pc

w or Pb,c
w ,

we have

l(s, t) =

∫ s

0
d(r)L

t
r(ζ)c(Ŵr) dr.

Let us introduce the first time the process (l(s, 0), s ≥ 0) hits 1:

τ1 = inf{s; l(s, 0) > 1}

We define under Pb,c
w the process (Zt , t ≥ 0) with values in MF

(
C(R+,Rd)

)
by: For every

bounded continuous function ψ : C(R+,Rd)→ R+,

〈Zt , ψ〉 =

∫ τ1

0
d(s)l(s, t)ψ(Ws)

=

∫ τ1

0
dLt

s(ζ)c(Ŵs)ψ(Ws).

(18)

Theorem 14 Let x ∈ Rd, c a continuous real function on Rd bounded above and below by
positive constants, and b a bounded measurable function such that b(x̃) = 0 and the condition
(AC) given in Proposition 13 is satisfied.

Then, under the probability measure Pb,c
x̃ , the process (Zt , t ≥ 0) with values in

MF

(
C(R+,Rd)

)
defined by (18) is a

(
A, c(x)z2, b

)
-historical super-process starting from X0 =

δx̃.
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Proof Let us introduce a bounded continuous function ψ : C(R+,Rd) → R+. First,
we work under Pc

x̃. We apply Itô’s formula (15) with the function F(w) =∫ ζ
0 gε(r)c

(
w(r)

)
ψ(w≤r) dr for s = τ1 and g the function gε which is the approximation

of the function 1(0,t] already used for the proof of Theorem 7. We get

0 =

∫ τ1

0
gε(ζr)ψ(Wr) dζ∗r +

1

2

∫ τ1

0
Lh
(
Wr ◦ ϕ

−1(Wr, ·)
)

dr(19)

where
h(w) = gε

(
φ(w, ζ)

)
ψ
(
w ◦ φ−1(w, ·)

)
.

It is easy to see that

Lh(w) = g ′ε
(
φ(w, ζ)

) 1

c(w)
ψ
(

w ◦ φ−1(w, ·)
)

+ gε
(
φ(w, ζ)

) 1

c(w)
Lψ
(

w ◦ φ−1(w, ·)
)
.

Let us recall that the derivate of the function gε is an approximation of the function
1
ε
(1(0,ε) − 1(t,t+ε)). Using that d〈ζ〉r = dr/c2(Ŵr), the occupation time formula applied

to the semi-martingale (ζs) gives∫ τ1

0

1

ε
1(0,ε)(ζr)

ψ(Wr)

c(Ŵr)
dr =

1

ε

∫ ε

0
ds

∫ τ1

0
d(r)L

s
r(ζ)c(Ŵr)ψ(Wr)

ε↓0
−→

∫ τ1

0
d(r)L

0
r (ζ)c(Ŵr)ψ(Wr) = 〈Z0, ϕ〉.

Similar arguments prove that∫ τ1

0

1

ε
1(t,t+ε)(ζr)

ψ(Wr)

c(Ŵr)
dr

ε↓0
−→ 〈Zt , ψ〉.

Using again the occupation time formula, we also get

∫ t

0
ds〈Zs, Lψ〉 =

∫ τ1

0
1(0,t)(ζr)

Lψ(Ŵr)

c(Ŵr)
dr.(20)

Hence, letting ε decrease to 0 in (19), we obtain

〈Zt , ψ〉 − 〈Z0, ψ〉 −

∫ t

0
ds〈Zs, Lψ〉 = 2

∫ τ1

0
1(0,t)(ζr)ψ(Wr) dζ∗r .

Let us denote by Nt (ψ) the right hand side. We want to prove that under Pc
x̃, the process(

Nt (ψ), t ≥ 0
)

is a (Gt )-martingale, with quadratic variation

〈N(ψ)〉t = 4

∫ τ1

0
1(0,t)(ζr)ψ

2(Wr) dr.

Notice that using equation (17), we can write dζ∗r = c(Ŵr) dζr + θ(Ŵr) dr, where θ(w) =
1
2 A( 1

c )(ŵ). The Gt -measurability of Nt (ψ) can be obtained as in the proof of Lemma 10.
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In order to follow again the proof of Lemma 10, we have to prove that the strong Markov
property is still true under Pc

x̃. This is clear, because Pc
x̃ is the law of a process obtained as

a deterministic functional of the process (ζ∗s ,W
∗
s ), which is a strong Markov process. The

next step is the analogue of Lemma 9: We only have to use that there exists two constants
α1 and α2 such that, for every x ∈ Rd, 0 < α1 ≤ 1/c(x) ≤ α2 < +∞. Using this
remark again, and mimicking Lemma 10, we end the proof that the process

(
Nt (ψ)

)
is

a martingale. Hence under Pc
x̃ we have proved that the process (Zt ) is a solution of the

martingale problem given by (1) and (2) in introduction with b = 0.
We now study the general case for b. Let us recall that the assumption of absolute conti-

nuity (AC)implies that the probability measure Pb,c
x̃ can be obtained from Pc

x̃ by

dPb,c
x̃

dPc
x̃

∣∣∣
Fτ1

= E(L)τ1 = exp

(
Lτ1 −

1

2
〈L〉τ1

)

= exp

(
−2

∫ τ1

0
b(Wr) dβr − 2

∫ τ1

0
b2(Wr) dr

)
.

But the process

Nt (b) = 2

∫ τ1

0
1(0,t)(ζr)b(Wr) dζ∗r , t ≥ 0

is a
(

Pc, (Gt )
)
-martingale. Hence the process

E
(
−N(b)

)
t
= exp

(
−Nt (b)−

1

2
〈N(b)〉t

)
, t ≥ 0

is a
(

Pc, (Gt )
)
-local martingale. As it is nonnegative, it is in fact a super-martingale. More-

over, the Lebesgue Dominated Convergence Theorem for stochastic integrals (see e.g. [9,
th. 2.12 p. 134]) implies that there exists an increasing sequence of positive reals tn which
tends to ∞ such that Ntn (b) tends to 2

∫ τ1

0 b(Wr) dβr almost surely. Hence, the sequence
E
(
−N(b)

)
tn

almost surely tends to E(L)τ1 , and we note that the expectation of this ran-

dom variable is 1. We deduce that the martingale E
(
−N(b)

)
is uniformly integrable. In

particular, if t ≥ 0, we have

E
(
−N(b)

)
t
= Ec[E(L)τ1 | Gt ].

This implies that
dPb,c

x̃

dPc
x̃

∣∣∣
Gt

= Ec[E(L)τ1 | Gt ] = E
(
−N(b)

)
t
.

But we have already proved that the process

Nt (ψ) = 〈Zt , ψ〉 − 〈Z0, ψ〉 −

∫ t

0
ds〈Zs, Lψ〉, t ≥ 0

is a
(

Pc, (Gt )
)
-martingale. Hence, using Girsanov Theorem, we get that the process

Mt (ψ) = Nt (ψ) + 〈N(ψ),N(b)〉t , t ≥ 0
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is a
(

Pb,c, (Gt )
)
-martingale. Moreover,

〈N(ψ),N(b)〉t = 4

∫ τ1

0
1(0,t](ζr)b(Wr)ψ(Wr) dr

=

∫ t

0
ds〈Zs, bcψ〉.

Finally, we have proved that the process

Mt (ψ) = 〈Zt , ψ〉 − 〈Z0, ψ〉 −

∫ t

0
ds〈Zs, Lψ〉 −

∫ t

0
ds〈Zs, bcψ〉, t ≥ 0

is a
(

Pb,c, (Gt )
)
-martingale with quadratic variation

〈M(ψ)〉 =

∫ t

0
ds〈Zs, cψ

2〉,

which achieves the proof.
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