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NECESSARY AND SUFFICIENT CONDITIONS 
FOR HYPOELLIPTICITY FOR A CLASS 

OF CONVOLUTION OPERATORS 

LUO XUEBO 

ABSTRACT. In this paper the Corwin's conjecture is proved, which says that if d 
is a function analytic near oo, then the hypoellipticity of the convolution operator Ad, 
defined by Adu = dû for every u E S'(Rn), implies that P(x)/ log* —» oo as JC —•» oo, 
where P(x) is the distance from x G Rn to the set of complex zeros of d. 

0. Introduction. The main purpose of this paper is to solve the two open questions 
announced by L. Corwin in [1] which are concerned with the hypoellipticity for certain 
left invariant differential operators on (7/)-groups and for a class of convolution opera­
tors. 

Let us recall some notions and facts related to the open questions before giving the 
description of them. 

The 2-step nilpotent Lie group G with Lie algebra g is said to be an (H)-group if for 
every nonzero element t of g2, gi being the center of g, there is (up to equivalence) a 
unique irreducible representation ixi such that for all Z G gi, ^a(Z) = 2TTil(Z)L We say 
that G is a good (7/)-group if g has a sub-algebra h which is polarizing for all / G g* with 
f(8i) Ï 0. 

Let G be an (//)-group and L be a left invariant differential operator on G such that 
Lm, the part of highest homogeneous degree, is elliptic in the generating directions on G. 
Theorem 1.1 in [1] says that if G is a good (7/)-group, then the hypoellipticity for L & 
the condition (a): 

(a) linixQ-.oo^C^o)-1 log |Ao| = 0, where P(Ao) is the distance from Ào G ^2 t 0 t n e 

nearest point t G (gifc such that 7r̂ (L*L) has non-trivial kernel. It is also shown in the 
same theorem that the implication <= holds for all Lie groups of type (//). 

The open question 2 in [1] is then the following: 
Is the hypothesis of goodness necessary in Theorem 1.1? 

Then another open question is closely related to the above one. Denote by d(t) the 
product of small eigenvalues of p~~m7T{(L*L) with large l G g\, where (p, 6) is the spher­
ical coordinate of L As pointed out in [1], d is analytic near oo, that is, d(l/t, 6) can be 
extended to a function holomorphic in a complex neighborhood of {0} x Sn~l, where 
Sn~{ C Rn is the unit sphere and n is the dimension of g%. Let Ad be the map E1 —» S1 
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HYPOELLIPTICITY OF CONVOLUTION OPERATORS 213 

such that Ad(u)A = duA for all u G E' where A denotes Fourier transform. E' is the space 

of distributions with compact supports. 

Theorem B in [1 ] states that the micro-locally hypoellipticity for the operator VL (or 

L) is equivalent to that of the operator Ad. Note that the function P(\Q) in condition (a) is 

just the distance from A0 G Rn to the closed set {A : A G C \ d(X) = 0}. Thus the author 

of [1] propounded a more general question (the open question 5 in f 1]). 

If d is a function which is analytic at oo but is not necessarily related to a differential 

operator L, is condition (a) equivalent to the hypoellipticity of Ad? A positive answer 

would, of course, give an answer to question 2 as well. 

In the present paper we will give a positive answer to the open question (5) and hence 

a negative one to the question (2). 

Our approach is as follows: 

In order to apply the Hormander's method (see [2], pp. 354-355), we concretely con­

struct a distribution space <j>' satisfying the conditions: 

(i) S' C <j>' C D' with weakly continuous embedding and the domain of Ad can be 

continuously extended from E' (or S') to <p'. 

(ii) For each m G /+, <// contains all the distributions with the forms E^° #/ exp(/z/jt) 

where aj G C such that £^° \cij\ < +oo; Zj G Cn satisfying | ImZj\ <m log | Rezy-| 

\ZJ\ > / ? f o r g i v e n / ? > 0 , y = 1,2, . . . . 

We say that the operator Aa is </>''-hypoelliptic if the implication u G <t>'Aa(u) G 

C°°(u) =» u G C°°(UJ) holds for every open set uCW1. 

By using the Hormander's argument cited above, we can easily prove that (//-hypo­

ellipticity for Ad implies condition (a). The next step is then to prove that (//-hypo­

ellipticity for Ad is equivalent to that in the original sense in [1]. To do so we have to 

make a careful study on the functions analytic near oo. As a result we obtain Proposi­

tion 1.5, which enables us to show the equivalence, and whose proof is based on several 

lemmas which seem interesting in their own right. 

1. Asymptotic analysis on functions analytic near oo. Denote by (p, 6) the spher­

ical coordinate of x G Rn and by Sn~l the unit sphere in Rn. We recall (see [1]) that the 

function/ defined for all (p, 6) with large p is analytic near oo if/( \/s,0) (where s = 1 / p) 

extends to a function holomorphic in a complex neighborhood of {0} x Sn~l. 

By the same reason stated at page 5 in [1], we shall add the conditions that / G C°°(RW) 

to the above definition in what follows. 

LEMMA 1.1. Suppose thatf is analytic near oo. Then: 
(i) There are constants k > 0 and R > 0 such that f extends to an analytic and 

bounded function on the region G^R where 

(1-1) Gkjt = {z:z = x + iye C", \y\ < k\x\, \x\ > R}. 

(ii) For every a £ /", there is a constant Ca > 0 such that 

(1-2) |97(x) | < Ca(\ + \x\yW for all x G R". 
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214 L. XUEBO 

PROOF. By the definition off we see that there are constants 6 > 0 and r > 0 such 
that/ is analytic in the region: 

V={z:ze Cn,D(z/\z\,Sn-{) < 6, \z\ > r} 

where D(z/ \z\, Sn~x) denotes the distance from z/\z\ toSn~x. 

By simple calculation it follows that D(z/\z\,Sn-{) = 2(l — |JC|/( |JC|2+|JI2)1 /2) which 

implies GKR C Vprovided0 < k < ±(l - ( 1 -<5/'4)2)1/2(l - à / 4 ) " 1 a n d P > r so / i s 
analytic on G^R as well. 

To prove the boundedness of/, we assume that/ is unbounded on GkyR. Then there is a 
sequence (z/)j^p with z7 G G*>/?, such that |z/| —• oo,/(zy) —-> ooandzy/|z/| —» z° (/—>oo) 
where z° satisfies D(z°, Sn_1) < 6/2. But on the other hand, we have fory large enough, 
/(z/) = £o° «Kzy/lzyl) |z/|"£, where all a? are analytic functions in U^, the neighborhood 
of Sn'x :U6 = {z:ze C,D(z,Sn~x) <<$}. Hence we have Lim^f(zj) = a0(z°) which 
is a contradiction to the assumption Lim.j—>oo f(zj) = oo, so/(z) is bounded on G /̂?. 

We now turn to assertion (ii). 
Denote by p(x) the distance from x G W to the boundary of G^R. It is easy to check 

that p(x) > k(l + k2)-xl2\x\ provided |JC| > R' = (jfc + (1 + k2)xl2){\ + £2)P. By using 
the Cauchy inequality for analytic functions, we obtain that if |JC| > R' then \daf{x)\ < 
Mal(p(x))~lal < Ma\((\+k2)xl2k-x)W\x\~W. Therefore we see that (1-2) holds. 

LEMMA 1.2. Suppose thatf is analytic near oo, and that <p G CQ°(RW), <p = 1 in 
some neighborhood of origin. Let (f\ — 1 — </?. Then tp\fA G S, S being the Schwartz 
Space of rapidly decreasing functions. 

PROOF. Denote by A the Laplace operator on W1. It follows from (1-2) that Apf G 
Li(ffT), if the integer/? > n/2. Hence (Apf)A G LooW, which yields that 

(1-3) ^ ! / A ( 0 - ^ i ( O k r 2 / 7 / e x p ( - / ^ ) ( - A r / ( x ) J x 

For a G /+, /? G /£, by using (1-2) and and (1-3) with P > (w + \a\ + |/3|)/2, we get 
\^adp((pifA)(0\ < Ca,p for some constant Ca3 > 0, which means that tp\fA G 5. 

LEMMA 1.3. LetQ,m,R = {z : z = x+iy G C, | j | < mlog(|;c|/P), |JC| > Rjform > 0, 

P > 0. Let a = (\ + exp(m/P)j . Iff(z) is analytic and bounded on Q.2m,R> tnen 

(1-4) Sup [f(z)\ <max{supi/(z)|, (sup [f(z)\)°(sup lAz)|)'~"}. 
Qm,R &0,R &0,R Qlm,R 

PROOF. Let Q+>/? = Qmi/e f l i fe j ) : (*,y) eR2,x>0,y> 0}, that is, 

am,R = {z:z = x+iye C,0 < y < m\og(x/R),x > R}. 

Set F£(z) = log [/Xz) • exp(-ez)| = log \f(z)\ - ex for e > 0. 
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It is easy to see that F£(x + iy) is subharmonic in Q.2m,R (see [3]). Note that 
lim^+oo F£(x + iy) = —oo. By the maximum principle for subharmonic functions (see 
Section 12 of [4]) we see that the function M£(p) — Supx>R F£(x, p\og(x / R)^j can not 
have a local maximum in (0,2m). Hence it follows that there is a constant p£ G [0,2m] 
such that M£(p) is decreasing on [0, p£]9 while increasing on [p£, 2m], based on which we 
can prove that 

(1-5) M£(m) < max{Mf(0), aM£(0) + (1 - a)M£(2rn)}. 

In fact, it is obvious that (1-5) holds as m < p£ < 2m, since M£(m) < M£(0). We now 

consider the case that 0 < p£ < m. Let (f)(x,y) — y[\og(x/R)^j and 

= M£(2m)Uxp(-tf(x,y)/R) - exp(-p,//?)Vexp(-2m//?) - exp(-p,//?))_1 

+ M£(p£)Uxp(-2m/R) - exp(-(p(x,y)/R)](exp(-2m/R) - exp(-p,//?))~1 

By calculation, noting that M£(p) is increasing on [p£, 2m], we see that At/v < 0 provided 
p£ < (f(x,y) < 2m and x > R. Therefore F£ — ip£ is subharmonic in the region U — 
{(x,y) G R2 : p£ < <pQc,y) < 2m). 

Note that ^£(x,y) = M£(p£) and F£(x,y) < M£(p£) if y = p£\og(x/R) and that 
il>£(x,y) = M£(2m) and F£(x,y) < M£(2m) if y = 2m\og(x/R). We get that F, -</>,< 0 
on the boundary of U. So, by the classical Phragmen-Lindelof principle we see that 
F£ — ip£ < 0 in U. Thus we obtain that M£(m) < a£M£(p£) + (1 — a£)M£(2m) where 
a£ ~ (exp(—2m JR) — exp(—m//?)) (exp(—2m/R) — exp(—pe (/?)). Since 0 < p£ < m, 
ot£ > (l + exp(m//?)) exp(—m/R)~l = a. We then have M£(m) < aM£(p£) + (1 — 
a£)M£(2m) < aM£(p£) + (1 - a)M£(2m) < aM£(0) + (1 - a)M£(2m). Letting e —> 0 
in the above inequalities we obtain (1-5). From the definition of F£ and (1-5), it follows 
that 

(1-40 S u p ^ l ^ m a x I S u p ^ U S u p l / ^ i r r S u p ^ z ) ! ) 1 " " } . 

In the same way, we can establish estimations with the same form as (1-47) for the 
other three subregions of £lm,R: Çlm,RC\{(x,y) £ ^2 ,* > 0,y < 0}; ÇlmJi f){(x,y) G 
R2,x < 0,y > 0}; and QmM C\{(x,y) G R2, x < 0, y < 0}. Putting everything together, 
we have obtained (1-4). 

LEMMA 1.4. Suppose thatf(z) is analytic on G2m,R andf satisfies [f(z) | < C\ ( 14-1x\ )h 

forz = x + iy E Q.2m,R and \f(z)\ < C0(l + \x\Y for x G R, with \x\ > R, where I < h. 

Then there is a constant C > 0 such that 

(1-6) \f(z)\ < C(l + {x)f+h)'2 forz = x + iy G QmM. 

PROOF. Let g(z) = (1 + zYlzxp{iz(h - £)/(2mj)f(z) for z G ^.mjc lt i s e a s ^ 
to see that g(z) is bounded on dQ% R. Note that Q^mR C {(x,y) G R*,0 < y < 
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2m(x — R)/R,x > 0} which is a sector in R2. Hence by Phragmen-Lindelôf Princi­
ple (see [41, in particular, the Remarks (ii), p. 96) we have \g(z)\ < C on QJm,/?* f° r 

another constant C. Therefore we get ]f(z)\ < C'(l + x)1 exp((ft - I)/{2m)) on QJm,/?' 
from which we obtain \f{z)\ < C(l +x)

ih+t)/2 on £l+
mR since 0 < y < m \og(x/R). 

Analogously we can establish the estimate (1-6) for other three subdomains of QOT,/? 
stated in the proof of Lemma 1.3. Thus we have shown that (1-6) holds on Qw,/?. 

PROPOSITION 1.5. Let £lm,R = {z : z = x + iy G Cn, \y\ < mlog(\x\/R), \x\ > R}. 
Suppose thatf(z) is analytic on Q4mrlR and satisfies the following conditions: 

(1-7) \f(z)\<cf[(\ + \x,\)hionSl4mV-nX 

(1-8) \f(z)\ < cf[(\ + \xj\)1' on Q0,R where £,• < hr 
l 

Then 

(1-9) \f(z)\ <C'f[(\ + l^l)""'^1-""^ on nm,R 
i 

where a = (\ + exp(2m/r)J . 

PROOF. Let Sn~l be the unit sphere in Rn. It follows from the compactness of Sn'] 

that there are a positive integer N(n) and points Oj G Sn~\ 1 <j<N, such that 

Sn~l = U 5 r 1 where Sf 1 = {# : fl G S"-1, \0 - 0j\ < \/{2^n)}. 
l 

Let Q < ^ = {z:z = x + iye Om,*,*/M G SJ']}, \<j<N. 
We see that if the estimate (1-9) holds on Q^R for each j , then it holds on Çlmj as 

well. Moreover, for every j , there is a real orthogonal transformation Ay such that: 

Af r - • r , A7-0; = r where 0* = (1 ,1 , . . . , \)/y/n G Sn_1. 

We then define 7} as follows: 

7}: C" -+ C , 7}(z) = AjX + /A^ for all z = x + i> G Cn. 

It is clear that Qm>/? is invariant under transformation 7}, 1 < j < N. Hence, from the 
C-R conditions for analytic functions, it follows that function Fj(z) = f{Tyxz) is analytic 
on Q4m KR and satisfies (1-7), (1-8). Let 

(1-10) a*mJi= {z:z = x + iyenm*,\x/\x\-0*\ < l / (2y^)} . 

It is easy to see that Q^ R is the image of £l*m R under the transformation 7}. Therefore we 
see that if Fj(z) satisfies (1-9) on Qm>/? then/(z) satisfies it on Qm>/? and vice versa. 
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Taking all things together, we have shown that the only thing needed to do is to es­

tablish (1-9) on Q*mJi for/ . 

Let 

(1-11) ÛmtR = {z:z = x + iyeCn,\yh\ <\og(\xh\/R),\xh\ > / ? , 1 < k < n} 

in which* = (JCI,JC2 JC„) G Rn, y = (yu...,yn) G Rn. 

From definition it follows that 

(1-12) ^Kn,2R^i C ̂ W C ^2m,/? C ^2m>,/?-

LetFi(z) = ( l+z) _ / V(z,J t2 , ••.,**) in which ( JC2 ,* 3 , . . . ,*„) G Rw_1 is fixed and \xh\ > 

R,2<h<n. 

Note that (Z,JC2 , . . . ,JCW) G Q4m^R if z = x + iy, \y\ < 4m\og(\x\/R) and |x| > / ? . We 

then get from (1-7), (1-8) that 

|F,(z)|<cn(l + | ^ 
2 

where z = JC + iy G C, |^| < 4mlog(|jt|/fl), |JC| > R and that |Fi(x)| < CY[\{\ + \x\)*\ 

xeR. 

Applying Lemma 1.3 to the function F\, we then obtain 

sup miz^^cfiii^xjir^1-^. 
|y|<2mlog(W//?) 2 

\x\>R 

Hence, we have 

(1-13) \f(zux29... , jrn)| < C(l + |*, |)*' fl(\ + | x 7 | ) ^ + ( 1 - ^ , 
2 

where zi = x\ + i>i G C, |yi | < 2mlog(|jci | //?), |JC7-| >R,l<j<n. 

By applying Lemma 1.4 to the function (1 + z\)h]F\(z), noting (1-8) and (1-13), we 

get 

2 

where | j i | < wlog(|jti|//?), \x\\ >R,\<j<n. 

Note tha ta = ( l+exp(2m//?))~ and t\ < h\\ hence (h\ + £\)/2 < al\ +(1 —a)h\. 

We then obtain 

(1-13') \f{z,x2,...,xn)\ <Cxf{(\ + \x,\r^-a)h'. 
1 

where zi = x\ +iyi, \yj\ <mlog(\x\\/R). 

We now consider the function F2(z) — (1 + Z2)~hlf{z\,z,x^,... ,*„), where z\ G C, 

H <mlog(|*y|//0,|*;| >*, . /= 1,3,...,/!. 
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By using the same argument as above from (1-8) and (1-13') we get 

\f(zuZ2,x3,... ,xn)\ < C2f\{\ + \Xj\)
a2W-a2)hi 

1 

where \y}\ < mlog(|jçy|/R)J = 1,2, |JC*| > /?, 1 < k < n. 
Continuing to do so in this way, we then finally obtain 

^ l , z 2 , • . . , z n ) | < c , ^ ( l + | x 7 | r^ + ( , -^^ z = (Zl,Z2 ^ e ^ 
1 

which implies that (1-9) holds on Q^R since Ù,m2R^i C Ùm,R and/ is analytic on Q*, /?. 
Therefore we have proved the proposition. 

PROPOSITION 1.6. Suppose that d G C°°(Rn) which extends to an analytic and 
bounded function on the region G^R where 

(1-14) GkM = {z:z = x + iyeC, \y\ < k\x\, \x\ > R}. 

Let <p\ be the function given in Lemma 1.2, f — (f,dv)A where V denotes the inverse 
Fourier transform. Then 

(1) f G S(Rn) andf can be extended to an analytic function on G^R. 
(2) For every integer m > 0 and N > 0, there is a constant Cm^ > 0 such that 

(1-15) ]f{z)\<cmJ4(\ + \x\rN forzeGktRnnmtR. 

PROOF. It follows from Lemma 1.2 that/ G S. Note that/ = d — (fdy)A where 
if — \ — f\ G Cg°. We then get from well-known P-W-S theorem that (fdv)A is an 
entire function on Cn. Hence/ is analytic on GkR. 

Take Rf > 0 large enough such that &2(m+\)Jn,R' ^ ^KR- F r o m the P-W-S theorem 
and the boundedness of J, it follows that there are constants h(m) and Cm > 0 such that 

(l-"6) [f(z)\ < Cmf[(\ + M)* forz e 0 2 ( m + l ) A R , . 

For given TV and h, we take £ such that ani + (1 — an)/z < — Af where a = 

(l+exp(2(m + \)/Rf)) . Because/ G S, there is a constant C'm N >0 such that 

d-17) [f(x)\<C^Nf\(l+\xj\)f forxeQ0,R>-
1 

Applying Proposition 1.6 and noting (1-6), (1-7), we have 

(1-18) \f(x)\ < C ^ ( l + \x\yN for z G nm+UR, 

Note that if |*| > R" = (Rf)m+lR~m thenmlog(|jc|//?) < (m+ \)\og(\x\/Rf). We then 
see that [f(z)\ < Cf

mN(l + \x\)~N if z G Qm,* and |JC| > /?", which implies that (1-15) 
holds with some constant Cm^ > Cf

mn. 
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2. Distribution space <f>' and (//-hypoellipticity. Suppose that d is analytic near 
oo, which is analytic and bounded on GkR (see Lemma 1.1). 

Let 

(2-1) Tm = GKR H QmM for fixed R > 0, m = 1,2,... . 

Let *F be the Fréchet space defined as follows: 
A function t/> G VF, if ty G 5 and T/; can be extended to a function analytic and bounded 

on Tm for every positive integer m. The topology of *F is given by the sequence of norms: 

(2-2) |i/>U= Sup { ( ^ a ^ W | } + Sup|^(z)|, m = l , 2 , . . . . 
|»+/?|<m Tw 

Define the space 0 as follows: O = {^ : ^ G 5, <£' G ¥ } in which the topology is 
given by ||^||m = \<PA\m where | \m is defined as in (2-2), m — 1,2, 

LEMMA 2.1. For ^v^ry compact set K C !RLn, C^{k) C O arcd /7ze embedding is 
continuous. 

PROOF. Because Fourier transform is a continuous map from CQ° to S, it follows that 
for every l G N, there are constants p\ (£) G AT and Cj (£) > 0 such that 

(2-3) Sup \xad0ip(x)\ <Ci(£) Sup \da<p(x)\ for all </? G Cg°(fc). 
\a+d\<l \a\<px 

xeW1 xeR" 

Take K c{x:xeRn, \x\ < b} and p2 G TV such that/?2 > £^/2; we then have 

Sup |^ A (z )HSup | (^ + - - - + ^ 2 / e-'^-ArrtOdt 

<C, Sup |3VO|Sup{(l + Wr^(W/i?)"}. 
r |JC|>/? 

1 ^ 2 

Hence, we have 

(2-4) Sup|(/(z)| < C2(£) Sup |a°VC*)|. 

l«l<P2 

From (2-3) and (2-4), we get 

|M| f < C(£) Sup |3°V(x)| for all y? G C§°(£), 
xERn 

\a\<p(0 

which shows that the lemma is true. 
It is not hard to see that 

(2-5) C0°°C(DC5 
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and each imbedding of them is continuous. Hence it follows that 

(2-6) 5 ' C O ' C D', 

with weakly continuous imbeddings, where O ' is the dual space of O. 

We define the Fourier transform on O': O' —-> VF/ as follows: for u G O', 

(2-7) (wA, -0) = (w, 0A) for all -0 G VF. 

By definition, it is clear that the Fourier transform is topologically isomorphic from 

O to *F, and hence from O' to XYI. 

We say that a function / defined on Rn is a multiplicator of space *F, if for every 

^ G H*,/^ G *F and the map Mf:ip—+fipis continuous on VF. 

Now, l e t / be a multiplicator of x¥. We can then define the operator Af. O' —•> O' as 

follows: 

(2-8) Af(u)A =f -uA for every u G O'. 

It is obvious that Af is continuous from O to O and from O' to O'. 

We say that the operator Af is <&' -hypo elliptic if for every open set UJ C Rn, the fol­

lowing implication holds: 

(2-9) M G O', Af(u) G C°°(u) => w G C°°(u;) 

where w G C°°(u;), w being an element of O', means that for every a G /+, there is a 

function wa G C(UJ) such that (M, (—3)a(/?) — (ua, ip) f ° r a ^ V9 £ ^o°(CJ)- Let ̂  t>e the 

space of distributions with compact support. 

We say Af is E'-hypoelliptic if for every open set u C W1, the following implication 

holds: 

(2-10) u G £' , Af(u) G C°°(CJ) =» w G C°°(^). 

The definition of S'-hypoellipticity for Af is analogous. 

It is easy to see that if d G C°°(IR") and d extends to a bounded analytic function on 

GkR, then d is a multiplicator of 4" , so the operator Ad is well defined. 

PROPOSITION 2.2. Suppose that d is analytic near co and is hounded and analytic 

on G^R. Then Ad is E' -hypo elliptic if and only if it is & -hypo elliptic. 

PROOF. If Ad is O'-hypoelliptic, then from (2-6) and the fact that E' C 5', it follows 

that Ad is E'-hypoelliptic. 

We now assume that Ad is Zs'-hypoelliptic. Let u G O' which satisfies the condition 

Ad{u) G C°°(u;); we want to prove that u G C°°(uS). Without loss of generality, we assume 

that UJ is a bounded open set. 

Let if and ̂ i be the functions given in Lemma 1.1. Let/o = (pdw)A
yf\ = (^\dy)A. 

Take /Î such that /z G CQ° and /i = 1 in UJ. We then have 

(2-11) Ad{hu) = Ad(u) — Af0(u\) — Af(u\), where wi = (\ — h)u. 
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It is clear that Af0(u\) = (<j)d ) * u\. By Lemma 1.1 it follows that tpdA G 
C°°(Rn \ {0}) H E'(Rn). From Theorem 7.1 of [5] we know that the operator Afo is pseu­
dolocal. Hence Af0(u\) G C°°(UJ) because u\ — (1 — h)u = 0 in u. 

We next prove A/, (wi) G C°°{UJ). 

We take a constant a such that CJ C UJQ — {x : x G IRn, |JC| < a}\ let & > a. Denote by 
Fa{x) the function (—ix)af\(x) for a G /JJ. We then have for each v G Cg°(^) 

(2-12) ( A ^ M - d y v ) = (/i<[(-a)av]A) = « , F a v A ) . 

Since uA G VF/, by definition it follows that there are constants l G TV and C > 0, 
which are independent of a and v, such that 

(2-13) \(uA,Fav
A)\<C\Fav

A\h 

where | 11 is defined in (2-2). 
Note that Fa(*) = (-ix)a(Lp\ dy)A. It follows from Proposition 1.6 that Fa G S. Hence 

there is Ca > 0 such that 

(2-14) | f > A | £ < C a | v A | £ = Ca||v||f. 

By Lemma 2.1, it follows that there are tf G N and C > 0, which are independent upon 
a and v, such that 

(2-15) ||v||, < C Sup,|a/3v(x)|. 

\0\<t 

Therefore, putting (2-12)—(2-15) together, we get 

\(Afl(ui), ( -3°> | < C'a Sup |3^V(JC)|, for all v G C£{u)b) 
R" 

\0\<t' 

which means that for each a G /+ 

(2-16) da[Af](ul)] G [C^ujr)}' with I' independent of a. 

Take/? G N such that 2p > 2n+l + lf. Let Ep be a fundamental solution of the operator 
Ap. It is a well-known result that Ep G Cf(IRn). 

Let Ha = 3a(A/l (Ml)). Then Ha G [ C ^ ) ] ' because of (2-16). 
Take ho such that ho G Cg° and /zo = 1 in some neighborhood of the origin. 
Let g — Ap(hoEp) —6,6 being the Dirac ^-function. It is not hard to see that g G CQ°. 

Moreover, we have 

Ha=Ha*6 = Ha* (Ap(h0Ep))~Ha*g, 

that is, 

(2-17) Ha = (ApHa) * (hoEp) -Ha*g. 
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By (2-16) it follows that Ha and ApHa belong to {C^{ujr))'. From (2-17) and the fact 
Ep G Cr(Rn) we see that Ha G C{uja) C C(UJ) provided the support of /z0 is taken 
to be small enough. Hence we have da(Af](u{)) G C{UJ) for all a G In

+ which means 
Ay, G C°°(cj). 

Let us return to (2-11). Note that Ad(u) G C°°(UJ) by our assumption. We have then 
shown that Ad(hu) G C°°(uj). Since /zw G Ef, it follows from the definition of Z^-hypo-
ellipticity that hu G C°°(a;), and hence w G C°°(a;). 

Putting all things together, we have proved that the E'-hypoellipticity for Ad implies 
the O'-hypoellipticity for Ad, which completes the proof of the proposition. 

REMARK. It follows from Proposition 2.2 that the O'-hypoellipticity for Ad does not 
depend upon the constants k and R appearing in the definition of the space O, since the 
E'-hypoellipticity does not depend upon them. 

PROPOSITION 2.3. Suppose that d is analytic near oo and that the operator Ad is 
<&' -hypo elliptic. Then 

(2-18) | \mz\l log|z| —> oo ifz —* oo on the surface d(z) = 0. 

PROOF. Suppose that there is a positive integer mç, and a sequence of points {z/}^°, 
with d(zj) = 0, such that 

(2-19) k/l—oo, (j^oo) 

and 

(2-20) \yj\ < (mo/2)log|z/|, where Rez7 = Xj, Imzj = yj. 

By (2-19) and (2-20), we see that there is a subsequence of {z/}f\ denoted by {z.'}f\ 
such that Zj/\zfj\ —> z*, (/ —+ °°)> where |z*| = 1 and | Rez*| ^ 0. So there is a constant 
£' > 0 such that \y'j\ < k'\xj\, from (2-20) and which we see that \y\ \ < m0 log \xj\ /R for 
j large enough. 

Therefore we can assume that {ZJ}™ C Tmo = Gk,R D Qm0)/? where G ^ is given by 
Lemma 1.1. 

Let U = [{aj)^,aj GC,EÎ°|fl/| < oo}. Denote by a the element {^}f of £j. Let 

For any given a G £ i, let u(t) = E ^ a/ exp(—/JCZ/) which is defined as an element of 
O' in the following fashion: 

oo oo 

(2-20') (M, v?) = £ aj(exp(-ixzj), v(x)) = J2 <*j<fA(Zj) f o r aI1 ^ € <*>• 
l l 

From the fact that {z/jf3 C To, we see that 

(2-21) | (« ,^) |< W l ^ l k , for ^ GO 
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which means that « G O ' . 

Moreover we have Ad(u) = 0. In fact, we have that for <p G O, 

oo 

(Ad(u),<p) = (du\<pA) = {u,(d^Y) = Y,aAziMzj) = °-
l 

Therefore we get from O'-hypoellipticity for Ad that u G C°°(Rn). Thus we obtain a map 

T: tx —> C°°(ffT) as follows: for each a e E\, T(a) = T?ajexp(-ixzj) = u. By (2-21) 

it is not hard to show that T is a closed and therefore a continuous map t\ —-> C00(1R,Î). 

Hence |3*M(0)| < C|<z| for all « G £\, k — 1,2,... ,n, that is, 

(2-22) 
l 

X*) < C | a | 

where z w is the &-th component of Zj. 

From (2-22) we see that {z7}^° G i* = l^, and hence \ZJ\ <CfJ= 1,2, . . . , which 

is contrary to the hypothesis Zj —> oo. The contradiction proves the proposition. 

3. Main theorem. 

THEOREM 3.1. Suppose that d is a function analytic near oo. Then the following 

statements are equivalent: 

(1) the operator Ad is E'-hypoelliptic, 

(2) Ad is O''-hypoelliptic, 

(3) Ad is S'-hypoelliptic, 

(4) Lïm^^oQ^Pix) / log |JC|) = oo where P(x) is distance from x G W1 to the set of 

complex zeros of d, 

(5) | Imz| / log \z\ —> oo ifz —> oo on the surface d(z) — 0. 

PROOF. From Proposition 2.2 and formula (2-6) it follows that (1) <=> (2) <=> (3). 

Proposition 2.3 states that (2) => (5). Moreover from [1] (see pp. 1-15 of [1]) we know 

that (4) => (1). Therefore the only thing we need to do is to show (5) => (4). To do so, we 

assume that there are Xj G Rn, (j = 1,2,...) such that P(xf) < C\og\xj\ 

(j = 1,2,...) and |jcy| —• oo (j —̂  oo). By the definition of P(XJ) there are Wj = uj + ivj 

satisfying d(wj) = 0 and P(XJ) — (\XJ — Uj\2 + vj)x/2 (J = 1,2,...). Hence we have 

|w/| > |jcy-| — \XJ — Uj\ > \XJ\ — P(XJ) > \XJ\ — C l o g |jcy-| > \XJ\ 112 for j large enough. There­

fore we have |v/ | / log|w/ | < \VJ\I log |«y| < 2|v/|/log|jc7-| < 2C|Vj\/p(xj) < 2C, that 

is, | Imvv/|/ log \WJ\ < 2C for large j , which is a contradiction to statement (5). Hence it 

follows that (5) =» (4). 

From this theorem and Theorem 1.1 of [1], we easily get the following consequence: 

CONSEQUENCE 3.1. Let G be a (H)-group with Lie algebra g. Suppose that L is a left 

invariant differential operator on G such that the term of highest homogeneous degree is 

elliptic in the generating directions on G. Denote by g2 the center of g. Fix a Euclidean 

norm | • | on {giTc- Then the following statements are equivalent: 
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(a) The distance P(Ao) from Ao G g*2 to the nearest point t G (gi)c s u c n m a t n?(L*L) 
has no trivial kernel satisfies 

P(Ao)-1 log |A0| —> 0 as A0 —> oo. 

(b) L is microlocally hypoelliptic. 
(c) VL is microlocally hypoelliptic. 
(d) VL is hypoelliptic. 
It is clear that Theorem 3.1 gives the positive answer to the open question (5) in [ 1 ], 

while Consequence 3.2 gives the negative one to the question (2) in [1]. 
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