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The countability index, C{S), of a semigroup S is the smallest integer n, if it exists, such that every countable
subset of S is contained in a subsemigroup with n generators. If no such integer exists, define C{S) = oo. The
density index, D(S), of a topological semigroup S is the smallest integer n, if it exists, such that S contains a
dense subsemigroup with n generators. If no such integer exists, define D(S) = oo. S(X) is the topological
semigroup of all continuous selfmaps of the locally compact Hausdorff space X where S(X) is given the
compact-open topology. Various results are obtained about C{S(X)) and D(S(X)). For example, if X consists
of a finite number (> 1) of components, each of which is a compact N-dimensional subspace of Euclidean N-
space and has the internal extension property and X is not the two point discrete space. Then C{S(X)) exceeds
two but is finite. There are additional results for C{S(X)) and similar results for D(S(X)).

1980 Mathamatics subject classification (1985 Revision): 54H15.

1. Introduction

The countability index, C(S), of a semigroup S is the smallest integer, N, if such an
integer exists, with the property that each countable subset of S is contained in a
subsemigroup with N generators. If no such integer exists, we define C(S) = oo. The
density index, D{S), of a topological semigroup S is the smallest positive integer N, if
such an integer exists, such that S contains a dense subsemigroup with N generators. If
no such integer exists, we define D(S) = oo here as well. We will assume that all spaces
discussed in this paper are Hausdorff and when we topologize S(X), the semigroup of all
continuous selfmaps of the topological space X, it will always be with the compact-open
topology. It has long been known that if X is locally compact, then S(X) with the
compact-open topology is a topological semigroup. The converse is not true without
some restrictions on the spaces but recently S. Subbiah [6] has shown that the converse
is true within a very extensive class of spaces which includes all completely regular
spaces which contain an arc and all 0-dimensional spaces. That is for any one of these
spaces, S(X) is a topological semigroup if and only if X is locally compact. It is in
Section 3 that we regard S(X) as a topological semigroup and we assume there that the
spaces are actually compact. Cook and Ingram [1] and S. Subbiah [5] have shown that
there are a considerable number of topological spaces, including all Euclidean N-cells,
for which C(S(X)) = 2. Since S(X) is separable for these spaces when given the compact-
open topology, it readily follows that D(S(X)) = 2 also. In addition, we know that
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C(S{X)) = D(S(X)) = cx> when X is any one of the Euclidean N-spheres [3]. It is
immediate that C(S(X)) = D(S(X)) = 1 if A" is the one-point space and it is almost as
immediate that this is the only case for which C(S(X)) = D(S(X)) = 1. To see this, simply
observe that the countability index of any noncommutative semigroup must exceed one
and S(X) is not commutative if X has more than one point. If D(S(X)) = 1 then S(X)
has a commutative dense subsemigroup so that in this case also, S(X) would have to be
commutative. It is well known that C(S(X)) = D(S(X)) = 2 if X is the two point discrete
space and C(S(X)) = D(S(X)) = 3 if X is a finite discrete space with at least three points.
In this paper we show that there is quite an extensive class of spaces with the property
that both C{S(X)) and D(S{X)) are both finite and both exceed two. It is still an open
problem to determine precisely what these two numbers are in these cases.

2. The countability index

The following lemma is useful. Its proof is completely straightforward and will be
omitted.

Lemma 2.1. Let S and T be two semigroups and suppose S is a homomorphic image of
T. Then C(S)^C(T).

Theorem 2.2. Let X be a disconnected space with a finite number of components which
is not the two point discrete space. Then C(S(X)) ^ 3.

Proof. Suppose first that X has only two components and denote them by A and B
respectively. Since X is not the two point discrete space, one of the components, say A,
has more than one point and is therefore infinite. Choose a countably infinite collection
{an}"=i of points from A and any point beB. Define a continuous selfmap <an, b} of
S(X) by

<an, b}(x) = an for xeA

<an,bXx) = b for xeB.

Next, let <fc> denote the constant map which carries everything into the point b. Now
let T consist of <b>, the identity map 5, and all the maps in the collection {<an,f>>}"=1.
Suppose T£<</,g>>, where <</,g>> denotes the subsemigroup generated by the two
continuous selfmaps / and g. Denote the ranges of / and g by Ran / and Rang
respectively and suppose we have

Ran / n A ? 0 # Ran / n B

and
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But this would imply that <b>£<</ ,£» so we must have either R a n / or Rang
contained entirely in A or entirely in B. It turns out that we lose no generality if we
assume that R a n / S / 4 . It follows that / cannot possibly be a factor of any of the
functions <an,b> and therefore, we must have {<a n , fc>}" = 1 S«g». In a similar manner,
we must also have <5e<<g>>. But this means gm = 5 for some positive integer m which
implies that <<g>> is a finite cyclic semigroup. This, of course, is a contradiction and we
have shown that C(S(X)) ^ 3 whenever X has two components.

Now consider the case where X has N^.3 components and denote them by {/!„}*= i-
Let 2FN denote the semigroup of all functions on the set {1,2,. . . ,N} and define a map <t>
from S(X) onto &~N as follows:

M/)) (n) = m if and only if / [ / I J s X . .

One can verify that <f> is a homomorphism from S(X) onto &~N and since it is well known
that C(^"Af) = 3, it follows from Lemma 2.1 that C(S(X))^3 in this case also.

Some remarks. If, in the previous theorem, one does not rule out the two point
discrete space then the conclusion is false since C(S(X)) = 2 when X consists of two
points. Furthermore, one cannot simply delete the requirement that X have a finite
number of components and hope to prove the theorem because it is known [1, 5] that
C(S{X)) = 2 if X is infinite and discrete, the space of rational numbers, the Cantor
discontinuum or the space of irrational numbers.

Definition 2.3. A space X has the internal extension property if each continuous map
from a closed subset of X into X can be extended to a continuous selfmap of X.

Theorem 2.4. Let X consist of a finite number of components, each of which is a
compact N-dimensional subspace of Euclidean N-space and has the internal extension
property. Then C(S(X)) is finite.

Proof. In this proof, we modify and use some of the techniques used in the proof of
Theorem 4.2 of [5]. We cannot appeal directly to that theorem because the space under
consideration there is required to have the internal extension property and our space X
definitely does not have it. Denote the components of X by {Cj}f=l. According to
Theorem IV 3 [2, p. 44] each Cj contains a nonempty subset which is open in EN, the
Euclidean N-space where N is the dimension of C,. Choose a subspace Kj of that open
subset which is homeomorphic to the Euclidean Af-cell, IN. It readily follows that each
Kj contains a countably infinite mutually disjoint family {D} „}"= l of subspaces each of
which is homeomorphic to Cj and moreover, (c<f D,)\D,-= {p,} where D,- = u {/>;.„}"= j .
For each n, let hn be a homeomorphism from Bn onto X where Bn = <j {Dj n}f=l. Now
consider the mapping g, defined by gl\Bn = h~}iohn for n>\ and extend gl conti-
nuously over </u{Bn}™=2 by defining gi(pj) = Pj for each j . At this point, gj maps a
closed subset of C, into K} and for each j can be extended to a continuous selfmap of
X since each C, has the internal extension property (this also follows from the fact that
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each Kj is an absolute retract). The result is an extension to a continuous selfmap of X.
The same argument results in the conclusion that there exists a continuous selfmap g2

of X such that g2 \ Bn = h~+t ohn. Because each C, has the internal extension property, ht

can be extended to a continuous selfmap of X which we denote by g3 and we let
gA = Kl- We need to define one more function but it depends upon the family which is
to be contained in the subsemigroup which is generated so let J^ be a countable family
of continuous selfmaps of X. Decompose the family of components of X into a
(necessarily) finite number of subcollections {#;}*=! and choose K components of X.
There is no loss of generality if we assume we actually have the first K components
{Cj}f=l as we originally ordered them and this will make subsequent notation
considerably simpler. Next, let {fn}™=1 consist of all those functions in SF which, for
each j , maps each of the components in the family ^ into the component C,. We have
assumed that there are an infinite number of such functions since we have nothing to
prove if there are not. Now we are in a position to define our fifth function g5. First of
all define g5 \Bn = h~1 ° fnohn and continuously extend g5 over <;/u{Bn}"=1 as follows.
For Cie'&j define gs(Pi) = Pj. Now the restriction of g5 to c£D{ is a continuous map
from a closed subset of C, into Kj^Cj and since Kj is an absolute retract, g5 can be
continuously extended so as to map all of C, into Cj. This holds for all C . e ^ and it
holds in turn for all j . The result is a continuous selfmap g5 of X with the property that
g51 Bn = h~i ° fn°hn. One next verifies that gn

l~
1(x) = h'[1 °hn{x) for xsBn where n> 1 and

g2~1(x) = h~1ohl(x) for xeBj . With these two facts a routine verification yields the fact
that

This proves that {/,,}"= i£«gi,£2,g3>g4>£s» the subsemigroup generated by those five
functions. Since the entire family 3F can be decomposed into a finite number of
subfamilies like {/„}"=!, we conclude that !F is contained in a finitely generated
subsemigroup. In other words the countability index of S(X) is finite.

Theorem 2.5. Let X consist of two components, each of which is a compact
N-dimensional subspace of Euclidean N-space and has the internal extension property.
Then 3 ̂  C(S(X)) ^ 8 and if the two components are homeomorphic then C(S{X)) ^ 7.

Proof. In view of Theorem 2.2 we need only show that C(S(X)) ̂  8 in general and
:g7 when the components are homeomorphic. We consider the general case first. The
functions gi,g2,g3 and g4 are defined just as in the proof of Theorem 2.4 where, in this
case, N = 2. Now let J* be a countable family of continuous selfmaps of S(X) and let Cx

and C2 be the two components of X. Let ̂  consist of all functions / in SF with the
property that / [ C i ] s C t and / [ C 2 ] ^ C 2 . Let J^2 consist of all functions / in !F with
the property that f\C{\<=,C2 and f[C2~\^Cl. Let #3 consist of all functions in !F such
that / [ Z j s C j and finally, let J ^ consist of.all functions / in & such that f\X\<^C2.
For each of the families J^, 1 ^ j ^ 4, one produces a function hj exactly as g5 was
obtained in the proof of Theorem 2.4 and it follows also as in the proof of that theorem
that &j^<.<gi,g2,gi,gA.,hj*>y for l^ j^4 . Thus ^Z^g^g^g^g^h^h^h^h^)} and
we see that C(S(Ar))^8.
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Now consider the case where Ct and C2 are homeomorphic and let k be any
homeomorphism from X onto X such that /c[C1] = C2, fc[C2] = Cj and kok is the
identity map. Again, let 2F be any countable collection of continuous selfmaps of X
and define &}, l ^ j ' ^ 4 just as before. Now let ^ \ = {kof:feJ^} and let &% =
{kof-.fe^}. Next, use the family J^ \J!F\ to produce a continuous selfmap /i, just as
the map g5 was produced in the proof of Theorem (2.4) and, similarly, use ^ 3 u J*J
to produce another continuous selfmap analogous to g5. Again, one shows, just as in
the proof of that theorem that J^ uJ5"2"£«g1,g2>g3»g4,'ii>> and
<<£i>£2>£3>£4>'l2>>- Since kok is the identity map, it follows that ^2 = {kof\
and •i*4 = { k ° / : / e J s r J } , and from this, it readily follows that

and, consequently, S(S(X))^7 in this case.

3. The density index

As we mentioned in the introduction, it will be assumed throughout this section that
topology on S{X) is the compact-open topology. We recall that a basis for this topology
is formed by taking all sets of the form <X, G> where K is a compact subset of X, G is
an open subset of X and </C,G> = {/eS(Ar) : / [ /C]sG}. In the event K consists of a
single point p, we will use the notation (p,G} rather than the more cumbersome

Definition 3.1. Let A be a subset of a topological space X. S(X) is said to be doubly
transitive on A if for points a,b,x,yeA with x^y, there exists an feS{X) such that
/(a) = x and f(b) = y.

Theorem 3.2. Let X be a compact disconnected space with a finite number of
components at least one of which contains more than one more point. Suppose also that
S(X) is doubly transitive on each of its components. Then D(S(X)) ^ 3.

Proof. We have already observed that D(S(X))^.2 if X has more than one point.
Suppose, in this case that D(S(Ar)) = 2. Then there are two continuous selfmaps / and g
of S(X) such that <</,g>> is dense in S(X). Suppose that neither map is surjective. Let
G = X\Ran/ and H = X\Rang (where Ran denotes the range of a function) and choose
peG and qeH. Then <p, G>n <q, f / > # 0 since S(X) is doubly transitive on its
components but it does not contain an element from the subsemigroup «/,g>>. Thus,
at least one of the maps is surjective and we may well assume that is /. Denote the
components of X by {CJ}'j=l and suppose Rang doesn't intersect one of those
components, say Ck. Let C, be a component with more than one point and let H be a
proper nonempty open subset of C,. Next, let V = n(CJ,Gjy'j=i where Gj=Cj for _/#*,
G, = H. V is a nonempty open subset of S(X) and therefore contains an element h from
<</,g>>. Now h cannot contain g as a factor since (Ranh)n C^0 for all j . Thus
h~f" for some positive integer n. But this means h is surjective and this is a
contradiction since h maps each C, into C, and actually maps C, properly into C,.
Therefore, (Rang) nCj=£0 for each j . But it readily follows from this that (Ran/i)n
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for each j where h is any element in <</,£>>. Thus <</,£>> n (X,C1} = 0 and
again we have a contradiction. Consequently, we see that two elements of S(X) cannot
possibly generate a dense subsemigroup and we conclude that D(S(X)) ̂  3.

We note that if S(X) is separable then D(S{X))£C(S(X)). This is immediate if
C(S(X)) = ao. On the other hand, if C{S{X)) = N for some positive integer N, simply
choose a countable dense subset !F of S(X) and we are assured that this is contained in
a subsemigroup with N generators. Furthermore, it follows from the theorem in [4] that
if X is second countable and regular, then S(X) is, in fact, hereditarily separable. These
observations together with Theorem (2.4) immediately yield:

Corollary 3.3. Let X consist of a finite number of components, each of which is a
compact N-dimensional subspace of Euclidean N-space and has the internal extension
property. Then D(S(X)) is finite.

Corollary 3.4. Let X consist of two components, each of which is a compact
N-dimensional subspace of Euclidean N-space and has the internal extension property.
Then 3 gD(S(X)) ^ 8 and if the two components are homeomorphic then

Proof. This is a consequence of the observations made preceding Corollary 3.2 and
Theorems 2.5 and 3.1.

Some closing remarks. Anytime we are able to show that D(S(X)) ^ N for separable
S(X) we can immediately conclude that C(S(X))^N as well. Nevertheless, we chose in
Theorem 2.2 to prove directly that C(S(X)) ^ 3 without reference to D(S(X)) because we
were able to get the result for a much more general class of spaces.
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