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1. Introduction

A formally self-adjoint operator L is said to be of limit circle type at infinity if its
highest order coefficients are zero-free and all solutions x of L(x) = 0 are square-
integrable on [c, °°) for some c. (We will drop "at infinity" in what follows.)

This paper deals with the perturbation of limit circle operators by operators whose
coefficients are oscillatory. We deal mainly with the fourth order case, but we will also
obtain some results for second order operators.

For the equation

x"+(f2m + crnsindfp)x = O (1.1)

Eastham (5) proves that for c real, d = l, m > l , p > 0 and

n<min(p+£m-f, 2 p - | m - f ) (1.2)

we have (1.1) limit circle. Eastham establishes this without obtaining the asymptotic
expansions of (1.1).

Atkinson (1) using asymptotic methods proves that (1.1) is limit circle if one of the
following conditions holds:

n<m-l and m > 2 (1.3)

or

2
d# - , n<m+\p-\ and m>2 (1.4)

m +1

or

2
m>- l , d= - , n = m - \ and 0 ^ T < 2

m + 1
where

(1.5)
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106 RONALD I. BECKER

Atkinson (1) (Theorems 6 and 7) also considers the more general equation

x" + (q2+qg + k)x = 0

where g satisfies certain conditional integrability conditions and kq~1eL1[c, °°). The
result (1.5) is a specialization of one of these results. Note that the results (1.2) overlap
with (1.3) and (1.4).

In this paper we extend the results of Atkinson to the equation

(r2x')' + (<j2+rq(g + fc))x = O (1.6)

where g is oscillatory and fceL1[c, °°). For this we use a result of Becker (2) (stated
below as Theorem 1 of Section 2) which gives the asymptotic expansions of solutions of
(1.6). The results are given in Examples 1 and 2 of Section 4.

The main purpose of this paper is to develop an analogous theory for the fourth
order equation

(r4x(2))(2) + ((arV+Hr3q)x')' + (Pq4 + rq3(g + k))x = 0 (1.7)

where g is oscillatory and k&L\c,°°). In order to do this we make transformations of
type

dO=^dt and x = (r<f)-1/2y (1.8)

and apply an asymptotic theorem of Becker (3) (stated as Theorem 2 of Section 2).
As applications, we obtain results analogous to Examples 1 and 2 below for fourth

order equations (see Examples 3 and 4 of Section 3).
It should be remarked that if one is not interested in obtaining a wide range of

oscillatory phenomena, but would like sharper limit circle criteria, then we could treat
(1.7) as a system and make substitutions requiring much weaker differentiability and
integrability criteria than (1.8). This has been done in Becker (4), where more complete
references to the literature on limit circle criteria may be found. In our case, the
oscillatory nature of g seems to preclude such an approach. (The problem arises in that
Levinson's asymptotic theorem must be applied in the system case where the coefficient
matrix is a sum of a bounded variation matrix and an integrable matrix. If an oscillatory
g is included, a further transformation by an oscillatory matrix must be made and this
could destroy the bounded variation property of the coefficient matrix.)

Section 2 contains the statements of two results used later, Section 3 develops the
asymptotic theory for fourth order equations, and Section 4 contains applications.

2. Preliminary Results

We state two theorems from other papers which will be used in the sequel.

Theorem 1. Let r and q be positive on [c, °°) and C\c, °°). Let

(rq)-1/2(r2((rq)-1/2)')' and keL^c,™), (2.1)

let
0(0 = 7+1 ~ds
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and let g satisfy the conditions

0) gi(0 = J7 g(s) cos2 0(s) ds and g2(s) = JT g(s) sin2 0(s) ds converge
(ii) ggj and gg2e L}\c,<*>)

(iii) a(r, f0) = i Jlo g(s) sin 20(s) ds does not have both lim sup a(t, t0) = +«> and
lim inf o-((, t0) = -°°.

Then the equation (1.6) has independent solutions xu x2 satisfying

^e^ <>(

[For a proof see Becker (2) Example 3].

Theorem 2. Let g(t), h(t) and k(t) be integrable on compact subsets of [c, °°). Let a, b
be real, positive and a=£b. Let h(t) and k(i)eLx[c,<»). Let g{t) satisfy the following
conditions:

(i) The following integrals converge:

g i ( 0 = | g(s)ds, g2(t)=l g(s) cos las ds,

g3(f)=f g(s) cos lbs ds, gJ(O=f g(s) cos (a ±b)sds,

gf (t) = I g(s) sin (a ± b)s ds for te [c,»)

(ii) g(Ogt(O 6 L\c, oo) (i = 1, 2, 3) and g(t) gj(t), g(Ogf (t) e L^c,»).
(iii) Ler

1 f
a i ( f ' fo) = TTIi^ 2̂  g(s) s i n 2as <^

i r
to)~2b(a2-b2)L2b(a2-b2) J

Suppose that we do not have both

lim sup {a^t, t0) - or2(t, r0)) = oo

and

lim inf (er^r, t0) - cr2(t, t0)) = -°°-
t£to

Then the equation

(D2 + a2)(D2 + b2)x = -(g + h)x - (kx')'
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has solutions X;(f) (i = 1,2, 3,4) satisfying

as r—»oo.

[For proof see Becker (3) Theorem 2 slightly modified to include heL1 as well.]

3. Asymptotic Expansions for Fourth Order Equations

We will consider equations of the form

M(x)-(r1x(2))(2) + (p1x')' + q1x =0. (3.1)

Let x(t) = a>(t)y(t). Then (3.1) becomes

)y = 0. (3.2)

By analogy with the second order case (see Becker (2) Section 3), we wish to compare
(3.1) with an equation of the form

0 (3.3)

where d is an operator of the form

a = **(0^~ (3.4)

at dr

and

f£ (3.5)
In order to apply Theorem 2, it seems reasonable to look at the case in which the
polynomial

(3.6)

has roots which are real, negative and distinct, i.e.

a > 0 , /3>0 and a2>4/3. (3.7)

Substituting (3.5) into (3.3) and simplifying, we get

M(fi3y(2))(2)+n((^V"+^'2+a^)y')'+Py = 0. (3.8)

Comparing (3.2) and (3.8) we get the same coefficient of y(4) if

rlW
2 = ^ 3 (3.9)
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which we will suppose to hold in what follows. From (3.9) it follows that

V ) ' = r'{w2+4ri&xo' + 2r1a/2

Hence we may write (3.2) as
2 ^ + ^ V+fV 2 +afOy' ) '+ /3y

- • - y = o. (3.10)

We could investigate two methods of proceeding:
(a) Set qxu>2 = /3//A
or
(b) Set Pi<o == OL[L.
However they lead to identical results under the same conditions, so we will only deal
with the first.

In the following, we suppose that in equation (3.1) we have

rx replaced by r4 and qx replaced by q4. (3.11)

In addition to (3.9) we assume

iuf<o2=l. (3.12)

This seems to restrict the generality of substitution (a) above by setting (3 = 1. However
an investigation of the substitution with general /3 shows that the final asymptotic
expansions depend only on a//31/2, and so there is no loss of generality in setting (3 = 1.
(See Remark 4 below.)

Equation (3.9) reads
r4<o2 = n3. (3.13)

Hence

[i=- and a)2 = —r. (3.14)
q rqJ

In what follows, we will choose

so thatTheorem 3. Let r and q be positive and four times differentiable on [c, °°), let h be
differentiable on [c,°°) and let geLx[c, T] for all T>c. Leta>2 and let -a2 and -b2

(a,b>0) be the zeros of
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We will write

f i = - , <i)2 = —^ and O(t) = y+\ -ds.
q rq3 }c r

Hypothesis A. The following belong to L\c, °°): n-2(r4)"a>2, ^{r*)'<oa>', n ~ 2 r V 2 ,
tL-2r*<oa>", ti'V2, <o(r4o/2))(2) and <o(r2q2(o')'; h, k and w(hr3qa>')'.

Hypothesis B. g(f) satisfies (i), (ii) and (iii) of Theorem 2 with the trigonometric
functions cos (2aO(s)) etc. in place of cos las etc.

Then the equation

( rV 2 ) ) ( 2 ) + ((ar2q2 + hr3q)x')' + (q4 + rq3(g + k))x = 0 (3.16)

has solutions Xj(f) (i = 1, 2, 3,4) satisfying

xt(t) = (rq3)-1/2€'T.(1-c)(cos aO(t) + o(

x2(t) = (rq3)-1 / 2e-i ( ' - c)(sin a6{t) + o(

= ( rq 3 ) ' 1/2c^(1- c)(cos bd(t) + ( ) )

x4(0 = ( rq 3 r 1 / 2 e -^ ( t - c)(sin b6(t) +

where

1 f
2 57 g(s)sin2ad(s) ds

—a)Jc

o i ( ' . c ) = - ,,2Za(b

and

1 f
O"2(f, C) = 2 w 2 _ f r 2 ) J g(S) S i n

Further, (3.16) is of limit circle type if (,rq3)-V2e±<r^c)eL2[c,^) (i = I, 2).

Remark 1. In the case r = l, Hypothesis A reduces to:

Hypothesis A%. The following belong to Ll[c,<x>): q"q~2, <M>W, h, k and a>(hqa)')';

Remark 2. It is known that for q real and positive, the fact that q"q~2G L1[c,») and
qiL\c,oo) implies that q'2q-3€L1[c,oo). See Coppel (5) IV.4.

Three. If q is "slowly oscillating", we expect the first two terms of Hypothesis Aj to
be the critical ones.

Four. We may derive the expansions for the equation

(r4x(2))(2) + ((ar2q2+hr3q)x') + (/3q4 + rq3(g + fc))x = 0 (3.18)

(with 0 < / 3 # l ) from the case with 0 = 1 as follows. Let a1 = a/pia, r2 = r/p1'4,
h1 = h/pl/4, gi = g/P314 and fc^fc/03'4. Then (3.18) becomes

g + fc))x = 0. (3.19)
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Supposing that a^>2 i.e. a>2(iltt, that Hypothesis A holds for r and q (or equival-
ently for r2 and q) and that Hypothesis B holds for r2 and q, we may use Theorem 3 to
obtain expansions for (3.18) of the type (3.17) with r2 replaced by r.

Proof of Theorem 3. Make the substitutions

x=(rq3)"1/2y

0(0 = 7+ \ ~ds, so d0 = - , (3.20)

We write dy = y[1].
Using (3.10), we see that (3.16) reduces to

(co(r4w(2))<2) + a>((ar2q2 + hr3q)wj - (g + fc))y

(say). (3.21)

We have — A^ is integrable with respect to 0 if and only if — Nj is integrable with

respect to t, and fiN2 is integrable with respect to 0 if and only if N2 is integrable^with
respect to t etc. Also

fi(s)g(s) cos 2a0 dO = g(s) cos 2a0(s) ds etc.

Then apply Theorem 2.

4. Applications

Example 1. We apply Theorem 1 to the equation

( rV) ' + (r 2 m+crsindfp)x=0 (4.1)

for te[0,°°) where m>—1 and p > 0 ; c, d real. In applying Theorem 1, we set fc = O,
y = 0 so that

e(t)

= cr~m"'sindrp.

Condition (2.1) is satisfied if m>l-l. Hence if n<m + l-l then g€!/[(),<») and
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there are two solutions which are O(r1/2( l+m)). Thus if

m>l-l, n<m + l-\ and m + l>2 (4.2)

then (4.1) is limit circle.
On the other hand we do not need geL1 . We will have a(t,0)-»limit; gx and g2

converge and gglt ggjeL^O,^) if

m>l-l; d # 2 ( m - / + l)"1 or p^m-l + l; n<m + l+$p-l, m + l>2. (4.3)

Then by Theorem 1, if (4.3) holds then (4.1) is limit circle.
A further case is when

and n = m + ! - l . (4.4)

In this case we have (for a > 0 ) :

exp <r(t, a) = exp ̂  f' - sin2 20(s) ds = (C + o(l))tc/4.
z Ja s

Also, (4.4) implies that gu g2 converge and ggt and gg2e Lx[a, <»). Using the asympto-
tic expansions of Theorem 1, we see that all solutions are L2 if

- (m + D ± ^ < - l i.e. if

|c|<2(m + I - l ) . (4.5)

Thus (4.4) and (4.5) are sufficient for (4.1) to be limit circle.
The conditions (4.2) and (4.3) are generalizations of the results of Atkinson (1)

quoted in (1.3), (1.4) and (1.5) above.

Example 2. We consider the equation

(rx')'+(q2 + M — V sin 29(t) + rqk)x = 0 (4.6)

where

Then

and

where

g l = 2 [ (- sin3 0 cos 6jh(s)ds
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Then if r~1fi(t) is nonincreasing it follows as in Atkinson (1) Theorem 6 that gt

converges. Further

exp a(t,, c) = exp g £ (|" ̂ )~ W 1 ds + C + o(l))

Again following Atkinson, we have

| g l | s h so that | g g l | ^ h 2 .

Assume now that

rq'q~2 is nonincreasing, (rq)'1 eL\c, °°) and q is unbounded. (4.7)

Then q' S 0 and following Atkinson (1) Theorem 7 we see that h is nonincreasing, and

Thus

We assume finally that

r q ' V 3 £ L^c,»). (4.8)

Then under hypotheses (4.7), (4.8) the conditions of Theorem 1 are satisfied and there
are two solutions which are

Hence all solutions are square-integrable if

1 ± T / 2 > 0 i.e. iff|T|<2. (4.9)

Thus (4.6) with r,q>0,r,qe C2[c, °°) is of limit circle type if (4.7), (4.8) and (4.9) hold.

Example 3. We consider the equation
(f41x(2))(2) + a(f2(.+m)x,y + (p t4m + ^n ^ fop^ = Q (4 1 Q )

where a, /3>0 and a2>4j3. (See Remark 4 for the technique of dealing with the case
). Then

f sm-lds = pu\m-l + iy1tm-l+1; g = /3-1/2cf"-'-3msin dt".

We proceed as in Example 1 but using Theorem 3 in place of Theorem 1. Hypothesis
A is satisfied if m > I — 1. Hence if o-t(oo, c) and a2(

co, c) are absolutely convergent then
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there will be two solutions which are o(r1/2(1+3m)). This will be the case if n -1 - 3m <
- 1 . Thus if

m>l-l, n<l + 3m-l and l + 3m>2 (4.11)

then (4.10) is limit circle.
Let - a 2 and -b2 be the two zeros of A2 + a//31/2A + l = 0. Assume that

(d#2a/31/4(rn-/ + l)-1 and d^lb^im-l + l)'1 and

d*(a±b)pl'\m-l + l)~1) or p^m-l + 1 (4.12)

and

- l , I + 3m>2.

Then under conditions (4.12) the equation (4.10) is limit circle.
The last case of Example 1 could be treated as before, but it will be covered by the

following example which generalizes Example 2.

Example 4. Consider the equation

(r4x(2))(2) + a(r2q2x,y + ( q 4 + q 4 ( h i s i n 2 a 0 ( f ) + ^ s i n 2b6(t)) + rq3k)x = 0 (4.13)

where

d(t) = y+ f ^ds, \L = T-;

- a 2 and -b2 are the roots of X.2 + ak +1 = 0 (and we have taken /3 = 1 for simplicity).
We assume

a > 2; keLl[c,<x>); r,q>0; r,qe C?\c, °°) and satisfy Hypothesis A (4.14)

has one sign; sgnhi(f)hK0^O; /x-1H2eL1[c,°°) (i = l,2). (4.15)

(See Atkinson (1) Theorems 6 and 7 for a treatment of the second-order case under
similar hypotheses). In the notation of our Theorem 3, we have

g = [iT\h.r sin 2a6 + h2 sin 260).

Under hypotheses (4.14) and (4.15) we may follow Atkinson (1) Theorem 6, but using
our Theorem 3 in place of his Theorem 1, to obtain the existence of independent
solutions X; (i = 1,2, 3,4) satisfying

p - ^ - £ * hx ds}(sin a6(t) + o(l))

x2(0 = (rq3)-1/2 fexp - ^ f' S K ds](cos a0(r) + o(l))
1 2 L * r J (4.16)

x3(0 = (^3)-1 /2{exp-^- f'3 h2 ds)(sin M(t) +
I 2M Jc r J

x4(0 = (r<j3)-1/2{exp ̂  } ' f ̂  ds}(cos M(r) +
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where L = 2a(b2 - a2) and M = 2b(a2 - b2). From this we see that if - hj (i = 1,2) are
integrable and (rq3)'1 e L\c, °°) then (4.13) is limit circle.

A case when - ]\ are not integrable will now be discussed. We will set

—5) ana<

In order to apply the above, we must verify (4.15), which will be done under further
hypotheses:

rq'q~2 is nonincreasing; (rq3)'1 e L\c, oo);
q is unbounded and rq'2q~3 e.L\c, <») (so that q' ^0) .

We have , / f« J \ 1 ;>„ , \ _2

Also

Using this in (4.18) we see that (r^hrf^Q. Further,

q ( - V ^ 16T W 3
 6 L

l[c,r V.I rqJ

Thus (4.15) holds. We have

<rx(t, c) = (2a(b2 - a2))'1 f g(s) sin 2a8(s) ds

exp o-xO, c) = C ^ l ^ )

Similarly

expa2(t,c) = C ' ( | ^ )

From (4.16) it follows that there are two solutions which are

and two solutions which are

In particular under hypotheses (4.14), (4.15) and (4.17) We have (4.13) limit circle if

( l ± 2 T l ) > 0 and ( l±2v 1 )>0
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i.e. if | T ! | < ! and |i>i|<2 or

| r | < 2 a | b 2 - a 2 | and \v\<2b\b2-a2\. (4.19)

It is clear that if T ^ O , I > # 0 and (4.14), (4.15) and (4.17) are satisfied then two
solutions are always L2\c, °°). By using (4.19) we can in some cases choose T and v so
that exactly 2,3 or 4 solutions are L2[c, °°). If we want the limit-3 or limit-4 cases, we
may get them with v = 0. We illustrate with an example.

Let r = 1, hi = 2-rt~2 and h2 = 2vt~2. Then q = t and the equation becomes

x(4) + a(f2x')' + (f4+2f2(r sin 2aO(t) + v sin 2W(t)))x = 0 (4.20)

It is easily seen that (4.14) and (4.15) are satisfied. We have 6{t) = \t2. (Note that
Hypothesis A holds if in the notation of Example 3, we have m > I — 1). By (4.16) there
are solutions satisfying

Xi = r3/2--r/i.(sin ( a /2)f2+0(D),

x 2 = r
3 / 2 + T / L(cos (a/2)f2+o(l)),

x3 = r3 / 2 -W M(sin (fc/2)f2+o(l)),

x4 = r3 / 2 + W M(cos

Now choosing T and v appropriately results in the limit-2, limit-3 or limit circle case.
Atkinson (1) uses the theory for second order operators to get limit-1, 2, 3 or 4 cases

for their squares, and the above results are a generalization showing how the limit-4 case
can be destroyed via lower-order oscillatory perturbations. For results of a different
kind on the destruction of the limit-circle case, see Eastham and Thomson (7) and
Read (8).
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