
Bull. Aust. Math. Soc. 98 (2018), 64–69
doi:10.1017/S0004972718000205

BOUNDS FOR TRIPLE EXPONENTIAL SUMS WITH
MIXED EXPONENTIAL AND LINEAR TERMS

KAM HUNG YAU

(Received 19 November 2017; accepted 21 February 2018; first published online 3 May 2018)

Abstract

We establish bounds for triple exponential sums with mixed exponential and linear terms. The method
we use is by Shparlinski [‘Bilinear forms with Kloosterman and Gauss sums’, Preprint, 2016, arXiv:16
08.06160] together with a bound for the additive energy from Roche-Newton et al. [‘New sum-product
type estimates over finite fields’, Adv. Math. 293 (2016), 589–605].

2010 Mathematics subject classification: primary 11L07; secondary 11D79.

Keywords and phrases: exponential sums, exponential function, cancellation, solutions to congruences in
small boxes.

1. Introduction

Bounds for exponential sums were first studied in number theory because they yield
arithmetic information about certain Diophantine problems. For example, by obtaining
estimates for exponential sums over primes, Vinogradov [9] was able to show that
every sufficiently large odd integer can be written as a sum of three primes. Now, the
study of bounds for exponential sums has both mathematical and arithmetic interest.

Let p be a prime and let g be an arbitrary integer with gcd(g, p) = 1. Denote by T
the multiplicative order of g modulo p. Given two intervals of consecutive integers

I = {K + 1, . . . ,K + M}, J = {L + 1, . . . , L + N}

and
K = {1, . . . ,H},

with integers H,K, L,M,N such that 0 < M ≤ p, 0 < N ≤ T , 0 < H < T , and a complex
sequenceA = (αm)m∈I, we define the exponential sum

Sa,T,p(A;I,J ,K) =
∑
m∈I

∑
n∈J

∑
x∈K

αmep(amgx)eT (nx)
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for integers a ∈ Z with gcd(a, p) = 1, where eh(x) = e(2πix/h). In particular, when
I = Zp = {0, 1, . . . , p − 1}, we define

Sa,T,p(A;J ,K) = Sa,T,p(A;Zp,J ,K).

Similar double exponential sums arise frequently. In particular, sums of the form

S (A,B;I,J) =
∑
m∈I

∑
n∈J

αmβnep(amgn)

have been considered by Shparlinski and Yau [8]. For the case where g is not
necessarily a primitive root of p, bounds have been established under the condition
I = {1} and αm = βn = 1 by Kerr [2], but the method employed there also works for
general I as the bounds depend only on the norm. Similar sums for multiplicative
characters have also been studied in [7]. We refer the reader to [3] for a broader
overview of exponential sums.

In this paper we establish bounds for Sa,T,p(A;I,J ,K) when I = Zp. It will be
clear the same method also works for general I.

Our approach follows from Shparlinski [6]. In particular, after applying the triangle
and Hölder inequalities to Sa,T,p(A;I,J ,K), we obtain a mean fourth moment of an
exponential sum. By opening and changing the order of summation and appealing to
the orthogonality of the exponential function, we can bound the sum by the number of
solutions to a particular congruence (see Lemma 3.2).

2. Main result

The statements A� B and A = O(B) are both equivalent to the inequality |A| ≤ cB
for some positive absolute constant c. For any real number σ > 0, define

‖A‖σ =

(∑
m∈I

|αm|
σ
)1/σ

.

Our main result is the following bound for Sa,T,p(A;J ,K).

Theorem 2.1. For any prime p,

S a,T,p(A;J ,K)� ‖A‖1/21 ‖A‖
1/2
2 p1/4N3/8T 5/8.

Using the same technique as in [5, Lemma 3.14] and the bound in [4, Corollary 19],
we obtain the trivial bound

S a,T,p(A;J ,K)� ‖A‖1N min{p1/8H5/8, p1/4H3/8}. (2.1)

Assuming |αm| ≤ 1, we have ‖A‖1 � M and ‖A‖2 � M1/2. We see that Theorem 2.1
provides a stronger bound

S a,T,p(A;J ,K)� M3/4 p1/4N3/8T 5/8
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than (2.1), which becomes

S a,T,p(A;J ,K)� MN min{p1/8H5/8, p1/4H3/8},

when

pT 5 < M2N5H5 and T 5 < M2N5H3.

3. Preparation

For an integer u, we define

〈u〉r = min
k∈Z
|u − kr|

as the distance to the nearest integral multiple of r.
We recall a well-known bound from [1, Bound (8.6)].

Lemma 3.1. For integers u, W and Z ≥ 1,

W+Z∑
n=W+1

er(nu)� min
{
Z,

r
〈u〉r

}
.

We recall that T is the multiplicative order of g modulo p. For any positive
integer K ≤ T , we define the additive energy Ep(K) as the number of solutions to
the congruence

gx1 + gx2 ≡ gx3 + gx4 (mod p) (3.1)

where

(x1, x2, x3, x4) ∈ {1, . . . ,K}4.

Our approach to bounding Sa,T,p(A;I,J ,K) is to reduce the problem to estimating
Ep(K).

Note that (v1, v2, v1, v2) ∈ {1, . . . ,K}4 is always a solution to (3.1); hence, we have
the trivial lower bound K2 ≤ Ep(K). If (v1, v2, v3, v4) ∈ {1, . . . ,K}4 is a solution to (3.1)
then v4 is dependent on v1, v2, v3 and we obtain the trivial upper bound Ep(K) ≤ K3. In
particular, Ep(K) is an increasing function of K.

Set A, B,C = {g, . . . , gK}. Then we have the trivial bounds |A| ≤ K and |BC| ≤ 2K.
Appealing to [4, Theorem 6], we can derive a nontrivial estimate for Ep(K).

Lemma 3.2. For any positive integer 1 ≤ K ≤ T,

Ep(K)� K5/2.
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4. Proof of Theorem 2.1

We proceed similarly to the proof of [6, Theorem 2.1]. Rearranging then applying
Lemma 3.1,

Sa,T,p(A;J ,K) =

H∑
x=1

p−1∑
m=0

αmep(amgx)
L+N∑

n=L+1

eT (nx)

=

H∑
x=1

p−1∑
m=0

αmep(amgx)ϕx

where

|ϕx| ≤ min
(
N,

T
〈x〉T

)
.

Define I = dlog Ne and define the sets

L0 = {x ∈ Z : 0 < x ≤ T/N}

and

Li = {x ∈ Z : min{T, eiT/N} ≥ x > ei−1T/N}

for i = 1, . . . , I. We obtain

Sa,T,p(A;J ,K)�
I∑

i=0

|Si|

where

Si =
∑
x∈Li

p−1∑
m=0

αmep(amgx)ϕx

for i = 0, . . . , I.
Applying the triangle and Hölder inequalities, we obtain

|Si| ≤

p−1∑
m=0

|αm|
1/2|α2

m|
1/4

∣∣∣∣∣ ∑
x∈Li

αmep(amgx)ϕx

∣∣∣∣∣
≤

( p−1∑
m=0

|αm|

)1/2( p−1∑
m=0

|αm|
2
)1/4( p−1∑

m=0

∣∣∣∣∣ ∑
x∈Li

ep(amgx)ϕx

∣∣∣∣∣4)1/4

= ‖A‖
1/2
1 ‖A‖

1/2
2

( p−1∑
m=0

∣∣∣∣∣ ∑
x∈Li

ep(amgx)ϕx

∣∣∣∣∣4)1/4
(4.1)
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which is valid for i = 0, . . . , I. Opening the summation and changing the order of
summation, we obtain

p−1∑
m=0

∣∣∣∣∣ ∑
x∈Li

ep(amgx)ϕx

∣∣∣∣∣4 =

p−1∑
m=0

∑
· · ·

∑
x1,...,x4∈Li

ϕx1ϕx2ϕx3ϕx4 ep(am(gx1 + gx2 − gx3 − gx4 ))

=
∑
· · ·

∑
x1,...,x4∈Li

ϕx1ϕx2ϕx3ϕx4

p−1∑
m=0

ep(am(gx1 + gx2 − gx3 − gx4 )).

For all x ∈ Li, we have the bound ϕx � e−iN, hence

p−1∑
m=0

∣∣∣∣∣ ∑
x∈Li

ep(amgx)ϕx

∣∣∣∣∣4
≤

∑
· · ·

∑
x1,...,x4∈Li

|ϕx1ϕx2ϕx3ϕx4 |

p−1∑
m=0

ep(am(gx1 + gx2 − gx3 − gx4 ))

� e−4iN4
∑
· · ·

∑
x1,...,x4∈Li

p−1∑
m=0

ep(am(gx1 + gx2 − gx3 − gx4 )).

By appealing to the orthogonality of the exponential function,

p−1∑
m=0

∣∣∣∣∣ ∑
x∈Li

ep(amgx)ϕx

∣∣∣∣∣4 � pe−4iN4Ep(beiT/Nc).

Therefore by Lemma 3.2

p−1∑
m=0

∣∣∣∣∣ ∑
x∈Li

ep(amgx)ϕx

∣∣∣∣∣4 � pe−4iN4(eiT/N)5/2

� pe−3/2iN3/2T 5/2.

Substituting this bound into (4.1),

|Si| � ‖A‖
1/2
1 ‖A‖

1/2
2 p1/4e−3i/8N3/8T 5/8.

Finally,
I∑

i=0

|Si| � ‖A‖
1/2
1 ‖A‖

1/2
2 p1/4N3/8T 5/8

and the result follows immediately.
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