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Neutral currents in semileptonic reactions

12.1 Neutrino–hadron neutral-current interactions

The first experimental support for the electroweak theory came from the observation
of neutral currents in semileptonic reactions. Neutral currents appear because the
product SU(2) × U(1) contains two neutral generators. We have shown that one
linear superposition of generators is the electromagnetic current and the second is a
neutral current. In Chapter 8 we discussed leptonic neutral-current reactions. In this
chapter we deal with the observation of neutral currents in semileptonic reactions
and, in particular, neutrino–hadron interactions.

The coupling of the Zµ boson to leptons was given in Eq. (8.11) and that to
quarks in Eq. (9.20). The neutral-current neutrino–hadron interactions have the
general form

Heff = G√
2

[
ν̄γ µ(1 − γ5)ν

] 3∑
i=1

(
q̄i τ3γµqi − sin2θW q̄i Qγµqi

)

= G√
2

[
ν̄γ µ(1 − γ5)ν

](
xV 3

µ + y A3
µ + γ V 0

µ + δA0
µ

)
, (12.1)

where V 3
µ and A3

µ are the isospin partners of the charged currents. V 0
µ and A0

µ are
isoscalar currents for which there are several possibilities. For comparison we give
the normalization of V 3

µ in terms of quarks:

V 3
µ = 1

2

(
ūγµu − d̄γµd

)
,

(12.2)
A3

µ = 1

2

(
ūγµγ5u − d̄γµγ5d

)
.

We could have defined V 3
µ abstractly, in terms of its isospin transformation prop-

erties, but, now that quarks permeate our daily language, this notation is appropriate.
The interested reader can always revert to the transformation properties. Similarly,
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12.1 Neutrino–hadron neutral-current interactions 125

we define the isoscalar currents

V 0
µ = 1

2

(
ū γµu + d̄γµ d

) + · · ·,
(12.3)

A0
µ = 1

2

(
ū γµγ5u + d̄γµγ5 d

) + · · ·,

where · · · involve s̄s and c̄c terms. With this normalization, the isoscalar piece of
the electromagnetic current is 1

3 V 0
µ . In the electroweak theory

x = 1 − 2 sin2θW, y = −1,
(12.4)

γ = −2

3
sin2 θW, δ = 0.

The vanishing of δ is a specific property of the standard model when we consider
only up and down quarks. It is non-zero as soon as strange and heavier quarks or
higher-order corrections are introduced.

The weak mixing angle θW is the same angle as that introduced in the leptonic
sector. The first issue was the existence of the neutral currents. This was a diffi-
cult experimental problem because neutral-current interactions were new and the
experiments had a large neutron background.

After the discovery of neutral currents, there was still interest in establishing that
they belonged to the standard model. As problems, there remained

(i) verification of the Lorentz structure of neutral currents as vector and axial-vector oper-
ators, and

(ii) verification of the internal symmetry structure as a superposition of isovector and
isoscalar operators in terms of a mixing parameter: sin2θW.

In analyzing these issues there are two separate kinematic regions where we know
the hadronic matrix elements of the currents. One region is deep inelastic scatter-
ing, where the structure functions have been measured and have been explained
successfully in terms of quark-parton distribution functions. The other region in-
volves low-energy experiments, for which form factors for elastic scattering and
the excitation of the �(1232) resonance are already known. In the next few sections
we study reactions that allow us to decipher the couplings of neutral currents to
hadrons.

When the standard model became popular, it appeared very important to dis-
cover neutral currents. It was also fortunate that experiments with the capability
of searching for them were running or were beginning to run. It was not clear,
however, how large neutral-current cross sections should be. There was a need for
theoretical predictions. At that time the quark-parton model was in its infancy and
its predictions were frequently questioned.
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126 Neutral currents in semileptonic reactions

Thus theoretical predictions were carried out at two levels. One approach was
through the symmetry properties of the currents relating V 3

µ and V 0
µ to the charged

and electromagnetic currents. The other approach was to calculate cross sec-
tions in the quark-parton model. Nowadays we know that both approaches are
correct.

12.2 Model-independent predictions

The simplest processes to consider are those involving total cross sections on isospin
neutral targets. We define

σ− = 1

2

[
σ (ν + p → µ− + X1) + σ (ν + n → µ− + X2)

]
and

σ0 = 1

2

[
σ (ν + p → ν + X3) + σ (ν + n → ν + X4)

]
. (12.5)

An incoherent sum over all possible final states that yields an isoscalar final state
is assumed. For the charged-current cross section we write

σ− = V + A + I, (12.6)

where V comes from the vector current alone, A from the axial current alone, and
I is the interference term. We can represent them as follows:

V =
∑

|〈X | ε · V |p〉|2, A =
∑
x,ε

|〈X | ε · A|p〉|2,

and

I = 2
∑

Re(〈X |ε · V |p〉∗〈X | ε · A |p〉), (12.7)

with the sums running over all final states and polarizations of the W boson. In
Eqs. (12.6) and (12.7) an average over protons and neutrons is understood.

The vector currents are isovector quantities that are related to the isovector part
of the neutral current through an isospin rotation. The neutral current contains in
addition an isoscalar term, but, since we consider isoscalar target and isoscalar final
states, the isoscalar–isovector interference drops out. It follows now that

σ0 = 1

2

(
x2V + x I + A + y2S

)
, (12.8)

where S is the contribution of the isoscalar current. The overall factor of 1/2 follows
from the fact that the charged current transforms like the generator

√
2τ+ of SU(2)
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12.2 Model-independent predictions 127

and the neutral current like τ 3. Since y2 ≥ 0,

R = σ0

σ−
≥ 1

2

A + x I + x2V

A + I + V
. (12.9)

Furthermore, Schwarz’s inequality implies

4AV ≥ I 2. (12.10)

On combining the two inequalities (see Problem 1), we arrive at

R ≥ 1

2

[
1 − (1 − x)

(
V

A + I + V

)1
2

]2

. (12.11)

The term V can be deduced from knowledge of the isovector contribution to the
electroproduction cross section

σem = 1

2

[
σ (e + p → e + x1) + σ (e + n → e + x2)

]
. (12.12)

Not knowing the isoscalar contribution, we use again inequalities,

V ≤ G

π

Q4

4πα2
σem = Vem, (12.13)

which gives the final result

R ≥ 1

2

[
1 − 2 sin2θW

(
Vem

σ−

)1
2

]2

. (12.14)

This derivation makes judicious use of inequalities. Within the electroweak theory
the method is model-independent and holds for many physical processes. When we
plot R versus sin2θW there is a minimum for the ratio; for similar inequalities see
Pais and Treiman (1972).

One may also use reactions induced by antineutrinos to obtain additional rel-
ations. On going over to antineutrinos one must change the sign of the interference
term I . The charged- and neutral-current cross sections on isoscalar targets are,
respectively,

σ+ = (V + A − I ), (12.15)

σ̄0 = 1

2

(
A + x2V − x I + y2S

)
. (12.16)
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128 Neutral currents in semileptonic reactions

On combining Eqs. (12.6), (12.8), (12.15), and (12.16), we obtain (Paschos and
Wolfenstein, 1973)

R− = σ0 − σ̄0

σ− − σ+
= 1

2

(
1 − 2 sin2θW

)
, (12.17)

R+ = σ0 + σ̄0

σ− + σ+
=

(
1

2
− sin2θW + 10

9
sin4θW

)
. (12.18)

These relations are truly independent of any details of scaling violations and elim-
inate some theoretical corrections inherent in the quark-parton method. They are
frequently used to determine the mixing angle sin2 θW.

In the above derivations we set the parameter

ρ = M2
W

M2
Z cos2θW

(12.19)

equal to unity. This is the lowest-order value, which appears also in Eq. (8.19),
but radiative corrections will modify it. Extensive analyses of the data including
radiative corrections from the top quark and the Higgs meson gave the value

ρ = 0.9998 +0.0034
−0.0012 and MH < 1002 GeV,

which is indeed very close to unity. This is a confirmation of the SU(2) structure of
the theory and we will continue giving ρ the value unity.

12.3 Neutral-current cross sections

It is perhaps more transparent to discuss the various cross sections in the parton
model (Sehgal, 1973; Kim et al., 1981). The effective Lagrangian density was
written, at the beginning of this chaper, in terms of the first generation of quarks.
We re-express the effective interaction in terms of chiral couplings,

L = − G√
2
ν̄γ µ(1 − γ5)ν

{
ūγµ[uL(1 − γ5) + uR(1 + γ5)]u

+ d̄γ µ[dL(1 − γ5) + dR(1 + γ5)]d + · · ·}, (12.20)

with uL and uR the couplings of the left- and right-handed up quarks and with
a similar definition for dL and dR. The ellipses indicate again contributions from
higher generations. We adopted this notation because it is convenient to write down
the elementary cross sections as they were classified in Section 8.3 in terms of the
chiralities of the leptonic and hadronic vertices. The new couplings are related to
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12.3 Neutral-current cross sections 129

those defined at the beginning of this chapter as follows:

uL = 1

4
(x + y + γ + δ),

uR = 1

4
(x − y + γ − δ),

(12.21)
dL = 1

4
(−x − y + γ + δ),

dR = 1

4
(−x + y + γ − δ).

The neutrino experiments determined combinations of uL, . . ., dR, which then were
translated into x, y, γ, and δ, thus testing the isospin and parity content of the
current. Finally, they were all determined in terms of a single mixing angle sin2 θW.
The expressions become rather long and it is convenient to introduce a shorter
notation. We denote generically by fq and fq̄ the parton distribution functions for
q and q̄ and their left-handed or right-handed couplings by qL and qR, respectively.
One easily finds cross sections for the elementary processes

dσNC(νq)

dx dy
= 2G2 M E

π
x fq(x)

[
q2

L + q2
R(1 − y)2

]
,

dσNC(ν̄q)

dx dy
= 2G2 M E

π
x fq(x)

[
q2

R + q2
L(1 − y)2

]
,

(12.22)
dσNC(νq̄)

dx dy
= 2G2 M E

π
x fq̄

[
q2

R + q2
L(1 − y)2

]
,

dσNC(ν̄q̄)

dxdy
= 2G2 M E

π
x fq̄

[
q2

L + q2
R(1 − y)2

]
.

There are various ways to combine these cross sections and isolate the coupling
constants. In experiments with isoscalar targets,

fu(x) = fd(x) = f (x) and fū(x) = fd̄(x) ≡ f̄ (x).

Furthermore, we can integrate over y and set K = 2G2 M E/π to obtain

dσNC(νN)

dx
= K x

[(
f + 1

3
f̄

)(
u2

L + d2
L

) +
(

1

3
f + f̄

)(
u2

R + u2
R

)]
,

dσNC(ν̄N)

dx
= K x

[(
1

3
f + f̄

)(
u2

L + d2
L

) +
(

f + 1

3
f̄

)(
u2

R + d2
R

)]
,

(12.23)
dσCC(νN)

dx
= K x

(
f (x) + 1

3
f̄

)
,

dσCC(ν̄N)

dx
= K x

(
1

3
f + f̄

)
.
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130 Neutral currents in semileptonic reactions

Most experiments measure ratios of cross sections, where the flux of the neutrinos
drops out. A popular ratio is

Rν = σNC(νN)

σCC(νN)
= (

u2
L + d2

L

) + 2 − B

2 + B

(
u2

R + d2
R

)
, (12.24)

with

B =
∫ 1

0 dx x
[

f (x) − f̄ (x)
]

∫ 1
0 dx x

[
f (x) + f̄ (x)

] (12.25)

measuring the relative strength of the valence- and the sea-quark contributions. For
instance, B = 1 corresponds to vanishing sea contribution. For the experimental
value B = 0.8 the ratio becomes

Rν = 1

2
− sin2θW + 50

63
sin4θW. (12.26)

The experimental values for Rν and Rν̄ are

Rν = 0.29 ± 0.01 and Rν̄ = 0.34 ± 0.03.

In order to compare them with the prediction of Eq. (12.23) it is necessary to
include precise quark distribution functions. They include contributions from sea-
quark (s, s̄) and (c, c̄) pairs of the target. In addition, scaling violations, which have
been established and analyzed in charged-current reactions, must be included (Kim
et al., 1981). The analysis yields

u2
L + d2

L = 0.29 ± 0.01 and u2
R + d2

R = 0.03 ± 0.01,

which lead to the value sin2θW = 0.228 ± 0.001.

12.4 Parity violation in electron scattering

Effects of weak neutral currents in low-energy (Q2 	 M2
Z) electron–hadron reac-

tions are submerged in the dominant electromagnetic interaction. For these reac-
tions we must search for a clear signature of weak origin, such as parity violation.
Experiments of this type have been carried out in deep inelastic electron–hadron
scattering and in atomic physics (see Problem 4). The couplings of the Z boson to
electrons and quarks have been discussed already.

A parity-violating observable is the difference of cross sections for right- and
left-handed polarized electrons. These are electrons polarized along their direc-
tion of motion, i.e. electrons with definite helicity. Since helicity changes sign
under spatial reflection, a difference between the two cross sections is an indication
of parity violation. We denote the left-handed and right-handed electrons by the
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12.4 Parity violation in electron scattering 131

spinors

eL,R = 1

2
(1 ∓ γ5)u(k), (12.27)

respectively. Their interactions at high energies with protons and neutrons are de-
scribed with sufficient accuracy by the parton model. Consequently, we can write
the hadronic neutral current as

Jµ(x) = ūγµ[uL(1 − γ5) + uR(1 + γ5)]u + d̄γµ[dL(1 − γ5) + dR(1 + γ5)]d
(12.28)

as it appears in Eq. (12.20). The interaction of the electrons with hadrons now
involves the exchange of a photon and a Z boson. In cross sections there are contri-
butions from the electromagnetic amplitude and weak terms. The latter contribution
is responsible for the asymmetry. The amplitudes are given as

mγ = − ie2

q2
ēγµe (euūγ µu + · · ·), (12.29)

and

mZ = − ig2

cos2θW
(
q2 − M2

Z

)(
gLēLγµeL + gR ēRγµeR

)
× [

uLūγ µ(1 − γ5)u + uRūγ µ(1 + γ5)u + · · ·], (12.30)

where eu is the charge of the up quark and the ellipses indicate contributions from
other quarks. For the Z-boson couplings, gL and gR are the helicity couplings to
electrons while uL and uR are the corresponding couplings to the up quark. For
the computation of the interference term we follow the presentation of Section 8.3,
where it was shown that, in the squared amplitude, the following conditions hold.

(i) The electron bilinears are left-handed or right-handed. The same is true for the quarks.
(ii) When left-handed leptonic couplings combine with left-handed quark couplings then

dσ/dy is independent of y. The same holds for right-handed leptonic couplings with
right-handed hadronic combinations.

(iii) When left-handed leptonic couplings combine with right-handed hadronic couplings,
then the dependence is (1 − y)2.

The form of the interference terms now follows:

dσL

dx dy
∝ [

gLuL + gLuR(1 − y)2
]
u(x) + · · ·, (12.31)

dσR

dx dy
∝ [

gRuL(1 − y)2 + gR uR
]
u(x) + · · ·, (12.32)

with the subscripts L and R in the cross section denoting left- and right-handed
polarized electrons and the ellipses indicating contributions from down quarks.
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132 Neutral currents in semileptonic reactions

The parity-violating observable is built into the asymmetry

A = dσR − dσL

dσR + dσL
, (12.33)

which is easy to derive from (12.31) and (12.32). To arrive at the final result, we must
include the down quarks. In an isoscalar target, such as deuterium or carbon, there
are equal numbers of up and down quarks, so only the combination u(x) + d(x)
appears in the cross sections, which drops out in the asymmetry. On collecting the
various terms together, the asymmetry is expected to be

A = G Q2

√
24πα

9

5

[
a1 + a2

1 − (1 − y)2

1 + (1 + y)2

]
, (12.34)

with a1 = 1 − (20/9)sin2θW and a2 = 1 − 4 sin2θW. I have given several steps of
the derivation so that the interested reader can reproduce it using the various cou-
pling constants given in the book. The magnitude of the asymmetry for Q2 =
1 GeV2 is

A ≈ −1.6 × 10−4.

The effect was observed at the Stanford Linear Accelerator Center (SLAC) (Prescott
et al., 1978, 1979). Electron–proton and positron–proton collisions have been ex-
tended at HERA to very large values of Q2 = 400–40 000 GeV2, at which the
effects of the Z propagator are also observable.

Problems for Chapter 12

1. Make judicious use of the Schwarz inequality to prove Eqs. (12.11) and (12.14).
2. Select the Feynman rules for the electron–hadron reaction and show that the effective

interaction has the form

H ep
eff = G√

2
ēγµ(gV − gAγ5)e

[
ūγ

µ

1 (Vu + auγ5)u + d̄γ µ(Vd + ad)d + · · ·],
where

gV = 1

2
− 2 sin2θW, gA = −1

2
;

Vu =
(

1 − 8

3
sin2θW

)
, au = −1; (12.35)

Vd = −
(

1 − 4

3
sin2θW

)
, ad = 1;

and the ellipses stand for strange and heavier quarks.
3. Combine the results of the previous problem with the outline of Section 12.4 and obtain

the final form of the asymmetry.
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Figure 12.1. A schematic drawing of a Z exchange in an atom.

Figure 12.2. Feynman diagrams for electron–nucleus interaction.

4. Another manifestation of neutral-current interactions appears as parity violation in
atoms. The neutral current introduces a new interaction between the orbiting electron
and the nucleus. The total force in the atom is the sum of electromagnetic and weak
diagrams (Fig. 12.1) or can be expressed in terms of Feynman diagrams (Fig. 12.2).

The sum of the amplitudes contributes

m = ē(k ′)γ µe(k)
e2

q2
〈N |J em

µ |N 〉

+ g2

8 cos2θW
ē(k ′)γ µ(gV + gAγ5)e(k)

1

q2 − M2
Z

〈N |J NC
µ |N 〉,

where qµ = kµ − k ′
µ = p′

µ − pµ. In order to identify weak effects, a signal with parity
violation is required.

Two parity-violating amplitudes are

M1 = G√
2

ē(k ′)gAγ µγ5e(k)
{〈N |V 3

µ |N 〉 − 2 sin2θW〈N |J em
µ |N 〉}

and

M2 = G√
2

ē(k ′)gVγ µe(k)〈N |Aµ|N 〉.

For sin2θW = 0.25 (which is close to the experimental value), only the M1 amplitude
survives. For this reason and because of the suppression of the hadronic matrix element
in M2, we discuss below only M1.
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134 Neutral currents in semileptonic reactions

The momenta involved in atomic experiments are small, so it is convenient to obtain
a non-relativistic limit of the weak interaction.

(i) For |�k| 	 me and |�k ′| 	 me, show that

1

q2 − M2
Z

≈ 1

4π

∫
d3r ei�q·�r e−MZr

r
.

The weak interaction is of short range and, in the limit of large MZ, it acts at the
origin, where the nucleus is located. Later on we replace the Yukawa potential by
a three-dimensional δ-function.

(ii) For reduction of the hadronic matrix element to the non-relativistic limit, consider

〈N , p′|J em
µ |N , p〉 = ū(p′)

[
γµF1(q2) + iσµν

(p − p′)ν

2M
F2(q2)

]
u(p).

Show that, in the non-relativistic limit, only the µ = 0 component survives and gives
the charge Q of the nucleus. Similar arguments for the V 3

µ matrix element give

〈N , p′|V 3
µ |N , p〉 = gµ0

1

2
(Z − N ),

with Z the number of protons and N on the right-hand side the number of neutrons
in the nucleus. On combining the results from steps (i) and (ii), we find that the
nucleus generates, through the M1 amplitude, the potential

Zµ(r ) = gµ0
G√

2
δ3(�r )QW(Z , N ),

with QW(Z , N ) = 1
2 [Z (1 − 4 sin2θW) + N ].

(iii) The transition-matrix element of the electron is

〈ef|HPV|ei〉 =
∫

ēf(r )γµγ5 Zµei(r )d3r.

For atomic physics the electron wave function can be written as

ei (r ) =
⎛
⎝ 1

�σ · ��
2me

⎞
⎠ψi (r ),

with ψi (r ) the space wave function of level i, me the mass of the electron and ��
the momentum operator. Show that the matrix element reduces to

〈ef|HPV|ei〉 = G√
2

1

2me
QW

∫
d3r ψ∗

f (r )
[
�σ · ��δ3(r ) + δ3(r )σ · ��

]
ψi(r ).

The effect of the neutral current on an atomic level is to induce the mixing of levels
with opposite parities. Thus the absorption rates of beams of monochromatic light
with various polarizations by atoms differ. One effect of parity violation in heavy
atoms is the rotation of the plane of polarization of laser light passing through
atomic vapors. Such experiments have been performed and effects of the neutral
current have been observed (Bouchiat and Bouchiat, 1974).
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