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ABSTRACT

Perceptual representations of objects and approximate magnitudes are
often invoked as building blocks that children combine to acquire the
positive integers. Systems of numerical perception are either assumed
to contain the logical foundations of arithmetic innately, or to supply
the basis for their induction. I propose an alternative to this
framework, and argue that the integers are not learned from
perceptual systems, but arise to EXPLAIN perception. Using cross-
linguistic and developmental data, I show that small (∼–) and large
(∼+) numbers arise both historically and in individual children via
distinct mechanisms, constituting independent learning problems,
neither of which begins with perceptual building blocks. Children
first learn small numbers using the same logic that supports other
linguistic number marking (e.g. singular/plural). Years later, they
infer the logic of counting from the relations between large number
words and their roles in blind counting procedures, only incidentally
associating number words with approximate magnitudes.

INTRODUCTION

Beginning in infancy, humans share with other animals the ability to
perceive objects, to chunk objects into arrays, and to discriminate these
arrays on the basis of their approximate number (Feigenson, Dehaene &
Spelke, ). However, unlike other animals, humans have repeatedly
invented external symbolic systems for representing number through the
course of history (Menninger, ; Ifrah, ). These systems – which
include verbal count lists, body counts, written numerals, and physical
calculators like the abacus – allow us to go well beyond the limits of
perception to express and manipulate precise numerosities, and to describe
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mathematical relations. Why only humans create such systems – and how we
do so – is a topic of intense debate, which bridges research in anthropology,
comparative psychology, linguistics, philosophy, and human development.
In developmental psychology, this debate has often focused on the role of
natural language, and how evolutionarily ancient mechanisms might be
exploited during language acquisition to represent exact number.
According to some accounts, language might allow us to combine different
types of representations that don’t themselves express exact number to
generate concepts that represent the positive integers (e.g. Spelke &
Tsivkin, ). Others argue that the logic of number words is innate, and
explained in part by a mapping between linguistic symbols and perceptual
representations of number (Leslie, Gelman & Gallistel, ). Others
argue that children learn the logic of number via an inductive inference
over relations between labels of perceptual sets – e.g. by mapping words
like one, two, and three onto small sets, and noticing that each successive
number differs in quantity by exactly  (Carey, ). In each case, core
systems of number perception provide the primitive building blocks from
which number word meanings are acquired.

In the present paper, I propose an alternative to this general approach,
according to which number word meanings are not wholly innate, or
derived from core systems of numerical perception. Instead, I will argue
that perception provides humans with an explanatory problem that the
creation of symbolic number systems is meant to solve. This problem,
confronted by humans from the beginning of our shared cultural history,
can be expressed as follows: whereas our perception of quantity is noisy
and subject to error, our perception of individual things is not.
Consequently, despite our noisy representation of number, we have a
strong intuition that collections in the world are made up of distinct
individuals, such that they must contain determinate numbers of things
that are subject to precise measurement. We might know, for example,
that a basket of fruit contains a specific number of individual pieces, even
if our only means of comparing this quantity to other baskets of fruit is
noisy and approximate, or based on a rough ratio of items in each set.
Counting systems, I propose, were constructed by our ancestors to resolve
this explanatory gap – to measure and keep track of the precise quantities
that we knew to exist in the world, but otherwise are unable to precisely
quantify. Whether as learned today by children or as created over
historical time – counting systems do not get their content FROM

perception, but instead arise to explain it.
To make this case, I focus on how children learn the meanings of number

words in development. I argue that children’s meanings for number words
are not constructed from perceptual representations of number. Instead,
drawing on evidence from the historical record, anthropology, and child
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development, I argue that number word meanings are defined by their
logical role in blind counting procedures, which is inductively inferred by
children through extensive use of counting, by around age six. The logic
of large number word meanings is not constructed from knowledge of
smaller numbers, contrary to constructivist accounts (Spelke & Tsivkin,
; Carey, ). Instead, small numbers and large numbers are learned
by completely distinct mechanisms that are developmentally unrelated.
Also, the meanings of large number words are not defined by their
relations to the approximate number system (Gallistel & Gelman, ;
Dehaene, ), or a domain-specific mathematical logic, contrary to
extreme nativist views (Leslie, Gelman & Gallistel, ). The logic of
counting is learned, without appeal to perception, from the counting
procedure, and from logical representations that are domain general, and
not specific to mathematics.

SOME EMPIRICAL FACTS

Most current accounts of number word learning seek to explain how children
acquire knowledge, albeit implicit, of the logical principles which sit at the
foundation of human mathematical knowledge. These principles are
related to the axioms laid out by Peano, Dedekind, and contemporaries in
an effort to explain the logical foundations of arithmetic (e.g. Frege, 
[]; Leibniz, ; inter alia). Below is a subset of these principles
which are most relevant to our discussion:

.  is a natural number.
. All natural numbers exhibit logical equality (e.g. x = x; if x= y, then y = x,

etc.).
. For every natural number n, S(n) (the successor of n) is a natural number.
. Every natural number has a successor.

In addition to explaining how knowledge of this logic arises, theories of
how children acquire the positive integers also seek to explain how
number words become associated to perceptual experience. Numerate
humans readily assign approximate estimates to large quantities. For
example, if shown an array of  dots on a computer screen, subjects
assign a larger number word to this array than to an array of  or .
Also, their estimates exhibit systematic error: on average, estimates exhibit
a mean that approaches the target value, but the range of values exhibits
greater variability for larger sets (Figure ). These facts together have been
taken as evidence that number words are associated to representations in
what’s been called the “Approximate Number System” or ANS (for
review, see Dehaene, ), an evolutionarily ancient system found in
non-human primates, pigeons, mice, fish, and in humans of all ages,
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including neonates (Whalen, Gallistel & Gelman, ; Brannon & Terrace,
; Xu & Spelke, ; Barth, Kanwisher & Spelke, ; Feigenson
et al., ; Halberda & Feigenson, ; Halberda, Mazzocco &
Feigenson, ).

Finally, theories of number word learning also seek to explain the stages
by which learning transpires. Although early reports argued that children
exhibit mastery of counting principles from very early in development – by
two or three years of age (Gelman, ; Gelman & Gallistel, ; ;
Greeno, Riley & Gelman, ) – later work has suggested a difficult and
protracted learning sequence. These later studies have found that children
typically begin by memorizing a partial count list – e.g. one, two, three,
four, five, etc. – beginning sometime around the age of two in the US. As
children acquire this list, they learn to recite it while pointing to objects,
and to place number words in one-to-one correspondence with individual
things (see Fuson & Hall, ; Briars & Siegler, ; Fuson, ).
However, during this early stage, they generally have little to no
knowledge of what the number words mean (Wynn, , ; Le Corre
& Carey, ). For example, using a test that has come to be known as
the Give-a-Number task, Karen Wynn showed that many children who
can recite a count list are nevertheless unable to reliably give one object
when asked for one (Wynn, , ). These children are often called
‘non-knowers’, since they appear to know little about the meanings of
words in their count list. Eventually, however, children become able to
give one object in response to requests for one, while not giving one for

Fig. . Distribution of estimates for target numerosities of , , , and .
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higher numbers as often, at which point they are called ‘one-knowers’.
Between six and nine months later, children learn an exact meaning for
two, and are called ‘two-knowers’, and then eventually learn three, at
which point they are called ‘three-knowers’. Some children likely also pass
through a ‘four-knower’ stage. Critically, however, there do not appear to
be five-, six-, or seven-knowers – e.g. kids who give precisely five things
when asked for five, but not for higher numbers that are within their
productive count list.

In the process of learning one, two, and three, during which they are
collectively called ‘subset-knowers’ (since they have meanings for only a
subset of their number words), children exhibit strikingly poor
understanding of counting. Generally, subset knowers, who range in age
from around two to four years of age, do not attempt to count when asked
to give a particular number of objects (Wynn, , ; Le Corre, Van
de Walle, Brannon & Carey, ). However, when subset knowers do
count, they make remarkable errors. For example, after correctly counting
an array of six things, subset knowers who are immediately asked how
many things there are either begin counting all over again, or instead utter
a random number – generally not the number they just uttered at the end
of their count (Schaeffer, Eggleston & Scott, ; Markman, ;
Fuson, , ; Frye, Braisby, Lowe, Maroudas & Nicholls, ;
Wynn, , ; Rittle-Johnson & Siegler, ; for discussion, see
Greeno et al., ; Gelman, ). Further, even children who do
respond correctly to the ‘how many’ question are unable to give this
amount in the Give-a-Number task (e.g. Sarnecka & Carey, ). On the
basis of such facts, most researchers have concluded that subset knowers
deploy counting as a blind procedure, without much understanding of
how it relates to cardinality, or an appreciation of the logic that relates
numbers in the list.

Eventually, however, children appear to learn that counting can be used to
construct large sets. At around the age of three-and-a-half or four, children
in the US learn that, when asked to give a large number like seven, they can
count items up to seven and give all objects implicated in their count (Wynn,
, ). At this point, these children are typically called ‘Cardinal
Principle Knowers’ (CP-knowers), since they appear to know that the last
word in a count labels the cardinality of the set as a whole. Beyond this,
however, there is substantial controversy about what these so-called
CP-knowers actually know. By some accounts, these children have
mastered not only HOW to count, but also have learned the logic that
relates numbers in their count list – e.g. that every natural number n has a
successor, defined as n +  (e.g. Spelke & Tsivkin, ; Le Corre &
Carey, ; Condry & Spelke, ; Sarnecka & Carey, ; Carey,
; etc.). Others, however, have argued that this logic emerges many
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years after children become CP-knowers, and that during this long delay,
children deploy yet another blind tally procedure (Davidson, Eng &
Barner, ; Wagner, Kimura, Cheung & Barner, ; Cheung,
Rubenson & Barner, ). In the sections that follow I return to this issue.

THEORIES OF NUMBER WORD LEARNING

Although many different accounts of number word learning have been
described, here I will present two broad alternatives that adopt nativist
and constructivist positions, respectively. In the interest of proceeding
quickly to my own proposal, and because these theories have been well
described elsewhere, I will review these alternatives quickly, with a focus
on their core properties and differences.

Nativist accounts: the approximate magnitudes and innate counting principles

Nativist accounts are perhaps the easiest to describe. Early nativist accounts,
like that of Gelman and Gallistel (), argued for innate counting
principles. According to this view, when children are exposed to a count
list, they exhibit an innate predisposition to always count in the same
order (stable order principle), apply only one label to each individual
counted (one-to-one principle), and infer that the last word used in a
count labels the cardinality of the set as a whole (the cardinal principle),
inter alia. Later versions of their hypothesis focused on couching the
content of number words in the ANS (Gallistel & Gelman, ). And
more recent proposals from this group (Leslie et al., ) have argued
that approximate number representations are supplemented by innate,
domain-specific, logical knowledge, roughly equivalent to the principles
described by Peano (for discussion of alternative nativist hypotheses, see
Butterworth, Reeve, Reynolds & Lloyd, ; Rips, Bloomfield &
Asmuth, ; Piantadosi, Tenenbaum & Goodman, ). For example,
Leslie et al. () propose that children have “an innately given recursive
rule S(x) = x +ONE . . . also known as the successor function” (p. ).

On the view described by Leslie et al. (), it is argued that this innate
logic is not sufficient (although it exhausts the knowledge that most theories
seek to explain), and that an additional appeal to the ANS is required. This
hybrid view, while possibly providing all of the pieces that could explain the
origin of the positive integers, unfortunately isn’t well supported by available
data. First, this particular nativist hypothesis, wherein the Peano axioms are
innate, fails to explain attested stages of number word learning and why
children learn small numbers in a protracted sequence without much
understanding of counting, and why, even after learning the counting
procedures (and becoming CP-knowers), they struggle for years to learn its
logic (see Davidson et al., ; Wagner et al., ; Cheung et al., ;
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see also discussion of the successor principle, below). A further problem with
the hybrid approach is that, once an innate logic is invoked, there’s little
reason left to also invoke the ANS. As computational models like
Piantadosi et al. () show quite convincingly, an appeal to the ANS is
unnecessary once the successor function and notions like exact equality
and ‘one’ are built in.

An alternative is to posit that the positive integers get their meaning
directly from the ANS, similar to Gallistel and Gelman (). However,
as the later proposal of Leslie et al. () implicitly recognizes, the
problem with this idea is that the ANS lacks the relevant content. It is
difficult – if not impossible – to explain how analog, approximate
representations could provide the content of discrete, precise number
words. Critically, the problem is not simply that the ANS is noisy, unlike
number words as argued by Halberda (). Instead, it is that the ANS
lacks the type of logical content that children must ultimately learn. Most
models of the ANS assume that its representations are analog in nature,
making it incapable of defining even the simplest of logical relations that
children must ultimately acquire, like the successor function, which is
defined in terms of discrete, whole numbers, and logical relations like
‘successor’. According to some proposals (Gallistel & Gelman, ;
Halberda, ), the ANS represents the real numbers, which children
then use to acquire the positive integers (a proposal which encounters very
serious obstacles, as noted by Laurence & Margolis, ). A more recent
proposal by Gallistel () suggests that the ANS might actually
represent number discretely, but that to explain extant empirical data the
bit rate of the ANS would need to be finer than that of the positive
integers, such that some additional transformation of these discrete bits
would be required to package them into units differing by exactly . Very
generally, if the ANS is invoked to explain the quantification of
continuous amounts, as it often is (Pinel, Piazza, Le Bihan & Dehaene,
; Cantlon, Platt & Brannon, ; Lourenco & Longo, ), then a
separate discretizing function must be required even if the ANS represents
quantity in terms of bits (Gallistel, ). It is the origin of this function
that generates discrete whole numbers which is the problem to be
explained, and to which the ANS itself has nothing to add (for additional
discussion of this discretizing function in the context of grammar and the
mass–count distinction, see Bale & Barner, ; Barner & Snedeker,
; Barner, Li & Snedeker, ).

A further reason to believe that the ANS does not define the positive
integers comes from studies of estimation, which test the strength and
nature of associations between number words and representations in the
ANS. First, although the facts are still emerging, our current knowledge
of number word learning suggests that associations between number words
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and the ANS are slow to develop, and are weak even among children who are
competent counters (e.g. Lipton & Spelke, ; Le Corre & Carey, ).
This is important, because if children lack strong associations between
number words and the ANS before they learn to count, then it is unlikely
that the ANS could be the basis for learning the logic of counting.
Relevant to this, Le Corre and Carey () showed that, when shown
random dot arrays between  and , many three- to five-year-old children
who are competent counters (CP-knowers) do not provide larger verbal
estimates for larger numbers, suggesting that they have not yet mapped
their count list to the ANS. More recent studies have questioned this
conclusion, arguing that associations may emerge earlier in development
(Wagner & Johnson, ; Gunderson, Spaepen & Levine, ; Odic, Le
Corre & Halberda, ). However, as argued by Wagner, Chu, and
Barner (unpublished data), none of the studies which purport to show these
earlier mappings to the ANS actually provide conclusive evidence (these
studies either do not classify children according to standard knower levels,
making comparison impossible, or fail to show evidence of ANS signatures –
i.e. increasing error with larger sets sizes – or they fail to correctly model the
null hypothesis, leading to invalid statistical comparisons). Furthermore, there
is strong evidence that even when children DO map number words to
approximate magnitudes, between the ages of five and seven years, these
mappings are highly malleable, making them unsuitable for defining the
positive integers (Sullivan & Barner, , ).

For example, in a study by Sullivan and Barner (), adult subjects saw
dot arrays flash on a screen and were told that the largest number of dots they
would see would be either , , or , depending on the condition they
were in. However, in all cases the maximum number was actually  (for a
similar method, see Izard & Dehaene, ). What Sullivan found was that
subjects across these conditions provided significantly different estimates not
only for large numbers, but for all numbers right down to about  or ,
which seemed to be strongly associated with approximate magnitudes and
resistant to calibration. Furthermore, she found that when subjects were
provided a verbal label and asked to map it to one of two dot arrays that
stood in either a : or : ratio, subjects were barely better than chance
for many numbers. Both results were also replicated in five- to
seven-year-old children (Sullivan & Barner, ), except that here
Sullivan found even weaker associations between number words and
approximate magnitudes. Children as old as seven years of age were
completely at chance when asked to map number words larger than  to
one of two dot arrays, and calibration shifted their estimates significantly
for all numbers down to  or . Based on these results, Sullivan argued
that subjects do not have rigid associations between magnitudes and most
number words – as would be required for the ANS to define the positive
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integers. Although perceptual error in estimation predicts that estimates for a
particular number should vary a little around a correct response (according
to Weber’s law), errors like those described by Sullivan suggest a more
fundamental source of variability, and that estimates are ad hoc and
constructed on the fly, not rooted in stable associations between individual
words and specific magnitudes. Thus, even if mappings between number
words and approximate magnitudes did emerge early, these mappings
could not provide the kind of fixed semantic definitions required for
learning number words (for further discussion of this general point, see
Laurence & Margolis, ; Carey, ; Lyons, Nuerk & Ansari, ).

Constructivist accounts: objects and approximate magnitudes

One alternative to this nativist proposal, from Susan Carey (Carey, ,
), argues that children construct the concepts ‘one’, ‘two’, and ‘three’
from object representations, and then infer the logic of counting from
these early meanings. Regarding one, two, and three, Carey appeals to
evidence that, when humans track objects in a visual display, we are
limited to tracking three or four things at a time. This evidence comes not
only from adult studies of object tracking and object-based attention (for
review see Pylyshyn, ; Kahneman, Treisman & Gibbs, ; Scholl,
), but also evidence that human infants can keep track of up to three
individuals when hidden from view (e.g. behind an occluder, in a bucket,
or in a box; see Wynn, a; Feigenson, Carey & Hauser, ;
Feigenson & Carey, ; etc.). Following Gordon (), Carey calls this
object tracking ability “parallel individuation” (or PI), since objects are
individuated via distinct, parallel indexes in visual working memory.
Critically, this system can represent objects and their properties but not
sets per se, with the important consequence that it cannot represent the
properties of sets, either, such as cardinality. Consequently, for Carey,
learning the meanings of one, two, and three requires enriching PI (Le
Corre & Carey, ), with set representations like those found in natural
language, which include atomic individuals, plural sets composed of these
atoms, and a logical language that describes relations between these sets.
The meanings of one, two, and three are thus defined by associations
between the words and different sets – i.e. those including either one, two,
or three atomic individuals.

Having acquired meanings for one, two, and three in this way, the child
becomes a CP-knower, on Carey’s () account, by noticing an
isomorphism between the meanings of these numbers and the structure of
the count list. Specifically, according to Le Corre and Carey ():

“. . . the child makes an analogy between two very different ordering
relations: sequential order in the count list (e.g. “two” after “one” and
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“three” after “two”), and sets related by addition of a single individual
({ix}, {ix iy}, {ix iy iz}). This analogy then supports the induction that
each numeral refers to a set that can be put into – correspondence
with a set of a given cardinality, with cardinalities individuated by
additional individuals. It also supports the induction that for each
numeral on the list that refers to a set of cardinality n, the next numeral
on the list refers to a set with cardinality n + . (p. )

In some ways, this general framework resembles a much older proposal from
John Stuart Mill. Though less refined in its assumptions about human
cognition, Mill’s () idea is nevertheless similar to Carey’s in assuming
that small numbers can be learned by associating them to small sets, and
that larger number words must be learned via inductive inference.
According to Mill:

“. . . we may call, ‘Three is two and one,’ a definition of three; but the
calculations which depend upon that proposition do not follow from the
definition itself, but from an arithmetical theorem presupposed in it,
namely, that collections of objects exist, which while they impress the
senses thus, ∴, may be separated into two parts, thus, . . .. This
proposition being granted, we term all such parcels Threes, after which
the enunciation of the above-mentioned physical fact will serve also for
a definition of the word Three.” (Mill, , pp. –).

From here, Mill () argues that mathematical knowledge is “altogether
inductive” and that two foundational aspects of number – i.e. exact
equality and the successor principle – are known inductively from
experience with things in the world. Thus, like modern constructivists,
Mill believed that the logical meanings of larger number words were
learned via an inductive inference rooted in perception, which begins with
observations regarding small sets of objects (for a critical review of this
hypothesis from Mill’s time, see Frege,  []).

A second constructivist account, due to Liz Spelke (e.g. Spelke & Tsivkin,
), also rejects the idea that the logic of counting is innate, and, like Carey
(), posits a role for object representations. However, unlike Carey,
Spelke also believes that the approximate number system must also play a
role in early learning. Specifically, Spelke and colleagues (e.g. Spelke &
Tsivkin, ) argue that while the object tracking system can explain why
children’s knower level stages are limited to –, it can’t explain how
object representations are transformed into representations of sets, or how
larger numbers get their content. To remedy this, Spelke argues that
natural number emerges from a combination of parallel individuation –

which provides the notion of precise number – and the approximate
number system – which, unlike parallel individuation, can represent sets
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and properties like cardinality, and is not limited to small quantities (for
discussion see Izard, Streri & Spelke, ). Thus, by combining the
systems via the symbolic representations provided by natural language, the
limitations of each are overcome. Specifically, according to Spelke and
Tsivkin (), the child begins the learning process by mapping the
words one through four onto corresponding representations in both parallel
individuation AND the ANS, thereby relating the two systems symbolically
for each numeral learned. Next, the child notices that, for the numerals
one through four, moving from one number word to the next corresponds
to changes in the representations generated by both PI and the ANS. This
observation then allows them to learn how verbal counting encodes
number – i.e. that each individual step in the count list corresponds to a
step from one number to its successor, where the successor of a number is
one greater than its predecessor. Thus, much like Carey, Spelke proposes
that the meanings of larger number words come about by an inductive
inference over one, two, and three when children become CP-knowers. But
unlike Carey, she believes that this inference is only possible if the content
of one, two, and three is defined in terms of both parallel individuation and
the ANS.

These two constructivist theories share two basic attributes. First, they
argue that learning the meanings of one, two, and three involves the
construction of new conceptual resources on the basis of perceptual
representations that do not individually have this content. Second, they
argue that the logic of counting is inductively inferred from knowledge of
the small numbers, and thus that there is a strong causal link between
learning small and large number words. Below, I will show that neither of
these claims is empirically supported: that number word meanings are not
rooted in perception, and that the logic of large numbers is not learned
from small numbers.

LANGUAGE, PERCEPTION, AND LOGIC

At the core of my approach is a four-way distinction between levels of
representation relevant to number word learning, and to language
acquisition more generally. These four levels are as follows:

. Perception
. Verbal labels
. The logical hypothesis space
. Meanings defined in the logical hypothesis space

In this schema, ‘Perception’ refers to representations of individual objects
and sets, and our ability to compare sets on the basis of their approximate
magnitude. With only these data, we can notice rough differences in
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quantity, but lack the ability to make precise measurements or computations,
or to keep accurate records in the service of trade. ‘Verbal Labels’ include the
words that label the positive integers, like one, two, and three. Following
Fodor (), I assume that these first two levels of representation are not
alone sufficient to explain the origin of children’s logical representations of
number, since such a logic cannot be expressed in these levels. Also, I take
number word learning to be in part an inductive process, and therefore
assume that new logical resources cannot be constructed from a hypothesis
space that does not already have the relevant representational power. For
example, a quantificational logic (one that includes existential and
universal quantifiers) cannot be built from a simple predicate logic, since
any inductive inference that involves positing new symbols would need to
include these symbols as inputs to learning (much like learning that a
triangular object is called a blicket requires both the prior concept
‘triangular object’ and the label blicket).
On the basis of this, I therefore assume that any meaning which can be

expressed must be definable in terms of a hypothesis space, which is
distinct from both perception and the verbal labels. Thus, I make a
distinction between the ‘Logical hypothesis space’ and the ‘Meanings
defined in the logical hypothesis space’, and distinguish both of these from
the perceptual phenomena in the world that they seek to describe and
explain. Whereas the hypothesis space is populated by a collection of
primitive representations (i.e. representations that cannot be further
decomposed into smaller parts), actual meanings can take the form of
either simple primitives, combinations of primitives, or learned relations
between primitives and/or their combinations. Critically, primitive
representations enter into logical propositions, which are not present in the
perceptual data themselves. This is what differentiates meanings from the
data that they explain. Although the data – whether characterized in terms
of objects or magnitudes – can readily be described by many logics, this
does not make them logical in and of themselves. To learn a logic of
counting, a logical hypothesis space of some form is required above and
beyond perception.

More specifically, I propose that the hypothesis space that supports
number word learning is the same space which supports other aspects of
language acquisition, like quantifier acquisition, and the learning of
number morphology, which emerge both independent of number words,
and often several months earlier. This simple logic is one that includes
representations of atomic individuals and plural sets, as well as simple
Boolean operators (like conjunction and disjunction), inter alia. However,
I do not propose that the logic of the positive integers is innate. Instead, I
propose that (i) the numbers one, two, and three map onto innate primitive
concepts (plural sets of one, two, or three atomic individuals), and (ii)
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larger numbers are defined by learned relations between primitive concepts.
Thus, I assume an innate logical hypothesis space – as I believe any coherent
theory must ultimately do – but I propose nothing beyond what is already
required for learning the fundamental components of natural language.
Specific to mathematics is only the successor function and its induction to
all possible numbers, both of which I argue are learned from the use of
counting procedures.

In the two sections that follow, I first describe the evidence that one, two,
and three are learned by mapping verbal labels onto concepts that are
routinely encoded by natural language when children learn singular and
plural morphology. These meanings are not constructed, and do not derive
from perception of objects or approximate magnitudes. I then describe
how children learn the logic of counting – and in particular the successor
function – by drawing on years of experience with blind counting
procedures, a process that is totally independent of small number word
knowledge and perceptual systems.

FIRST PROPOSAL: ONE, TWO , AND THREE ARE ACQUIRED FROM

INNATE CONCEPTS, INDEPENDENT OF COUNTING

The first component of my proposal is that learning one, two, and three is
fundamentally a problem of mapping words to pre-existing concepts.
Learning these words does not require constructing new domain-specific
conceptual resources from perception of objects or approximate magnitudes.
Also, their meanings are unrelated to counting or innate counting
principles. Instead, the meanings of one, two, and three are grounded in the
same conceptual resources that support the acquisition of quantifying
expressions in natural language like singular and plural nouns, or quantifiers
like several and many.

Cross-cultural and historical variability

Over human history, languages have routinely featured grammatical forms
for expressing precise quantities up to three even in absence of explicit
counting systems. Some languages, like English, distinguish between
singular and plural forms, which agree with numerals like one, two, etc.

a. One red button is lying on the table.
b. Two red buttons are lying on the table.
c. Five red buttons are lying on the table.

Others, like Slovenian Arabic, Hebrew, Sanskrit, and Ancient Greek,
make a singular, dual, and plural distinction. And although less common,
some languages, like Larike, make a distinction between singular, dual,
trial, and plural (Corbett, ). No languages have grammatical markers

LANGUAGE, PROCEDURES, AND NUMBER



https://doi.org/10.1017/S0305000917000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000917000058


for four or above (see Corbett, , for review). However, there are many
languages, including Japanese and Chinese, which have no obligatory
singular–plural distinction, despite having numerals, and thus do not
feature grammatical agreement with numerals. For example, the Japanese
sentences describing one, two, or five buttons lying on a table differ only
with respect to the numeral used, and otherwise are grammatically identical.

The historical record contains many instances of humans who can
precisely express quantities up to three or four but who lack linguistic
symbols for larger precise quantities. These include speakers of languages
like Pirahã (Gordon, ; Frank, Everett, Fedorenko & Gibson, ),
Mundurucu (Pica, Lemer, Izard & Dehaene, ), Nicaraguan homesign
(Spaepen, Coppola, Spelke, Carey & Goldin-Meadow, ; Coppola,
Spaepen & Goldin-Meadow, ; Spaepen, Flaherty, Coppola, Spelke &
Goldin-Meadow, ), Jarawara (Dixon, ), Krenak (Loukotka,
), Warlpiri (Hale, ), Aranda (Sommerfelt, ), Botocudos
(Tylor, ), etc. In such languages, small numbers are often represented
as part of a morphological paradigm much like the singular–plural
distinction in English. Just as often, however, they are instead
independent word forms that are subject to grammatical recombination.
For example, Haddon () reports Melanesian dialects spoken in the
Torres Straight in which the word for ‘one’ is urapun, ‘two’ is okosa, and
higher numbers are derived via combination – e.g. okosa-urapun ( + ),
okosa-okosa ( + ), okosa-okosa-urapan (+  + ), etc. Similarly, Donohue
() describes the Melanesian language One, which has words for
singleton (ara) and dual (plana) sets, and allows combination to describe
larger quantities. Two facts about One are especially remarkable. First,
according to Donohue, speakers generally do not use their system to count
beyond  (which, interestingly is expressed as  + , rather than  +  + ),
presumably because they quickly lose track of where they are in the
counting sequence as numbers grow larger. Second, despite this limitation,
speakers of One apparently recognize that larger sets can be precisely
quantified. According to Donohue, this limitation “does not mean that
people are not capable of keeping careful track of precisely how much is
owed to which parties in any transaction, with quantities reckoned
routinely extending up to and beyond ” (p. ).

The prevalence of restricted number systems extends to accounts in
popular culture, like the rabbit language Lapine, spoken by the fictional
rabbits of the county of Hampshire, UK. According to Richard Adams,
author of the popular () children’s novel Watership Down, “Rabbits
can count up to four. Any number above four is hrair – ‘a lot,’ or ‘a
thousand.’ Thus they say U Hrair – ‘The Thousand’ – to mean,
collectively, all the enemies (or elil, as they call them) of rabbits – fox,
stoat, weasel, cat, owl, man, etc.” (p. ). According to Adams, the Lapine
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counting system explains the name of his book’s chief protagonist, ‘Fiver’.
On this topic, Adams notes “There were probably more than five rabbits
in the litter when Fiver was born, but his name, Hrairoo, means “Little
Thousand” – i.e. the little one of a lot or, as they say of pigs, the runt’”
(Adams, , p. ).

While many languages have restricted number word systems, it is not
unusual for these systems to be supplemented by independent tally
systems that make use of either the body, notches on wood, stones
(‘calculi’), string, or other media to keep track of precise quantities (for a
general overview, see Ifrah, , and Menninger, ). Here I would
like to observe two properties of these systems. First, consistent with my
hypothesis that small and large number words are learned by distinct and
independent mechanisms, tally systems are often completely independent
of the language’s quantificational system, and are constructed precisely
with the goal of compensating for the limits of natural language
quantification. Second, they speak to the origin of verbal counting
systems. Although tally systems initially begin as distinct from natural
language, labels for positions in tallies are sometimes co-opted and become
used as verbal counting systems, independent of the original tally systems.

One especially informative case of this can be found in the Amazonian
language group Nadahup, described by Epps (), in which there are
three related groups, the Nadëb, Hup, and Dâw, each of whom uses a
different, but related, number system. The Nadëb dialect has words akin
to one (roughly ‘unity’), two (‘a couple’), and three, as well as words
similar to several, all, and many (literally, ‘not one’). Nearby speakers of
the Hup dialect have unrelated words for –, which translate roughly as
that (‘one’), eye quantity (‘two’), without sibling (‘three’), and with sibling
(‘four’). Of relevance to the current discussion, the third language
described by Epps, Dâw, uses the expressions ‘with sibling’ and ‘without
sibling’ differently, to label body counts. In Dâw, the first three number
words translate roughly as ‘unity’ (‘one’), ‘eye quantity’ (‘two’), and
‘rubber seed tree quantity’ (‘three’). To label a set of four, one hand is
held up with fingers grouped into pairs, as the expression ‘with sibling’ is
uttered. To label five, the same gesture is made, but with the thumb
extended, accompanied by the expression ‘without a sibling’ (see
Figure A). This system allows enumeration up to , where both hands
form the gesture for  and are held up together, while ‘with a sibling’ is
uttered in conjunction (see Figure B).

Dâw is particularly interesting for two reasons. First, it highlights the very
common differentiation that cultures make between the enumeration of small
and large quantities. When cultures have tally systems, these systems
generally are used to extend a verbal system that is restricted to either a
singular, dual type system, or a system of that contains words for ‘one’,
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‘two’, and ‘three’ that can be recombined in only very limited ways. Second,
these tallies – whether gestures, body counts, or other – sometimes acquire
labels of their own: labels for tallies in Dâw (has no sibling / has a sibling)
have been co-opted in the neighboring Hup dialect to label the quantities
‘three’ and ‘four’, without requiring hand gestures to be used at the same
time. Very generally, a common solution to the limited expressive power
of natural language is to create external symbol systems that can be used to
precisely tally individuals, and, on occasion, to extend the linguistic
system by labeling the values in the physical system in order to create a
verbal counting system.

A precise, but non-exact, semantics for ‘one’, ‘two’, and ‘three’

The point of this review is to notice that labels for ‘one’, ‘two’, and ‘three’
have routinely emerged in human history (and sometimes in rabbits) as
linguistic expressions quite independent of full-fledged systems for
counting, and likewise that tally systems often emerge as independent
complements to small number morphology. Flowing from this, my
hypothesis is that children in the US – and in other groups who are
exposed to a counting system – initially analyze small numbers using the
same logic that supports learning singular, dual, and trial forms. In
particular, small number words can be treated as properties of pluralities
(Krifka ; Landman, ; Bale & Barner, ; Chierchia ), such
that their denotations can be represented by join semi-lattices with
minimal parts corresponding to countable individuals (as in Link, ).
Consider, for example, the lattice structure in Figure .

In a context (or domain) that includes exactly four individuals, a, b, c, and
d, each object made available by perception can be represented in the logical
hypothesis space as a singleton atomic individual, and can be labeled either

Fig. . Dâw hand gestures representing  (A: ‘has no sibling’) and  (B: ‘has a sibling’).
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by singular nouns or by the numeral one. These individuals can also be
composed into plural sets comprising two, three, or four individuals.
Critically, these pluralities form a partial ordering. If we write a singleton
set as a, then the set containing the singleton set – i.e. having one
element – can be written as {a}, while a dual set will contain two elements,
which might correspond to any of {ab}, {ac}, or {ad} in Figure . A set
containing three atomic individuals can therefore be written as either abc,
abd, acd, or bcd, creating a partial order. As I show later in the paper,
together with simple predicates and logical operators like equality,
universal and existential quantifiers, and conditionals, this partial order
can be used as a hypothesis space for inferring successor principle (for one
demonstration of this, see Partee, ter Meulen & Wall, ).

In English, pluralities like those shown in Figure  can all be described
using plural nouns. However, in dual languages like Central Slovenian,
pluralities containing two individuals can be labeled using expressions
with dual agreement, leaving sets of three or more to be labeled using
plural forms. Meanwhile, these same set representations can be used to
represent the meanings of numerals like one, two, and three in an identical
fashion: one corresponds to singleton sets, two to pluralities containing two
individuals, and three to pluralities containing three (see Figure ). For
example, a sentence like “The rabbit has two carrots” might be
represented using this approach as: ∃x[has(x)(rabbit) ∧ carrots(x) ∧ #(x) =
]. As noted by Kennedy (), this type of analysis assigns a precise
meaning to each lexical item, one, two, and three, much as it would for
singular, dual, and trial forms. This logic therefore proposes a uniform

Fig. . Levels of numerical representation, including perceived objects, approximate
magnitudes (represented by a line), logical atoms and pluralities, number words, and
number morphology.
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treatment of numerals and morphological forms, unlike alternative
approaches, which posit distinct representations for these different
linguistic forms. On this view, if these concepts are innate, they are not
specific to integers, but instead are the same innate representations used to
support the acquisition of natural language. And if they are constructed,
they must be built BEFORE children begin learning integers, in order to
explain the acquisition of number morphology.

On this proposed view, although numerals have precise meanings (one
means ‘one individual’, two means ‘two individuals’), each word can
nevertheless be interpreted as ‘lower bounded’ when used in an
existentially quantified sentence and therefore isn’t treated as ‘exact’ by
default. For example, the sentences in (a) and (b) can each be written as
‘∃x[has(x)(rabbit) ∧ carrot(x)]’ and thus are both true in a context in
which a rabbit has three carrots:

() a. The rabbit has one carrot
b. The rabbit has a carrot.

Although both the singular and one denote singletons, when used in
sentences like those in () they do not rule out the existence of larger sets,
since their semantics is satisfied by the existence of singleton sets. As
argued by Barner and Bachrach (), children may arrive at upper
bounded ‘exact’ interpretations of numerals via a type of pragmatic
inference, called scalar implicature (Grice, ), whereby they implicitly
reason that a stronger statement, like the one in (), must not be true,
since if it were then a cooperative speaker would have uttered it instead.

() The rabbit has two carrots.

Reasoning in this way, the listener infers that (a) is true but that stronger
statements including () is false, resulting in the inference in ():

() The rabbit has one carrot, but not two (or three, four, etc.).

On this account, children’s first meaning for one is identical to the meaning
of the singular form, two is identical to a dual, and three is like a trial. In each
case, the meaning is precise, in that it denotes a set containing a specific
number of individuals. But the expressions are not exact (i.e. they don’t
logically rule out the existence of larger sets). To assign a number word, n,
an exact meaning, children must first learn the meaning of its immediate
successor, n + , which places an upper bound on the size of sets to which
n can apply – e.g. to become a two-knower, they must learn the precise
meaning of three. To understand this distinction between precise and exact
meanings, consider how children interpret singular nouns. Although
children as young as two years of age only give an experimenter one
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banana when asked to “put a banana in the circle”, they nevertheless respond
“yes” when shown two bananas in the circle and asked, “Is there a banana in
the circle?” (Barner, Chow, and Yang, ). In contrast, as soon as children
become one-knowers, they give one object for one and reject sets of two when
asked, “Is there one banana in the circle?” These facts suggest that these
children associate singular expressions with singleton sets, but nevertheless
don’t treat them as exact – i.e. they accept the description as true even if
some other description might be more informative (e.g. there are “some
bananas in the circle”). A similar failure to compute implicatures can be
found for the contrast between some and all, in which children as old as
nine or ten years of age accept sentences like, “Some of the horses jumped
the fence” when all of them did, whereas adults judge such statements to
be bad, since the speaker should have said all (Smith, ; Noveck, ;
Papafragou & Musolino, ; Barner, Brooks & Bale, ; Barner, ;
Hochstein, Bale, Fox & Barner, ; etc.).

On analogy, my proposal is that children’s first number words have precise
meanings – like singular, dual, or trial – that only become EXACT only when
their successors are learned. Consistent with this, Barner and Bachrach
() showed that n-knowers (e.g. one-knowers) actually associate the
numeral n +  with sets of n +  before treating it as exact. This result is
true across multiple languages including English, Japanese, and Russian,
and has now been replicated in two additional studies (Gunderson et al.,
; Wagner, Chu & Barner, unpublished data). On this analysis, children
who are classified by Wynn’s Give-a-Number task as one-knowers actually
know the precise meaning of two, but aren’t yet called two-knowers because
they lack a meaning for three.

Critically, abstract semantic representations of atomic individuals emerge
well before number word learning begins in earnest. A now substantial
literature suggests that preverbal infants can track not only small sets of
individual objects (e.g. Wynn, a; Feigenson & Carey, ), but also
non-objects like actions and collections (Starkey, Spelke & Gelman, ,
; Wynn, ; Wynn, Bloom & Chiang, ; Wood & Spelke, ;
for a review, see Cantrell & Smith, ). Further, children use number
words to quantify jumps, sounds, holes, and other non-objects from the
time they begin using number words (Bloom, ; Giralt & Bloom,
). Also, sometime between the age of  and  months – before they
learn the meaning of one – children begin to make use of and comprehend
the singular–plural distinction in language, and to deploy this distinction
in non-verbal object-tracking tasks (Cazden, ; Brown, ; Mervis &
Johnson, ; Dale & Fenson, ; Kouider, Halberda, Wood & Carey,
; Barner, Thalwitz, Wood, Yang & Carey, ; Li, Ogura, Barner,
Yang & Carey, ; Wood, Kouider & Carey, ). Finally, children
begin to use quantifiers and logical expressions like some, all, and, or, no,
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etc. several months before they begin to learn number word meanings
(Fenson et al., ; Barner, Libenson, Cheung & Takasaki, ;
Feiman, ).

The acquisition of these linguistic forms – like the number morphology,
logical connectives, and quantifiers – suggests that children have access to a
rich hypothesis space of abstract individuals and sets prior to the onset of
number word learning. My suggestion is that, rather than causing such
concepts to emerge, number word learning may build on pre-existing
set-relational concepts. Although it is possible that the logic expressed by
natural language arose in humans due to natural language (and can only
arise developmentally in children who learn a language), this remains an
open question. It is just as likely that these logical represents emerge
independent of language, and are available even to preverbal infants, and
act as a basis for learning number morphology and other forms. However,
the nature and origin of infants’ preverbal logical representations remains a
profound puzzle that we have only begun to explore, and the next great
frontier in the language acquisition literature.

Evidence from syntactic bootstrapping

Thus far we have seen that languages often feature expressions for ‘one’,
‘two’, and ‘three’ that are independent of counting. We’ve also seen that
children might plausibly acquire one, two, and three using the same
semantics that supports singular, dual, and trial forms. This semantics –
which emerges beginning in infancy – includes representations of atomic
individuals and plural sets, and allows for distinctions between pluralities
of different sizes.

Empirical evidence for this hypothesis comes from cross-cultural studies
of syntactic bootstrapping. The basic idea of bootstrapping theories is that,
when learning a language, children might acquire one type of knowledge –
e.g. semantic knowledge – from knowledge of an entirely different form –

e.g. syntactic knowledge. For example, semantic bootstrapping theories,
which take many forms (e.g. Schlesinger, , ; Grimshaw, ;
Macnamara, ; Pinker, ), posit that children might use innate
categories like ‘object’ and ‘action’ to identify syntactic categories like
‘noun’ and ‘verb’. On nativist versions of semantic bootstrapping, children
might assume that words which label objects belong to an innate category
‘noun’, and then go about learning the language-specific syntactic
properties of these words, thereby acquiring the syntactic category noun
(e.g. Grimshaw, ; Pinker, ). For constructivists, the semantic
categories ‘object’ and ‘action’ form the basis for distributional learning,
from which syntactic categories emerge. Regardless of which version is
adopted, the common thread is that semantic representations are used to

BARNER



https://doi.org/10.1017/S0305000917000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000917000058


learn syntax. Syntactic bootstrapping theories (e.g. Brown, ; Gleitman,
) reverse this logic, and argue that children might make inferences about
the meanings of expressions based on syntactic evidence.

In the case of number word learning, various versions of syntactic
bootstrapping have been proposed. According to one early proposal by
Bloom and Wynn (), children begin the process of acquiring number
word meanings by inferring that this class of words encodes the properties
of sets, rather than of individual things. On their view, children first
notice that number words occur in similar syntactic contexts as other
words that encode set-relational properties, like quantifiers. For example,
they might notice that, like the words many and several, number words
almost always modify count nouns (e.g. table, cup) rather than mass nouns
(e.g. water, mud). As a preliminary test of this idea, two previous studies
asked whether children’s comprehension of quantifiers is predictive of
their number knower level, using a task nearly identical to Give-a-
Number, wherein children are asked to, e.g. “give an orange”, “give all of
the bananas”, or “give some of the strawberries” from a larger set.
(Barner, Chow & Yang, ; Barner, Libenson, Cheung & Takasaki,
). These studies found that two- to five-year-old children’s
comprehension of quantifiers is correlated with their number knower level,
even when controlling for age. The problem with this finding, however, is
that this correlation might be explained by many factors, including
individual differences in children’s rate of learning, or in their exposure to
language input. Consistent with this, even vocabulary size is predictive of
number knower level (Negen & Sarnecka, ).

A more specific form of the bootstrapping hypothesis is proposed by Carey
(, ). According to this idea, children might learn the meanings of
specific number words like one and two from specific morphological forms,
like the singular and plural in English. On this hypothesis, if the words one,
two, and three denote the same conceptual content as grammatical forms like
singular, dual, and trial, then a child who has acquired the semantics of the
grammatical forms, and who hears numerals used with grammatical
agreement, might use this information to speed their learning of the numeral
meanings. For example, a child learning English, and who has already
acquired the semantics of the singular–plural distinction, might use this
knowledge to infer that one cat refers to a singleton cat, whereas two cats and
three cats refer to pluralities (i.e. sets larger than one). However, a child
learning Japanese, who is not exposed to obligatory singular–plural
morphology, would not benefit from this syntactic evidence, and thus might
be slower to learn the difference between ‘one’ and larger numbers.
Consistent with this hypothesis, cross-linguistic studies of number word

learning have found that two- to five-year-old children learning singular–
plural languages, including English and Russian, are substantially faster to
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acquire the meaning of the word for ‘one’ than are children learning Japanese
and Mandarin Chinese, which lack obligatory singular–plural marking
(Sarnecka, Kamenskaya, Yamana, Ogura & Yudovina, ; Barner,
Libenson, Cheung & Takasaki, ). Critically, English-speaking children
in the US begin to produce and comprehend the singular–plural distinction
sometime between  and  months, several months before they begin to
differentiate the meanings of the words one and two in English (Cazden,
; Brown, ; Mervis & Johnson, ; Fenson et al., ; Kouider
et al., ; Wood et al., ). Even more striking, additional studies have
found that two- to five-year-old children learning Central Slovenian and
Saudi Arabic (Almoammer, Sullivan, Donlan, Marušič, O’Donnell &
Barner, ), both of which feature dual morphology, are faster to learn the
meanings of words for ‘one’ and ‘two’ than children learning English – or
any other language studied thus far. For example, whereas almost no
English-speaking children in the US know the meanings of one or two by 

months, roughly half of Slovenian children are either one- or two-knowers
by this age. Remarkably, in this study, Slovenian children were faster to
learn the meanings of words for ‘one’ and ‘two’ despite the fact that they
had almost no knowledge of counting, and could barely count to  by the
age of four (compared to counts of – in US children). Thus, their faster
learning was clearly not attributable to greater exposure to number words or
other correlates of number word leaning, like vocabulary size. More
remarkable still, not all Slovenian children are faster to learn words for one
and two: although children in many regions of the country acquire dialects
of Slovenian that feature dual marking, many children also learn non-dual
dialects. According to Marušič, Plesničar, Razboršek, Sullivan & Barner
(), Slovenian children not exposed to dual morphology are no faster
than English-speaking children to learn their first number words.

Together, these studies provide evidence that children can leverage
singular, dual, and plural agreement to acquire the meanings of number
words, a finding which is consistent with the hypothesis that these forms
encode similar – if not identical – semantic content.

Leaning ‘one’, ‘two’, and ‘three’ twice: evidence from bilingual learners

A final piece of evidence that one, two, and three label domain-general
linguistic concepts, and are not specifically constructed in the process of
number word learning, comes from bilingual language learners. Recall
that, according to the proposals of Carey () and Spelke (Spelke &
Tsivkin, ), the meanings of one, two, and three are constructed either
by combining object representations with linguistic sets, or by combining
objects, sets, and approximate magnitudes. On each hypothesis, we might
expect that though learning these words should be difficult the first time

BARNER



https://doi.org/10.1017/S0305000917000058 Published online by Cambridge University Press

https://doi.org/10.1017/S0305000917000058


around – which indeed it appears to be – it should be substantially easier the
second time around, when children learn a second language. Surprisingly,
however, this is not the case.

In a recent study of French/English and Spanish/English bilinguals,
Wagner et al. () tested two- to five-year-old bilingual children twice,
once in English, and once in their second language. What they found was
that children often had different knower levels in their two languages, so
long as they were not CP-knowers in one of the languages. Subset
knowers – i.e. children who knew the meanings of labels for up to ‘one’,
‘two’, or ‘three’ – were more likely to have a different knower level in their
second language than to have the same knower level. Thus, for example,
some children who were one-knowers in Spanish were three-knowers in
English. In fact, statistical models that predicted children’s L knower
levels from age and counting ability (i.e. how high they could count), were
unimproved when their L knower level was included as a predictor. In
other words, there was no evidence of transfer among subset knowers.
However, in contrast, almost % of children who were CP-knowers in
one language were also CP-knowers in the second language. Knowledge of
the counting procedure did appear to transfer.

What this study suggests is that the well-attested delays that children
exhibit between learning the meanings ‘one’, ‘two’, and ‘three’ are
probably not due to the problem of constructing new concepts. More
likely, instead, is that children struggle with a more banal inductive
problem – common to all word learning – of mapping labels onto existing
concepts. Whereas learning how to use the counting procedure appears to
be a real breakthrough that spreads from one language to the next
(allowing children to skip knower levels in the weaker language), learning
one, two, and three is every bit as hard if you’ve already learned un, deux,
and trois. In this regard, number words do not differ from other quantity
expressions in natural language, or from words like dog and cat: just as
learning how to label cats in English is unlikely to speed the learning of
chat in French, learning two is unlikely to speed deux. This conclusion is
consistent with the broad idea that learning number words probably
doesn’t require a profound conceptual change, but instead relies on
mapping words to existing conceptual structures, which also support the
acquisition of grammatical forms like the singular, dual, and plural.

Why are subset knowers limited to learning ‘one’, ‘two’, and ‘three’ in absence of
counting?

The view proposed thus far eschews a role for domain-specific logic or core
number systems in the acquisition of one, two, and three. The basic logical
hypothesis space of individuals and sets is in place before number word
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learning begins, and is entirely sufficient to explain the meanings of one, two,
and three without invoking additional structures like parallel individuation or
the approximate number system. Parsimony therefore suggests that invoking
these additional systems is not necessary to explain learning. However, one
puzzle on this account is why children – and indeed languages more
generally – are limited to words for up to three or four in the absence of
counting.

On the constructivist accounts of Carey () and Spelke (Spelke &
Tsivkin, ), this set limit falls out of the fact that one, two, and three
are constructed from representations in parallel individuation, which itself
has a set limit. The problem with this logic, however, is that it conflates
two distinct questions: (i) What are the primitive building blocks that
make up the child’s conceptual hypothesis space when learning? and (ii)
What are the domain-general perceptual and processing limits that
constrain learning? Stated simply, a limit on visual working memory does
not itself provide evidence that object representations in visual working
memory are the conceptual building blocks of number word learning.
Indeed, ANY representation that interfaces with visual attention will exhibit
such a limit. As already noted, preverbal children exhibit a set limit of
three to four not only for objects, but also for non-objects like actions
(Starkey et al., , ; Wynn, ; Wood & Spelke, ), and older
children use number words to quantify jumps, sounds, holes, and other
non-objects from the time they begin using number words (Bloom, ;
Giralt & Bloom, ). Attentional limits affect all kinds of tasks that
require attention – not just object tracking. Thus, the fact that a particular
domain of content like object tracking exhibits a set limit in no way
demonstrates that this domain provides the hypothesis space within which
number words are learned.

My proposal is that object representations do not constitute the hypothesis
space from which number words are constructed, but instead are the
phenomena which number words describe and explain. Still, in order to
be characterized by a logic, these perceptual representations must be
accessible to it. Here is where perception exerts its effect on the learning of
small number words: because attention limits humans to representing only
three or four individuals in parallel, children are limited to constructing
logical representations of small sets, even though the logic, in principle,
can represent much larger quantities. This attentional limit should restrict
number word learning whether the logical hypothesis space is parallel
individuation, as Carey and Spelke argue, or any representational system
downstream from perception which uses object representations as inputs.
Consequently, insofar as a separate logic of individuals and sets is required
to explain other phenomena, as argued by Carey () and as I’ve argued
here, there is no independent reason to also invoke parallel individuation
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as part of the child’s hypothesis space from which meanings are constructed.
Objects, collections, and their properties are the things described and
explained by numbers, not the logic that constitutes their meanings.

SECOND PROPOSAL: LEARNING THE SUCCESSOR PRINCIPLE FROM

BLIND TALLIES

Thus far we have reviewed how children might acquire one, two, and three
without appeal to innate domain-specific principles or conceptual change.
However, this discussion has remained neutral to the question of how
children acquire the logic of the positive integers. Though nativist
theories, which posit an innate logic, have little to say about the knower
level stages, it remains possible that their theory is nevertheless right in
the case of counting, and that learning to count involves relating the count
list to an innate, domain-specific logic. Meanwhile, although I have argued
that no special constructivist story is needed to explain how children learn
one, two, and three, I also haven’t ruled out their account of how children
learn the logic of counting – that it is inductively inferred from children’s
knowledge of small number words.

The protracted emergence of the successor function

As already noted, across all cultures previously studied, children who are
exposed to a count list begin by learning words for ‘one’, ‘two’, and ‘three’
in sequence before eventually figuring out that counting can be used to
generate any countable set. Children who have figured this out are
generally called ‘Cardinal Principle knowers’ on the premise that they have
understood that the last numeral in a count represents the cardinality of
the set taken as a whole.

According to constructivist theories of counting, this sudden change in
children’s counting ability suggests that they have made a wild inductive
leap, using their knowledge of the meanings of the small number words to
infer the logic of the count list. Specifically, these accounts propose that
children notice that the meanings of the words one and two differ by
exactly one, and that similarly two and three differ by one. Having noticed
this, they then infer that all numbers in their count list differ by exactly
one from the preceding number, such that for every number n the
successor of n has a cardinality of n + . This, in turn, permits children to
use counting to evaluate cardinality. In keeping with this, Sarnecka and
Carey (), argue:

“The cardinal principle is often informally described as stating that the
last numeral used in counting tells how many things are in the whole
set. If we interpret this literally, then the cardinal principle is a
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procedural rule about counting and answering the question ‘how many.’
. . . Alternatively, the cardinal principle can be viewed as something
more profound – a principle stating that a numeral’s cardinal meaning is
determined by its ordinal position in the list. This means, for example,
that the fifth numeral in any count list – spoken or written, in any
language – must mean five. And the third numeral must mean three,
and the ninety-eighth numeral must mean , and so on. If so, then
knowing the cardinal principle means having some implicit knowledge
of the successor function – some understanding that the cardinality for
each numeral is generated by adding one to the cardinality for the
previous numeral.” (p. )

What Sarnecka and Carey () propose is that a semantic generalization
concerning the relations between number words is what CAUSES children to
become CP-knowers. By noticing that two is equal to one + , that three is
equal to two + , and that four is equal to three+ , the child is able to
infer that five must be equal to four + , and more generally that for any
number n its successor is equal to n + .

The appeal of this account is that it provides a story for how children
might acquire the meanings of large number words – and the basic logical
foundations of arithmetic – all via one powerful semantic induction.
However, as noted by Davidson et al. (), the actual evidence that
Sarnecka and Carey () present in favor of this semantic induction
hypothesis appears to favor the weaker alternative they describe, that
initially children accurately count and give large sets using a blind
procedure, and only much later learn its logic. In describing their account,
Sarnecka and Carey reason that if children become competent counters by
learning the successor relation between numbers – i.e. giving exactly five
depends on understanding that five is equal to four +  – then they should
be able to predict that adding one object to a set of four results in five,
rather than some other number, like six. To test this, they presented
children with a box, told the children that it contained some amount (e.g.
four frogs). Next, they added one object, and then asked children, “Are
there five or six?” Consistent with their hypothesis, Sarnecka and Carey
reported that children who were classified as Cardinal Principle Knowers
using the Give-a-Number task performed better, on average, than children
categorized as one-, two-, or three-knowers, who responded randomly on
this task.

However, although CP-knowers performed well as a group, this relative
success was driven by a small number of highly competent children; most
children in Sarnecka and Carey’s () dataset performed no better than
subset knowers, and randomly guessed. Corroborating this, Davidson
et al. () showed that most young children classified as CP-knowers fail
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to understand the +  rule for even very small numbers – e.g. five and six –

until after they have acquired substantial experience counting. To show
this, Davidson et al., analyzed children’s data according to how high they
could count. What they found is that the least experienced counters – who
could count up to  or less – performed almost uniformly at chance for
small numbers like four and five. Children who could count slightly
higher – up to  – performed only slightly better with small numbers, and
were at chance for numbers in the teens, still well within their productive
counting range. Only children who could count past  succeeded at very
small numbers, as a group, though they still struggled with numbers
bigger than four or five, suggesting that they had not yet generalized the
successor principle to all numbers in their count list, as an inductive
inference account would predict. Further, these results were not merely
due to children’s inability to identify the successors of numbers. When
asked in a separate task what number comes after four, for example, even
low counters were at ceiling in choosing between five and six (for
replications of this effect, see Wagner et al., ; Cheung et al., ; for
similar results using different methods, see Fuson, ).

How do children infer the successor principle?

If the successor principle is not learned when children become CP-knowers,
when does this logical foundation of natural number emerge, and how do
children learn it? This question can be distilled into two sub-questions: (i)
What evidence informs learning? and (ii) What is the nature and origin of
representations that form the hypothesis space for learning?

Building on the work by Davidson et al. () and others, a recent study
by Cheung et al. () explored these questions by asking when children
appear to acquire more than simple item-based knowledge of successor
relations – i.e. when they can reason about the successors of all numbers in
their count list, as well as all POSSIBLE numbers. Cheung et al., point out
that most studies of counting state the successor principle in a way that
deviates importantly from the Peano axioms. For example, according to
Sarnecka and Carey (), children know the successor principle if they
understand that, for any number n, the successor of n equals n + . This,
however, is substantially weaker than how the successor principle is
described by the Peano axioms, which state that every natural number n
has a successor defined as n + . This is stronger because, whereas the
former definition is potentially consistent with the hypothesis that
numbers are finite, the latter is not.
Based on this, Cheung et al. () tested four- to six-year-old children

with Sarnecka and Carey’s () successor task on numbers ranging up to
, and found that children do not exhibit knowledge of item-based
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successors for all numbers in their productive count list until around the age
of five-and-a-half – a full two years after most children in the US become
CP-knowers. Also, Cheung et al. () showed that this knowledge
emerged at around the same time that children begin to show adult-like
intuitions of infinity. Using questions adapted from earlier studies of
infinity understanding, by Evans () and Evans and Gelman (),
Cheung asked children if there exists a highest number, and also whether
it is always possible to add  to any number. Like Evans and Gelman
(), she found that children exhibited adult-like intuitions – that
numbers never end – only around the age of five-and-a-half or six – around
the same time that they realize that for any number n, the successor of n is
equal to n +  (see also Harnett & Gelman, ).

Still, the data from Cheung et al. () do not address how children learn
that every natural number has a successor. Given the lack of evidence for
nativist options thus far, my lab has been exploring the possibility that
children learn the successor principle according to an inductive inference
like that proposed by Carey () and others, but that the inputs to this
inference extend well beyond the numbers one, two, and three. Our basic
idea breaks down into three parts. First, we propose that children require
substantial item-based experience regarding the relations between many
large numbers before they can make the induction to all possible numbers.
Second, we propose that the inductive inference is highly constrained by
the child’s discovery that the count list describes differences between large
approximate magnitudes, and that these magnitudes are clearly ordered
and unbounded in size. Third, and finally, we propose that children infer
that the number words themselves are unbounded when they discover the
structure of the count list, and that numbers are generated by a recursive
base system.

A key observation guiding this proposal is that, to succeed at Sarnecka and
Carey’s () successor task, children must begin with a known
cardinality – e.g. that a set is equal to four – and then compute a new
cardinality after one object is added. This computation closely resembles
what mathematics education researchers label ‘counting on’ (Groen &
Resnick, ; Fuson, ; Fuson & Hall, ; Secada, Fuson & Hall,
). Initially, when children are shown two sets (e.g.  and ), and are
told that the first set contains five, they nevertheless re-count the  items,
followed by the remaining  – a strategy referred to as ‘counting all’. To
‘count on’, children can either begin by labeling the set of  as five and
then continuing – e.g. six, seven, eight – or they can simply begin with six.
Remarkably, this ability is acquired quite late – generally in first grade at
the age of five or six – and is difficult to train, requiring multiple sessions
over several weeks (see Secada et al., ). Not only does ‘counting on’
require the acquisition of new sub-routines – e.g. counting from arbitrary
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points in the count list – but it also requires suppressing the prepotent
disposition to blindly count all, beginning from one. For this reason,
training strategies which remove the possibility of counting all – e.g. by
occluding the first set or providing only a verbal label for it – may be most
effective (for some evidence for this, see Secada et al., ).

These facts suggest that children might learn that the successor of n is n + 

by repeatedly trying to solve exactly this problem, over and over again, as part
of learning formal rules of addition. Still, even if such learning did inform
the discovery of the successor principle, substantial problems would
remain. As Rips, Asmuth, and Bloomfield () point out, the type of
data that children get regarding counting is not sufficiently strong to
differentiate between different types of possible inductive inferences. For
example, Rips et al., argue that, even given item-based knowledge of the
successors for all numbers up to , children might still infer that the next
number denotes a cardinality of  (much as a clock cyclically returns to 

after ). Nothing in a finite set of item-based math facts could alone
justify an inductive inference that numbers continue to infinity. Likewise,
knowledge of individual math facts – e.g. that fifty-two + one equals
fifty-three – could not explain the origin of the logical vocabulary that
could express more general principles like the successor function – that for
every n, its successor is n + . This is because this logical vocabulary is
more general – and thus more powerful – than the facts that it describes.
No current inductive learning model can explain the origin of more
powerful logical structures (Fodor, ).

Here, I return to the premise with which I began this paper, that counting
was created by humans historically to account for an explanatory gap – an
intuition that there exist precise sets of things in the world, composed of
discrete individuals – as well as a noisy perceptual system for representing
magnitudes of any size. Though there is dispute regarding when children
begin to associate numerals with approximate magnitudes, it is
uncontroversial that this has begun in earnest before the age of five (e.g.
see Le Corre & Carey, ; Wagner & Johnson, ; Davidson et al.,
; Gunderson et al., ; Odic, Lisboa, Eisinger, Olivera, Maiche &
Halberda, ; Wagner, Chu & Barner, unpublished data). Although it
seems unlikely that approximate magnitudes could define the content of
the positive integers – since the approximate number system lacks any
logical symbols in which generalizations might be stated (Laurence &
Margolis, ) – it remains possible that it could constrain inductive
inference if children assume that the meanings of the numerals are in some
way isomorphic to states of the approximate number system (as per
Gallistel & Gelman, ). Specifically, if children know that the ANS
represents a monotonically increasingly set of magnitudes, and that the
count list is meant to explain this ordered set, then they could restrict
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their hypotheses regarding the logic of counting to only those models that
result in a monotonically increasing set of precise cardinalities.

Still, even given this important constraint, the problem remains of
explaining how children might infer that numbers are infinite, and that
EVERY number has a successor. Children are only exposed to a finite count
list, and in many languages the adult count list is in fact finite, such that
no inductive inference of the successor principle is licensed. Further, as
already noted, most children appear to initially assume that numbers are in
fact finite, and explicitly say so when asked. These facts suggest that
something else is required to explain children’s insight – at around six
years of age – that numbers are infinite. One possible source of this
insight, which my lab is currently exploring, is children’s growing
familiarity with the recursive structure of counting. In English, as in many
languages, counting observes a recursive base  structure, though many
other base systems are also attested, from base  to vigesimal systems (i.e.
base ; Hammarström, ). Understanding that the count list is
generated by a recursive system might itself provide evidence to children
that it is, in principle, unbounded in size. Although the first twenty
numbers in English provide little evidence for repeating structure, as
children learn to count beyond  they gain increasing evidence for the
base  system. After , they learn that the system is truly recursive,
and that the entire count list from  to  can be recycled for labeling
larger numbers. Currently our lab is attempting to understand how these
forms of evidence might inform children’s insight that numbers never end,
though evidence from past work provides some preliminary clues. For
example, Cheung et al.’s () study finds that children who perform at
ceiling on the successor task and who know numbers are infinite can count
to a minimum of  on average. If children’s insight regarding the
successor principle is driven by understanding the recursive structure of
the count list, they may require evidence from multiple iterations of the
decade structure to make this inference, though perhaps not evidence that
the entire list from  to  can be recursively embedded under .
Consistent with this, Yang () reports that once children can count to
approximately , they generally can count upward indefinitely, suggesting
that they have identified the generative structure of the count list, and can
apply it to generate ever-larger numbers.

Thus far I have addressed the types of experience that children might
require to make an induction regarding the successor principle, but not the
nature of the representations over which this induction is made (i.e. the
logical hypothesis space). Here, I draw on the same logical representations
invoked to explain the acquisition of one, two, and three – i.e. representations
that are much more general than the domain-specific logics posited by
nativist proposals like Leslie et al. (), but which nevertheless fully
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satisfy the requirements of learning the successor function. First, this logic –
which we know children must master to learn quantifiers and grammatical
marking of singular and plural forms – presupposes the existence of atomic
individuals, sets, properties of sets, quantifiers, and set-relational operations
like union and equality. Without this kind of logic, meanings for quantifiers
like all and some or connectives like and could not get off the ground.
Critically, beyond allowing us to state the basic rules of equality (e.g. that if
the successors of two numbers are equal, then those two numbers are also
equal), such a logic also provides a hypothesis space in which the successor
function can be learned, such that it need be innate, but can nevertheless be
described by more general logical representations that are required to explain
simpler linguistic phenomena.

To acquire the successor function, children must observe that for any
number, n, the next number in the count list is equal to n + . To acquire
this, the child would require (i) representations of sets composed of atomic
individuals, and (ii) an ordering of these representations, as in Figure .
As noted by, e.g. Partee et al. (), this ordering of sets of individuals
implicitly represents successor relations, since sets in the ordering differ by
a quantity of exactly one individual (given that atomic individuals are
primitive) and are partially ordered (as per Link, ). To represent this
relation in natural language, the child would therefore need to make this
relation explicit, by noticing how the ordered set of number words maps
onto the ordered set of sets. This in no way means that the successor
function is innate, since many different semantic functions can be
described in a set-based semantics, including variants on the successor
function (e.g. where each numeral denotes only even numbers, or only odd
numbers). Significant inductive learning is still required. However, no new
logical representations are required. Given this, it is possible to specify
something less than a full-fledged innate, domain-specific, successor
function without requiring that the logical resource required for counting
be entirely constructed de novo. Instead, the very same logical resources
that support other aspects of natural language – like singular–plural
morphology – can be used as a hypothesis space for learning the semantic
relations between numerals.

CONCLUSION

In this paper I have proposed that, when children learn to count, they
acquire a system that explains perception, but which is not composed of
perceptual building blocks. As part of this, I have pushed against both
nativist and constructivist theories of number word learning, each of
which assumes that perceptual representations of some sort – whether
objects or magnitudes – are building blocks of number word meanings.
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A key piece of my argument has involved dissociating the acquisition of
small number words from the acquisition of counting. These are two
distinct problems. Against most constructivist accounts, the logic of
counting is not inferred from knowledge of small number words. And
against nativists, there is not a single innate logic that defines all number
words from the beginning. Instead, I’ve argued that one, two, and three are
learned using the same logic of atoms and pluralities that supports the
acquisition of number morphology, and does not require conceptual
change: these concepts are innate. Meanwhile, counting is learned as
children acquire a series of blind procedures, which remain relatively blind
until around the age of six, around the time that they receive formal
training on ‘counting on’, and also have sufficient counting experience to
know that the count list exhibits a recursive structure capable of
generating an unbounded set of labels.

Historically, counting emerged from tally systems, which were designed to
fill an explanatory gap. It makes sense to design a tally system only if the
designer is able to recognize that precise quantities exist in the world in
the first place and that these sets cannot be reliably enumerated via
perception. Perception is not only imprecise, but is transient and
subjective, making it a poor tool for tracking debts, where multiple parties
are involved and disagreement is likely. Earlier generations of humans
repeatedly recognized these shortcomings, and understood that beyond the
noisy veil of perception existed a world of discrete individual things,
worthy of precise enumeration. Historically, counting didn’t emerge from
this noisy veil, but in spite of it. Likewise, children do not learn the
meanings of number words – or the logic of counting – from noisy
perceptual systems. Instead, counting is learned first as a blind procedure,
and only becomes reliably mapped to the perception of magnitudes late in
childhood, when children learn to make analogical mappings between
counting and magnitudes. In this way, counting provides a system for
reasoning about magnitudes that otherwise would remain inscrutable to
humans, and thus opens up a world of reasoning and discovery that is
impossible with perception alone.
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