GRITERIA FOR A HADAMARD MATRIX TO BE SKEW-EQUIVALENT

JUDITH Q. LONGYEAR

Introduction. A matrix H of order $n=4 t$ with all entries from the set $\{1,-1\}$ is Hadamard if $H H^{t}=4 t I$. The set of Hadamard matrices is \mathscr{H}. A matrix $H \in \mathscr{H}$ is of type I or is skew-Hadamard if $H=S-I$ where $S^{t}=-S$ (some authors also use $H=S+I$). The set of type I members of \mathscr{H} is \mathscr{T}. A matrix P is a signed permutation matrix if each row and each column has exactly one non-zero entry, and that entry is from the set $\{1,-1\}$. The set of signed permutation matrices is \mathscr{P}, containing the two subsets \mathscr{A}, those with all non negative entries, and \mathscr{M}, those with zeros off the main diagonal. If H and K are in \mathscr{H}, then H is equivalent to K, or $H \equiv K$, whenever there exist P and $Q \in \mathscr{P}$ with $P H=K Q$. The set of members of H equivalent to members of \mathscr{T} is \mathscr{E}. Note that if $H \equiv K \in \mathscr{E}$ then $H \in \mathscr{E}$.

For each $\mathscr{X}=\mathscr{H}, \mathscr{P}, \mathscr{T}, \mathscr{E}, \mathscr{A}, \mathscr{M}$, the symbol $\mathscr{X}(n)$ refers to the subset of \mathscr{X} whose members all have order n.

The entry in the i th row and j th column of any matrix B is denoted by $B(i, j)$. Thus if $P \in \mathscr{P}(n)$ then there is a permutation σ on n letters for which $P(i, j)=\delta_{i, \sigma(j)}(-1)^{p(j)}$, where p is some mapping from $\{1,2, \ldots, n\}$ to $\{0,1\}$.

If $H \in \mathscr{H}$, then H is skew-normal if $H(i, 1)=-1$ for all i and $H(1, j)=1$ for all $j>1$. Every equivalence class of \mathscr{H} contains a skew-normal representative.

The first criterion.

Criterion 1. For any $H \in \mathscr{H}, H \in \mathscr{E}$ if and only if there exists $P \in \mathscr{P}$ such that $H+2 P \in \mathscr{H}$.

Proof. If $H+2 P \in \mathscr{H}$ then $n I=(H+2 P)^{t}(H+2 P)=H^{t} H+2 H^{t} P$ $+2 P^{t} H+4 I=(n+4) I+2\left(\left(P^{t} H\right)^{t}+P^{t} H\right)$. Thus $-2=-2 I(i, i)=$ $\left(\left(P^{t} H\right)^{t}+\left(P^{t} H\right)\right)(i, i)=2\left(P^{t} H\right)(i, i)$, so $P^{t} H(i, i)=-1$. Also $0=-2 I(i, j)$ for $i \neq j$, so

$$
\left(P^{t} H\right)(i, j)=-\left(P^{t} H\right)^{t}(i, j)=-P^{t} H(j, i)
$$

and therefore $P^{t} H \in \mathscr{T}$.
If $H \in \mathscr{E}$ then there is some $K \in \mathscr{T}$ and some P and Q in \mathscr{P} with $P H Q^{t}=$ K. Since $K \in \mathscr{T}(n), K=S-I$ with $S^{t}=-S$, thus $K+2 I$ satisfies

$$
(K+2 I)^{t}(K+2 I)=K^{t} K+2\left(K^{t}+K\right)+4 I=n I
$$

Received December 15, 1975 and in revised form, August 17, 1976.

Thus $P H Q^{\iota}+2 I \in \mathscr{H}$, whence

$$
P^{t}\left(P H Q^{t}+2 I\right) Q=H+2 P^{t} Q \in \mathscr{H} .
$$

Corollary. $H \in \mathscr{E}$ if and only if there is some $P \in \mathscr{P}$ such that $P^{t} H \in \mathscr{E}$.
Lemma 2. If H is skew-normal and $P^{t} H \in \mathscr{T}$ then the following are equivalent:

1) $P^{t} H$ is skew-normal.
2) $P(1,1)=1$.
3) $p(i)=0$ for all i.

Proof. 1) $\Rightarrow 2$) and 3). If $P^{t} H$ is skew-normal then

$$
\begin{aligned}
-1 & =\left(P^{t} H\right)(i, 1)=\sum_{k=1}^{n} P(k, i) H(k, 1) \\
& =-\sum_{k=1}^{n} \delta_{k \sigma i}(-1)^{p(i)}=-(-1)^{p(i)}
\end{aligned}
$$

Thus $p(i)=1$ for all i, so that $2 P$ only adds to H in $H+2 P$. Since every position of the first row of H is positive except the first, $\sigma 1=1$, so that $P(1,1)=1$.
$2) \Rightarrow 3)$. If $P(1,1)=1$, denote row i of $H+2 P$ by $(H+2 P)(i)$, then for any $i \neq 1$,

$$
\begin{aligned}
& (H+2 P)(1)=1,1, \ldots, 1 \\
& (H+2 P)(i)=H(i, 1), H(i, 2), \ldots,-H\left(i, \sigma^{-1} i\right), \ldots, H(i, n) .
\end{aligned}
$$

Since $H+2 P \in \mathscr{H}$,

$$
\begin{aligned}
(H= & 2 P)(1) \circ(H+2 P)(i)=0 \\
= & H(i, 1)+\ldots+H\left(i, \sigma^{-1} i-1\right)-H\left(i, \sigma^{-1} i\right)+H\left(i, \sigma^{-1} i+1\right) \\
& +\ldots+H(i, n) \\
= & H(1) H(i)+2 H(i, 1)-2 H\left(i, \sigma^{-1} i\right) \\
= & 0+2\left(H(i, 1)-H\left(i, \sigma^{-1} i\right)\right) \\
= & 2\left(-1-H\left(i, \sigma^{-1} i\right)\right) .
\end{aligned}
$$

Thus $H\left(i, \sigma^{-1} i\right)=-1$, so $P\left(i, \sigma^{-1} i\right)=+1$.
$3) \Rightarrow 1$). If $p(j)=0$ for all j, then clearly $P(1,1)=1$ since H is skewnormal. Moreover $P^{t} H(i, 1)=\sum_{k=1}^{n} \delta_{k \sigma(i)} H(k, 1)=H(\sigma i, 1)=-1$.

Since $P^{t} H \in \mathscr{T}, P^{t} H(1, j)=-P^{t} H(j, i)=+1$ for $j \neq 1$, so $P^{t} H$ is skew-normal.

Remark. Since $H \in \mathscr{E}$ if and only if H is equivalent to a skew-normal $K \in \mathscr{T}$, it would be most useful to be able to say that a skew-normal $H \in \mathscr{E}$ if and only if there is some $P \in \mathscr{A}$ with $H+2 P \in \mathscr{H}$, since this would lower the number of computations by a factor of $n 2^{n}$. This is false, however, since the order 20 matrix N discussed below is a counterexample. There are no smaller counterexamples.

The second criterion. We now restrict the discussion to the case where $P \in \mathscr{A}$. Although the necessity for checking each row as first row is actually quite tedious in practice, this necessity imposes no theoretical restriction, since whenever $H+2 P \in \mathscr{H}$ for skew-normal H, the non-zero value of P in the first column must be positive. If this occurs in row i, let $Q H$ be skew normal and have row i of H for row 1. Then $Q H+2 Q P=Q(H+2 P) \in \mathscr{H}$ and $Q P(1,1)=1$.

Definition 1. For $H \in \mathscr{H}$ and skew-normal we define two (v, k, λ)-designs. Let the order of H be $n=4 t$. The treatments of $E(H)$ are the rows H_{2}, H_{3}, \ldots, H_{n}, the blocks are the columns $\{2,3, \ldots, n\}$, and row H_{i} is incident with j whenever $H(i, j)=+1$. Then $E(H)$ is a $(4 t-1,2 t-1, t-1)$-design, as is well known (see, for example, Hall [4, p. 103]). The treatments of $M(H)$ are the columns $\{2, \ldots, n\}$, the blocks the rows H_{2}, \ldots, H_{n}, with row i incident with j whenever $H(i, j)=-1 . M(H)$ is the misère design of H (with respect to the fixed row 1 and column 1) and is easily seen to be a ($4 t-1,2 t, t$)-design. To avoid confusion, we write the blocks of $M(H)$ as M_{2}, \ldots, M_{n} or $M_{2}(H)$, $\ldots, M_{n}(H)$ if necessary.

Definition 2. Let D be any (b, v, r, k, λ) design with $k>\lambda$. Then D is said to have a (t, s, i) cut down if each treatment may be removed from t blocks in such a way that the new smaller blocks form a ($b, v, r-t, k-s, \lambda-i$) design. Clearly, if a $(1,1, i)$ cut down exists for D, then D is a (v, k, λ)-design. Since both $\lambda(v-1)=k(k-1)$ and $(\lambda-i)(v-1)=(k-1)(k-2)$ must be satisfied, we see that $v=4 \lambda-1$, that $k=2 \lambda$, and that $i=1$. If a ($4 t-1,2 t, t$)-design D has a $(1,1,1)$ cut down we shall say that D cuts down, and denote the obtained $(4 t-1,2 t-1, t-1)$-design by D^{*}.

Lemma 1. If $H \in \mathscr{T}$ and H is skew-normal then $M(H)$ cuts down.
Proof. The treatment i can be removed from M_{i} since $H=S-I$. Moreover, since $S^{t}=-S$, the treatment $i \in M_{j}$ if and only if $j \notin M_{i}$, so exactly one occurrence of the pair $\{i, j\}$ is destroyed by doing this.

Lemma 2. If $H \in \mathscr{H}$, if H is skew-normal, and if $H+2 P \in \mathscr{H}$ then $M(H)$ cuts down.

Proof. Since H is skew-normal, $P(1,1)=1$ and so $P \in \mathscr{A}$. If $P(i, j)=$ $\delta_{i, \sigma(j)}$, then $H(\sigma j, j)=-1$, so j may be removed from $M_{\sigma j}$. Moreover, $0=$ $(H+2 P)_{\sigma i} \circ(H+2 P)_{\sigma j}=H_{\sigma j} \circ H_{\sigma j}-2 H(\sigma i, i) H(\sigma i, j)-2 H(\sigma j, i) H(\sigma j, j)$ $=0-2\{-H(\sigma i, j)-H(\sigma j, i)\}$, whenever $i \neq j$. Thus $H(\sigma i, j)=-H(\sigma j, i)$ so that $i \in M_{\sigma j}$ if and only if $j \notin M_{\sigma i}$.

Criterion 2. $M(H)$ cuts down if and only if there is some $P \in \mathscr{A}$ for which $H+2 P \in \mathscr{H}$.

Corollary. $H \in \mathscr{E}$ if and only if H has some row such that $M(H)$ with respect to this row cuts down.

Lemma 3. If $M=M(H)$ cuts down to M^{*}, then M^{*} and $E=E(H)$ are isomorphic designs.

Proof. Let E_{2}, \ldots, E_{n} be the treatments of E; in particular, E_{2} is row 2 of H. Define the mapping f from M^{*} to E by $f(i)=E_{\sigma i}$ and $f\left(M^{*}{ }_{\sigma j}\right)=j$. Clearly, f is a bijection taking the treatments of M^{*} to those of E and the blocks of M^{*} to those of E. To see that f preserves incidence, $i \notin M_{\sigma i}{ }^{*}$, but i was removed from $M_{\sigma i}$ to get $M_{\sigma i}{ }^{*}$, thus $H(\sigma i, i)=-1$, whence $f(i)=E_{\sigma i} \notin i=f\left(M_{\sigma i}{ }^{*}\right)$ in $E(H)$. Also, if $i \neq j$ and $i \in M_{\sigma i}{ }^{*}$ then $j \notin M_{\sigma i}{ }^{*}$, so $H(\sigma i, j)=+1$ whence $f(i)=E_{\sigma i} \in j$ in $E(H)$. Since f preserves incidence, E and M^{*} are isomorphic as designs.

Definition 3. For any (v, k, λ)-design D the derived design $\delta D(B)$ is the (v $-1, k, k-1, \lambda, \lambda-1$)-design consisting of the treatments in the fixed block B and the blocks $B_{i}{ }^{\prime}=B_{i} \cap B$ for all blocks $B_{i} \neq B$ of D. Thus for each row in H, the designs $\delta M^{*}\left(M_{\sigma i}{ }^{*}\right)$ and $\delta E(i)$ are isomorphic ($4 t-2$, $2 t-1,2 t-1, t-1, t-2)$-designs.

Criterion 3. $H \in \mathscr{E}$ if and only if for some choice of normalizing row, $\delta E(2)$ has an incidence preserving injection to $\delta M(M i)$, for some i.

A negative application of the third criterion. In this section we will use Criterion 3 to show that several matrices of order 16 are not in \mathscr{E}, so that $\mathscr{E} \neq \mathscr{H}$. M. Hall, Jr. has shown in [1] that there are exactly 5 equivalence classes of matrices in $\mathscr{H}(16)$. He calls these 'group', ' $3 / 4$ group', ' $1 / 2$ group', 'first $3 / 8$ group' and 'second $3 / 8$ group.' He also shows that the automorphism group fixing the first row on each of these is transitive with respect to columns; thus, we will succeed in finding a cut down in the design for the first row if such a cut down exists for any design of the matrix.
'Group' belongs to the equivalence class containing the matrix H obtained from the elementary abelian group $G=\langle a, b, c, d\rangle$. The difference set $D=$ $\{a, b, c, d, a b, c d\}$ in G generates a $(16,6,2)$-design with blocks $D x=$ $\{a x, b x, c x, d x, a b x, c d x\}$ as x runs over G. A Hadamard matrix H is obtained by taking $H(x, y)=+1$ if and only if $y \in B x$. To normalize H, eliminate the identity from all rows by replacing H_{x} with $-H_{x}$ whenever $x \in D$. Then replace columns $a, b, c, d, a b, c d$ by $-a,-b,-c,-d,-a b,-c d$. If this skewnormal matrix is called K, then we again treat $K_{a}, \ldots, K_{a b c d}$ as sets, in the same way that $H_{1}, \ldots, H_{a b c d}$ represent sets in G.

$$
K_{x}= \begin{cases}H_{x} \Delta H_{1} & \text { if } x \in D=B_{1} \\ H_{x} \Delta H_{1}{ }^{c} & \text { if } x \notin D,\end{cases}
$$

where Δ is symmetric difference and ${ }^{c}$ is the complement in the set $G \backslash\{1\}$.

Thus $\delta E(2)$ is the design with blocks:

$$
\begin{array}{rlrl}
X= & c, d, c d & & d, a c, a c d \\
& a, c, a c & & a, c d, a c d \\
& a, d, a d & & c, a d, a c d \\
Y= & c, d, c d & & d, a c, a c d \\
& a, c, a c & a, c d, a c d \\
& a, d, a d & a c, a d, c d \\
& c, a d, a c d & a c, a d, c d
\end{array}
$$

All the blocks of $\delta E(2)$ come in pairs like X, Y, so if f were to inject $\delta E(2)$ into some $\delta M(i)$ then for each such pair, $|f X \cap f Y| \geqq 3$, but there are no triples of blocks in M that meet in more than two elements. Since no such f is possible, 'group' cannot be a skew-equivalent matrix.

A positive application and a warning. Although it is well known [2] that all order 12 Hadamard matrices are equivalent, it is not always simple to determine just how. Consider the matrix H in Figure 1. With respect to this normalization, E and M have the following blocks:

E	M
a. $8 t(016)$	l. $(\overline{5} 6789 t)$
b. $27(019)$	e. $579(23 \overline{4})$
c. $47(036)$	h. $\overline{6} 9 t(024)$
d. $2 t(035)$	$a .589(\overline{0} 14)$
e. $48(059)$	i. $\overline{7} 69(013)$
l. $(2478 t)$	c. $57 t(01 \overline{2})$
g. $78(135)$	b. $56 t(\overline{1} 34)$
h. $28(369)$	j. $78 \bar{t}(034)$
i. $24(156)$	g. $8 \overline{9} t(123)$
j. $7 t(569)$	d. $568(02 \overline{3})$
k. $4 t(139)$	k. $67 \overline{8}(124)$

If δE is taken with respect to block 5 , then the numbers in parentheses are removed, leaving ten 2 -element blocks. The mapping $(2,4,7,8, t) \rightarrow(6,7, t, 9,8)$ injects this simple design into $\delta M(l)$, taking block a to block a, etc. Moreover, it induces $(0,1,6,9,3,5) \rightarrow(5,4,1,3,0,2)$ which injects E into M, leaving the overscored numbers to be removed for a cut down of M.

It should be emphasized that not all injections of $\delta E(l)$ into some δM necessarily extend to E. For instance, it would have been more natural to take $\delta E(a)$ and $\delta M(l)$, and again an injection exists, namely $(0,1,6,8, t) \rightarrow$
($9,7, t, 6,8$) ; but in trying to extend this, one is faced with mapping

$$
\begin{aligned}
\{2,7,9\} & \rightarrow\{2,3,4\} \\
\{3,4,7\} & \rightarrow\{0,2,4\} \\
\{2,3,5\} & \rightarrow\{0,1,4\}
\end{aligned}
$$

which is impossible since the first three form a triangle on $2,3,7$ but the second three are copunctual on 4.

								∞	1	1	2	3	4
5	5	6	7	8	9	t							
	-	1	1	1	1	1	1	1	1	1	1	1	
0	-	1	1	1	1	1	-	-	-	-	-	-	
1	-	1	1	-	-	-	-	1	-	1	-	1	
2	-	-	1	-	1	-	1	-	1	1	-	-	
3	-	-	-	1	1	-	-	1	1	-	-	1	
4	-	-	-	1	-	1	1	-	-	1	-	1	
5	-	-	-	-	1	1	-	1	-	1	1	-	
6	-	1	-	1	-	-	-	-	1	1	1	-	
7	-	-	1	1	-	-	1	1	-	-	1	-	
	-	1	-	-	-	1	1	1	1	-	-	-	
9	-	-	1	-	-	1	-	-	1	-	1	1	
t	-	1	-	-	1	-	1	-	-	-	1	1	

Figure 1
The remaining order 16 matrices. Since Hall [1] has shown that the group of automorphisms fixing row 1 is transitive on the columns for all order 16 Hadamard matrices, we need only consider the designs obtained by using row 1 for normalization. The matrix 'group' was discussed in the section 'a negative application of criterion 3 ', and shown not to be skew-equivalent. The agreement of 'group', ' $3 / 4$ group' and ' $1 / 2$ group' on all first 8 rows and 8 columns shows that when each is normalized by row 1 and δE taken with respect to row 2 , the same design results, namely one in which the blocks come in identical pairs. As before, any injection f of such a pair X, Y to any $\delta M(i)$ requires $|f X \cap f Y \cap \operatorname{row}(i)| \geqq 3$. Thus the rows $\{2,3, \ldots, i-1, i+1, \ldots, 16\}$ must be paired j, j^{*} so that \mid row $i \cap$ row $j \cap$ row $j^{*} \mid \geqq 3$. In M (group), each three rows intersect in 2 elements. In M ($3 / 4$ group), if $i \geqq 13$ then some pair $\left\{j, j^{*}\right\}$ has, say, $j \geqq 13$, but no pair of rows from $\{13,14,15,16\}$ intersects any third row in more than 2 elements. If $i<13$, then some pair $\left\{j, j^{*}\right\}$ have both $j, j^{*}<13$, but then i, j, j^{*} are as in M (group), so again, it is impossible. Thus ' $3 / 4$ group' $\notin \mathscr{E}$. In M ($1 / 2$ group), row 2 would need to be in some triple $\left\{i, j, j^{*}\right\}$, but row 2 meets each pair of other rows in 0 or 2 elements.

By contrast, in both M ($3 / 8$ group)'s, there is an abundance of the neces-
sary triples, and both cut down as follows.
1 st $3 / 8$ group (1) ($11,13,6,7,10,4,15,16,2,8,9,3,14,2,5)$
2nd $3 / 8$ group (1) ($9,14,7,15,4,12,5,11,6,16,2,13,3,10,8)$.
Thus 11 is removed from block 2 and 13 from block 3 in M (1st $3 / 8$ group).
These cut downs were obtained using criterion 2 on a computer, and used about three minutes each.

The order 20 matrices. In [3], Hall showed that there are exactly three equivalence classes of order 20 matrices, which he calls Q, P, N. The class Q contains the matrix obtained from the non-zero quadratic residues modulo 19, which is type I. The class N is new and is skew-equivalent. If N, as given on page 40 of [3] is normalized by row 5 , then $M(N)$ cuts down by

$$
(15,9,17,2)(1)(12,20,7,11,14,3,8,6,10,5,19,19,16,4,13)
$$

This cut down was obtained by the same computer program, taking about 20 minutes. It also reported that normalizations by rows $1,2,3,4$ have no cut downs. The same program, in 80 minutes, returned that $P \notin \mathscr{E}$, but there is no direct proof.

The class P contains both the Paley and Williamson matrices of order 20.

On difference sets.

Definition. A (v, k, λ)-difference set is a set of k of the residues mod v, say $D=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$, such that every non-zero residue occurs exactly λ times as $x_{i}-x_{j}$. The blocks $D+i=\left\{x_{1}+i, x_{2}+i, \ldots, x_{k}+i\right\}$ for $i=0,1, \ldots$, $v-1$ form a (v, k, λ)-design on $\{0,1, \ldots, v-1\}$, and the complementary blocks form a ($v, v-k, v-2 k+\lambda$)-design. Such a difference set D is called a Hadamard difference set if $v=4 t-1, k=2 t-1, \lambda=t-1$, and is called a skew-Hadamard difference set if $D \cup\{0\}$ is a ($4 t-1,2 t, t$)-difference set.

Example. The difference set $D=\{1,2,4\}$ is a skew-Hadamard difference set. The misère difference set, $S=\{0,3,5,6\}$ thus has the cyclic cut down $S(i)^{*}=(S+i) \backslash\{i\}$. It also has many non-cyclic cut downs such as

S	3	5	6	(0)	$S+4$	0	2	(3)	4
$S+1$	(4)	6	0	1	$S+5$	1	3	4	(5)
$S+2$	5	(0)	1	2	$S+6$	(2)	4	5	6

Interestingly, if g is the mapping which assigns i to $S+g(i)$ in this cut down, then the mapping $i \rightarrow g(i)$ induces an injection from M^{*} to M so that the leftover treatments form a cyclic cutdown of M. It would be particularly nice to know if such is always the case, that is if whenever $i \rightarrow S+g(i)$ is a cutdown of M, then g acting on the elements of M^{*} induces a mapping from M^{*}
to M which leaves over a cyclic cutdown. This is not known. E. C. Johnson [5] has shown that if any Hadamard difference set extends by adding 0 , then it must have been the quadratic residue set.

In combination with the truth of the statement about g, this would say that no Hadamard matrix constructed from a difference set was in \mathscr{E}, except the quadratic residue matrices, which are all in \mathscr{T}.

The author would like to thank John McKay for introducing her to the problem and for a most stimulating correspondence during the course of the work.

References

1. M. Hall, Jr. Hadamard matrices of order 16, J.P.L. Research summary No. 36-10, 1 (1961), 21-26.
2. - Note on the Matthieu group M_{12}, Arch. Math. 13 (1962), 334-340.
3. - Hadamard matrices of order 20, J.P.L. Technical Report No. 32-761 (1965), 1-41.
4. - Combinatorial theory (Ginn-Blaisdell, Waltham, Mass., 1967).
5. E. C. Johnson, Skew-Hadamard abelian group difference sets, J. Algebra 1 (1964), 388-402.

Wayne State University,
Detroit, Michigan

