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Abstract

Consider a two-type Moran population of size N with selection and mutation, where
the selective advantage of the fit individuals is amplified at extreme environmental
conditions. Assume selection and mutation are weak with respect to N, and extreme
environmental conditions rarely occur. We show that, as N→∞, the type frequency
process with time sped up by N converges to the solution to a Wright–Fisher-type SDE
with a jump term modeling the effect of the environment. We use an extension of the
ancestral selection graph (ASG) to describe the genealogical picture of the model. Next,
we show that the type frequency process and the line-counting process of a pruned ver-
sion of the ASG satisfy a moment duality. This relation yields a characterization of the
asymptotic type distribution. We characterize the ancestral type distribution using an
alternative pruning of the ASG. Most of our results are stated in annealed and quenched
form.
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1. Introduction

The Wright–Fisher diffusion with mutation and selection describes the evolution of the
type composition of an infinite two-type haploid population, which is subject to mutation and
selection. Fit individuals reproduce at rate 1+ σ , σ ≥ 0, whereas unfit ones reproduce at rate 1.
In addition, individuals mutate at rate θ to the fit type with probability ν0 ∈ [0, 1], and to the
unfit type with probability ν1 := 1− ν0. The proportion of fit individuals evolves forward in
time according to the stochastic differential equation (SDE)

dX(t)= (θν0(1− X(t))− θν1X(t)+ σX(t)(1− X(t))) dt

+√2X(t)(1− X(t)) dB(t), t≥ 0, (1.1)
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702 F. CORDERO AND G. VÉCHAMBRE

where (B(t))t≥0 is a standard Brownian motion. The solution to (1.1) arises as the diffusion
approximation of (properly normalized) continuous-time Moran models and discrete-time
Wright–Fisher models. In the neutral case, it also appears as the limit of a large class of
Cannings models (see [33]). The genealogical counterpart to X is the ancestral selection graph
(ASG), which is a branching–coalescing process coding the potential ancestors of an untyped
sample of the population at present. It was introduced by Krone and Neuhauser in [29, 35]
and later extended to models evolving under general neutral reproduction mechanisms (see
[2, 15]), and to general forms of frequency-dependent selection (see [1, 12, 19, 34]).

For θ = 0, the process (R(t))t≥0 that counts the lines in the ASG is moment dual with 1− X,
i.e. for every n ∈N, x ∈ [0, 1], and t≥ 0 we have

E
[
(1− X(t))n | X(0)= x

]=E
[
(1− x)R(t) | R(0)= n

]
. (1.2)

This relation yields an expression for the absorption probability of X at 0 in terms of the
stationary distribution of R. For θ > 0, there are two variants of the ASG that dynamically
resolve mutation events and encode relevant information about the model: the killed ASG and
the pruned lookdown ASG. The killed ASG was introduced in [3] to determine whether a
sample consists only of unfit individuals. Its line-counting process extends Equation (1.2) to
the case θ > 0 [3, Proposition 1] (see [13, Proposition 2.2] for a generalization). This allows
one to characterize the stationary distribution of X. The pruned lookdown ASG in turn was
introduced in [31] (see [2, 11] for extensions) as a tool for determining the ancestral type
distribution, i.e. the type distribution of the individuals that have been successful in the long
run.

In many biological situations the strength of selection fluctuates in time. The influence of
random fluctuations in selection intensities on the growth of populations has been the object of
extensive research in the past (see e.g. [8, 9, 18, 25–27, 36]), and it is currently experiencing
renewed interest (see e.g. [4, 7, 10, 20–22]). In this paper, we consider the scenario where
the selective advantage of fit individuals is accentuated by exceptional environmental condi-
tions (e.g. extreme temperatures, precipitation, humidity variation, abundance of resources,
etc.). As an example, consider a population consisting of fit and unfit individuals which is sub-
ject to catastrophes. Assume that only fit individuals are resistant to the catastrophes. Hence,
shortly after a catastrophe the population may drop below its carrying capacity and subse-
quently grow quickly. Since fit individuals have a reproductive advantage, it is likely that their
relative frequency will grow fast after a catastrophe. One may also think of a population con-
sisting of individuals that are specialized to high temperatures, as well as wild-type individuals
accustomed but not specialized to them. The environment is characterized by moderately high
temperatures, present most of the time, and short periods of extreme heat. It is then likely that
specialized individuals have a (slight) reproductive advantage under moderate temperatures,
and a more prominent advantage at extreme temperatures.

To model the previously described scenario we use a two-type Moran population with
mutation and selection, immersed in a varying environment. The environment is modeled
via a countable collection of points ζ := (ti, pi)i∈I in (−∞,∞)× (0, 1), satisfying that∑

ti∈[s,t] pi <∞ for all s< t. Each ti represents the time of an instantaneous environmental
change; the peak pi models the strength of this event: at time ti each fit individual independently
reproduces with probability pi. Each offspring replaces a different individual in the population,
so that the population size remains constant. The summability of the peaks ensures that the
number of reproductions in any compact time interval is almost surely finite. In this context,
we show that the type frequency process is continuous with respect to the environment. The
proof uses coupling techniques that uncover the effect of small environmental changes.
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Moran models and Wright–Fisher diffusions in random environment 703

Next, we consider a random environment given by a Poisson point process on (−∞,∞)×
(0, 1) with intensity measure dt×μ, where dt stands for the Lebesgue measure and μ is a
measure on (0, 1) satisfying

∫
xμ(dx)<∞. Then we let population size grow to infinity, and

we show that, in an appropriate parameter regime, the fit-type frequency process converges to
the solution to the SDE

dX(t)= (θν0(1− X(t))− θν1X(t)) dt+ X(t−)(1− X(t−))dS(t)

+√2X(t)(1− X(t))dB(t), t≥ 0, (1.3)

where S(t) := σ t+ J(t), and J is a pure-jump subordinator with Lévy measure μ, independent
of B, which represents the cumulative effect of the environment. We refer to X as the Wright–
Fisher diffusion in random environment. We prove the convergence in an annealed setting, i.e.
when the environment is random. For environments given by compound Poisson processes, we
show that the convergence also holds in a quenched sense, i.e. when a realization of the envi-
ronment is fixed. For θ = 0, Equation (1.3) is a particular case of [4, Equation 3.3], which arises
as the large-population limit of a family of discrete-time Wright–Fisher models [4, Theorem
3.2].

Next, we generalize the construction of the ASG, the killed ASG, and the pruned lookdown
ASG to incorporate the effect of the environment. In the annealed case, we establish a relation
between X, the line-counting process of the killed ASG, and the total increment of the envi-
ronment; we refer to this relation as a reinforced moment duality. The latter is a central tool
for characterizing the asymptotic type frequencies. We also express the ancestral type distribu-
tion in terms of the line-counting process of the pruned lookdown ASG. Analogous results are
obtained in the more involved quenched setting.

As an application of our results, we compare the long-term behavior of two Wright–Fisher
diffusions without mutations, the first one having parameter σ = 0 and an environment with
Lévy measure μ, and the second one having parameter σ = ∫(0,1) yμ(dy) and no environment.
We prove that the probability of fixation of the fit type is smaller under the first model than
under the second one, provided that the initial frequency of fit individuals is sufficiently large;
see Proposition 2.2.

The analysis of a more realistic scenario where environmental changes are not always favor-
able to the same type cannot be done via the methods presented in this paper. The main reason
is that in such a setting the frequency process does not admit a moment dual. To circumvent
this problem one has to take into account the whole combinatorics of the ASG, which is a
cumbersome object. This is the object of a forthcoming study.

We would also like to mention the parallel development by González Casanova et al. in [20].
They study the accessibility of the boundaries and the fixation probabilities of a generalization
of the SDE (1.3) with θ = 0. The paper [20] makes use only of the ASG and does not cover the
case θ > 0, where the killed and the pruned lookdown ASG play a pivotal role. Moreover, the
reinforced moment duality and all the results obtained in the quenched setting are to the best
of our knowledge new.

This article is organized as follows. An outline of the paper containing our main results
is given in Section 2. In Section 3 we prove the continuity of the type frequency process in
the Moran model with respect to the environment, that (1.3) is well-posed, and that it arises
in the large-population limit of the type frequency process of a sequence of Moran models.
In Section 4 we give more detailed definitions of the ASG, the killed ASG, and the pruned
lookdown ASG. Section 5 is devoted to the proofs of (i) the annealed moment duality between
the process X and the line-counting process of the killed ASG, (ii) the long-term behavior of
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the annealed type frequency process, and (iii) the annealed ancestral type distribution. The
quenched versions of these results are proved in Section 6. Section 7 provides additional
(quenched) results for environments having finitely many jumps in any compact time interval.

2. Description of the model and main results

Notation. The positive integers are denoted by N, and we set N0 :=N∪ {0}. For m ∈N,

[m] := {1, . . . ,m}, [m]0 := [m]∪ {0}, and ]m] := [m] \ {1}.
For x, y ∈R, we define x∧ y := min{x, y}, x∨ y := max{x, y}, and (x)+ := x∨ 0. For s< t,

we denote by Ds,t (resp. D) the space of càdlàg functions from [s, t] (resp. R) to R, which is
endowed with the Billingsley metric inducing the J1-Skorokhod topology and makes the space
complete (see Appendix A.1). For any Borel set S⊂R, denote by Mf (S) (resp. M1(S)) the set

of finite (resp. probability) measures on S. We use
(d)−→ to denote convergence in distribution of

random variables and
(d)=⇒ for convergence in distribution of càdlàg processes.

For n ∈N0 and k,m ∈ [n]0, we write K ∼Hyp(n,m, k) if K is a hypergeometric random
variable with parameters n, m, and k, i.e.

P(K = i)=
(

n−m

k− i

)(
m

i

)
/

(
n

k

)
, i ∈ [k ∧m]0.

For x ∈ [0, 1] and n ∈N, we write B∼Bin(n, x) if B is a binomial random variable with
parameters n and x, i.e.

P(B= i)=
(

n

i

)
xi(1− x)n−i, i ∈ [n]0.

Relevant notation introduced in the next sections is collected in Appendix B.

2.1. Moran models in deterministic pure-jump environments

Consider a population of size N with two types, 0 and 1, subject to mutation and selection
influenced by a deterministic environment. The latter is modeled by an at most countable col-
lection ζ := (tk, pk)k∈I of points in (−∞,∞)× (0, 1) satisfying for any s, t ∈R with s≤ t that∑

tk∈[s,t]

pk <∞. (2.1)

We refer to pk as the peak of the environment at time tk. The individuals in the population
undergo the following dynamic. Each individual independently mutates at rate θN ≥ 0 with
probability ν0 ∈ [0, 1] (resp. ν1 := 1− ν0) to type 0 (resp. 1). Reproduction occurs indepen-
dently from mutation. Individuals of type 1 reproduce at rate 1, whereas individuals of type 0
reproduce at rate 1+ σN , σN ≥ 0. (The subscript N in the parameters σN and θN emphasizes
their dependence on N. In Theorem 2.2 we will require that they are asymptotically propor-
tional to 1/N.) Thus, we refer to type 0 (resp. type 1) as the fit (resp. unfit) type. In addition, at
time tk each type-0 individual independently reproduces with probability pk. At reproduction
times, (a) each individual produces at most one offspring, which inherits the parent’s type, and
(b) if n individuals are born, n individuals are randomly sampled without replacement from
the population present before the reproduction event (including the parents) to die, keeping the
size of the population constant.
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FIGURE 1. Left: a realization of the Moran IPS; time runs forward from left to right; the environment
has peaks at times t0 and t1. Right: the ASG that arises from the second and third lines (from bottom to
top) in the left picture, with the potential ancestors drawn in black; time runs backward from right to left;
backward time β ∈ [0, T] corresponds to forward time t= s+ T − β.

Graphical representation. In the absence of environmental factors (i.e. ζ =∅), it is classical
to describe the evolution of the population by means of the graphical representation as an
interacting particle system (IPS). This decouples the randomness of the model due to the initial
type configuration from the randomness due to mutations and reproductions. We now extend
the graphical representation to incorporate the effect of the environment (see Section 3.1 for a
more detailed description).

In the graphical representation, individuals are represented by horizontal lines at levels
i ∈ [N] (see Figure 1). Time runs forward from left to right. Potential reproduction events are
depicted by arrows, with the (potential) parent at the tail and the offspring at the tip. We dis-
tinguish between neutral and selective arrows. Neutral arrows have a filled arrowhead; they
occur at rate 1/N per pair of lines. Selective arrows have an open arrowhead; they occur in
two independent ways: first, they occur at rate σN/N per pair of lines, and second, at any time
tk, k ∈ I, a random number nk ∼Bin(N, pk) of lines shoot selective arrows to nk individuals in
the population. Furthermore, beneficial (deleterious) mutations, depicted as circles (crosses),
occur at rate θNν0 (at rate θNν1) per line.

Note that for any s< t, the number of non-environmental graphical elements present in
[s, t] is almost surely finite. Moreover, thanks to Assumption (2.1), we have

E

⎡
⎣ ∑

tk∈[s,t]

nk

⎤
⎦=N

∑
tk∈[s,t]

pk <∞. (2.2)

Hence,
∑

tk∈[s,t] nk <∞ almost surely, i.e. the number of arrows in [s, t] due to peaks of the
environment is almost surely finite.

Once the graphical elements in [s, t]× [N] are drawn, we specify the initial conditions by
assigning types to the N lines at time s and propagate them forward in time according to the
following rules: the type of a line right after a circle (resp. cross) is 0 (resp. 1). In particular, if
the type before the circle (resp. cross) is 0 (resp. 1), the mutation is silent. Type 0 propagates
through neutral arrows and selective arrows; type 1 propagates only through neutral arrows.

Reading off ancestries in the Moran model. The ancestral selection graph (ASG) was intro-
duced by Krone and Neuhauser in [29] (see also [35]) to study the genealogical relations in the
diffusion limit of the Moran model with mutation and selection. In what follows, we briefly
explain how to adapt this construction to the Moran model in deterministic environment.

Consider a realization of the IPS associated to the Moran model in the environment
ζ := (tk, pk)k∈I in the time interval [s, s+ T]. Fix an untyped sample of n individuals at time
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FIGURE 2. The descendant line (D) splits into the continuing line (C) and the incoming line (I). The
incoming line is ancestral if and only if it is of type 0. The true ancestral line is drawn in bold.

s+ T and trace backward in time (from right to left in Figure 1) the lines of their potential
ancestors (i.e. the lines that are ancestral to the sample for some type-configuration at time s),
ignoring the effect of mutations; the backward time β ∈ [0, T] corresponds to the forward time
t= s+ T − β. We do this as follows. When a neutral arrow joins two individuals in the current
set of potential ancestors, the two lines coalesce into a single one at the tail of the arrow. When
a neutral arrow hits a potential ancestor from outside the current set of potential ancestors, the
hit line is replaced by the line at the tail of the arrow. When a selective arrow hits the current set
of potential ancestors, the individual that is hit has two possible parents, the incoming branch
at the tail and the continuing branch at the tip. The true parent depends on the type of the
incoming branch, but for the moment we work without types. These unresolved reproduction
events can be of two types: a branching event if the selective arrow emanates from an indi-
vidual outside the current set of potential ancestors, and a collision event if the selective arrow
links two current potential ancestors. Note that at the peak times, multiple lines in the ASG
can be hit by selective arrows, and therefore, multiple branching and collision events can occur
simultaneously. Mutations are superposed on the lines of the ASG.

The object arising under this procedure up to time β = T is called the Moran-ASG in
[s, s+ T] under the environment ζ . It contains all the lines that are potentially ancestral (ignor-
ing mutation events) to the lines sampled at time t= s+ T; see Figure 1. Note that, since the
number of events occurring in [s, s+ T] is almost surely finite (see (2.2)), the Moran-ASG in
[s, s+ T] is well-defined.

Given an assignment of types to the lines present in the ASG at time t= s, we can extract
the true genealogy and determine the types of the sampled individuals at time t= s+ T . To this
end, we propagate types forward in time along the lines of the ASG, taking into account muta-
tions and reproductions, with the rule that if a line is hit by a selective arrow, the incoming line
is the ancestor if and only if it is of type 0; see Figure 2. This rule is called the pecking order.
Proceeding in this way, the types in [s, s+ T] are determined along with the true genealogy.

Evolution of the type composition. Consider the set D� of non-decreasing functions ω ∈D

satisfying the following:

(i) for all s< t ∈R, 	ω(t) :=ω(t)−ω(t−) ∈ [0, 1) and
∑

u∈[s,t] 	ω(u)<∞;

(ii) ω is pure-jump, i.e. for all s< t, ω(t)=ω(s)+∑u∈(s,t] 	ω(u).

Note that the set of environments ζ := (tk, pk)k∈I satisfying (2.1) can be identified with
the set of functions ω ∈D� with ω(0)= 0. Indeed, for any ω ∈D�, the collection of points
{(t, 	ω(t)) :	ω(t)> 0)} is countable and satisfies (2.1) (the same collection is obtained if we
add a constant to ω; this is why we set ω(0)= 0). Conversely, for any ζ := (tk, pk)k∈I , the
function ω : R→R defined via

ω(t) :=
∑

tk∈(0,t]

pk for t≥ 0, and ω(t) := −
∑

tk∈(t,0]

pk for t< 0,
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belongs to D�. For this reason, we often abuse notation and refer to the elements of D� as
environments. In addition, an environment ω ∈D� is said to be simple if ω has only a finite
number of jumps in any compact time interval. We denote by 0 the environment corresponding
to ζ =∅ and refer to it as the null environment.

We denote by ZωN (t) the number of fit individuals at time t in a Moran population of size N
subject to the environment ω ∈D�. We refer to ZωN := (ZωN (t))t≥0 as the quenched fit-counting
process. In particular, Z0

N is just the continuous-time Markov chain on [N]0 with infinitesimal
generator

A0
Nf (n) :=

[
(1+ σN)

n(N − n)

N
+ θNν0(N − n)

]
(f (n+ 1)− f (n))

+
[

n(N − n)

N
+ θNν1n

]
(f (n− 1)− f (n)).

Note that ifω has a jump at time t, the number n(t) of individuals placing offspring is a binomial
random variable with parameters ZωN (t−) and 	ω(t). Since the n(t) individuals that will be
replaced are chosen uniformly at random, the additional number of fit individuals after the
reproduction event is a hypergeometric random variable with parameters N, N − ZωN (t−), and
n(t). Therefore, the dynamic of ZωN is as follows. Recall that in any finite time interval, the
number of environmental reproductions is almost surely finite. Thus, we can define (Si)i∈N
as the increasing sequence of times at which environmental reproductions take place. We set
S0 := 0. By construction, (Si)i∈N is Markovian and its transition probabilities are given by

P(Si+1 > t | Si = s)=
∏

u∈(s,t]

(1−	ω(u))N, i ∈N0, 0≤ s≤ t.

If ZωN (0)= n ∈ [N]0, then ZωN evolves in [0, S1) as Z0
N started at n. For i ∈N, if

ZωN (Si −)= k, then ZωN (Si)= k+H(N,N − k, B̃i(k)), where the random variables
H(N,N − k, b)∼Hyp(N,N − k, b), b ∈ [k]0, and B̃i(k) are independent, and B̃i(k) is a
binomial random variable with parameters k and 	ω(Si) conditioned to be positive. Then, ZωN
evolves in [Si, Si+1) as Z0

N started at ZωN (Si).
Let us fix T > 0. We end this section with our first main result, which provides the continuity

in [0, T] of the fit-counting process with respect to the environment. Note that the restriction
of the environment to [0, T] can be identified with an element of

D�T := {ω ∈D0,T :ω(0)= 0, 	ω(t) ∈ [0, 1) for all t ∈ [0, T], ω is

non-decreasing and pure-jump} . (2.3)

Moreover, we equip D�T with the metric d�T defined in Appendix A.1, Equation (A.3).

Theorem 2.1. (Continuity.) Let ω ∈D�T and {ωk}k∈N ⊂D�T be such that d�T (ωk, ω)→ 0 as
k→∞. If Zωk

N (0)= ZωN (0) for all k ∈N, then

(Zωk
N (t))t∈[0,T]

(d)===⇒
k→∞ (ZωN (t))t∈[0,T].

Theorem 2.1 is proved in Section 3.1.
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2.2. Moran models in subordinator-driven environments

In contrast to Section 2.1, we consider here a random environment given by a Poisson point
process (ti, pi)i∈I on (−∞,∞)× (0, 1) with intensity measure dt×μ, where dt stands for the
Lebesgue measure and μ is a measure on (0, 1) satisfying∫

(0,1)
xμ(dx)<∞. (2.4)

The latter implies that (ti, pi)i∈I almost surely satisfies Assumption (2.1). In particular, setting
J(t) := ∑ti∈(0,t] pi for t≥ 0 and J(t) := −∑ti∈(t,0] pi for t< 0, we have J ∈D� almost surely.
Moreover, by the Lévy–Itô decomposition, (J(t))t∈R is a pure-jump subordinator with Lévy
measure μ. If the measure μ is finite, then J is a compound Poisson process, and thus the
environment J is almost surely simple.

We will see in Section 3.1 that, using the graphical representation, one can simultaneously
construct Moran models for any ω ∈D�. Now, consider an independent pure-jump subordi-
nator (J(t))t≥0, with Lévy measure μ on (0, 1) satisfying (2.4). Thanks to Theorem 2.1 the
process ZJ

N := (ZJ
N(t))t≥0 is well-defined. We refer to ZJ

N as the annealed fit-counting process.
By definition, we have

P(ZJ
N ∈ ·)=

∫
P(ZωN ∈ ·)P(J ∈ dω).

In other words, P(ZωN ∈ ·) is the law of ZJ
N conditionally on a realization ω of the environment

(i.e. P(ZωN ∈ ·)= P(ZJ
N ∈ · | J =ω)) and is classically referred to as the quenched measure, while

P(ZJ
N ∈ ·) integrates the effect of the random environment and is classically referred to as the

annealed measure.
The process ZJ

N is a continuous-time Markov chain on [N]0 with generator

ANf (n) :=A0
Nf (n)+

∫
(0,1)

(
E
[
f (n+H(N,N − n, Bn(u)))

]− f (n)
)
μ(du), n ∈ [N0],

where Bn(u)∼Bin(n, u), and for any i ∈ [n]0, H(N,N − n, i)∼Hyp(N,N − n, i) are
independent.

The dynamic of the graphical representation is as follows. For each i, j ∈ [N] with i �= j,
selective (resp. neutral) arrows from level i to level j appear at rate σN/N (resp. 1/N). For each
i ∈ [N], open circles (resp. crosses) appear at level i at rate θNν0 (resp. θNν1). For each k ∈ [N],
every group of k lines is subject to simultaneous potential reproductions at rate

σN,k :=
∫

(0,1)
yk(1− y)N−kμ(dy),

resulting in the appearance of k selective arrows from the lines of this group (of potential
parents) to the lines of a group of size k (the potential descendants) that is chosen uniformly
at random among subsets of size k of the N individuals. The k selective arrows are drawn
uniformly at random from the k potential parents to the k potential descendants. Recall that
only type 0 propagates through selective arrows, while both types propagate through neutral
arrows. The appearance of a selective arrow is therefore silent when the potential parent at its
tail is of type 1.
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FIGURE 3. An illustration of a path of the process Xω in the interval [0, T]. The grey vertical lines
represent the peaks of the environment ω; t1, t2, t3, and t4 are the jump times of ω.

2.3. The Wright–Fisher diffusion in random environment

In this section we are interested in the Wright–Fisher diffusion in random environment
described in the introduction as the solution to the SDE (1.3). In Section 3 we will see that,
indeed, for any x0 ∈ [0, 1], this SDE has a pathwise unique strong solution starting at x0 (see
Proposition 3.3).

Consider a pure-jump subordinator J = (J(s))s≥0 with Lévy measure satisfying (2.4) and an
independent standard Brownian motion B= (B(s))s≥0. For any T > 0, the solution to (1.3) in
[0, T] is a measurable function of (B(s), J(s))s∈[0,T], which we denote by F(B, J). A regular
version of the conditional law P(F(B, J) ∈ · | J =ω) of F(B, J) given J is classically referred
to as the quenched probability measure. It is defined for almost every realization ω of J.
P(F(B, J) ∈ ·) integrates the effect of the random environment and is classically referred to
as the annealed measure. As before, the quenched and annealed measures are related via

P(F(B, J) ∈ ·)=
∫

P(F(B, J) ∈ · | J =ω) P(J ∈ dω).

We write X and Xω for the solutions to (1.3) under the annealed and quenched measures,
respectively. For ω simple, the process Xω starting at x0 can be alternatively defined as fol-
lows. Denote by t1 < · · ·< tk the consecutive jump times of ω in [0, T], and set t0 := 0 and
Xω(0) := x0. In the intervals [ti, ti+1), Xω evolves as the solution to (1.1) starting at Xω(ti).
Moreover, if Xω(ti −)= x, then Xω(ti) := x+ x(1− x)	ω(ti); see Figure 3 for an illustration.

The next result states the convergence of the type frequency process in the Moran model to
the Wright–Fisher diffusion in random environment, as population size grows to ∞ and time
is suitably accelerated.

Theorem 2.2. (Convergence.) Assume that NσN → σ and NθN → θ as N→∞, for some
σ, θ ≥ 0 (weak selection, weak mutation).

1. Let J be a pure-jump subordinator with Lévy measureμ in (0,1), and set JN(t) := J(t/N),

t≥ 0. Define the process (XN(t))t≥0 via XN(t) := ZJN
N (Nt)/N, t≥ 0. If XN(0)

(d)−−−→
N→∞ x0,

then
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(XN(t))t≥0
(d)===⇒

N→∞ (X(t))t≥0,

where X is the unique pathwise solution to (1.3) with X(0)= x0.

2. Let ω ∈D� be a simple environment and set ωN(t) :=ω(t/N), t≥ 0. Define the process

(XωN(t))t≥0 via XωN (t) := ZωN
N (Nt)/N, t≥ 0. If XωN (0)

(d)−−−→
N→∞ x0, then

(XωN (t))t≥0
(d)===⇒

N→∞ (Xω(t))t≥0,

with Xω starting at x0.

The proof of Theorem 2.2 is given in Section 3.2. The reason for using the environment JN

or ωN is to compensate for the fact that time is sped up by a factor of N. In this way, XN and X
share the same environment.

Remark 2.1. The result analogous to Theorem 2.2(1) in the context of discrete-time Wright–
Fisher models without mutations is covered by the fairly general result [4, Theorem 3.2] (see
also [20, Theorem 2.12]).

Remark 2.2. If J is a compound Poisson process, then almost every environment is sim-
ple. In this case, according to Theorem 2.2(2), the quenched convergence holds for almost
every environment (with respect to the law of J). We conjecture that this is true for gen-
eral J. In Proposition 3.4 we show that the sequence (XωN)N≥1 is tight for any environment ω.
Hence, it would suffice to prove the continuity of ω �→ Xω to obtain the desired convergence.
Unfortunately, since the diffusion term in (1.3) is not Lipschitz, the standard techniques used
to prove this type of result fail. Developing new techniques to cover non-Lipschitz diffusion
coefficients is beyond the scope of this paper.

2.4. The ancestral selection graph in random/deterministic environment

The aim of this section is to associate an ASG to the Wright–Fisher diffusion in ran-
dom/deterministic environment. In contrast to the Moran model setting described in Section
2.1, it is not straightforward to set up a graphical representation for the forward process. To
circumvent this problem, we proceed as follows. We first consider the graphical representation
of a Moran model with parameters σ/N, θ/N, ν0, ν1, and environment ωN(·)=ω(·/N), and we
speed up time by N. Next, we sample n individuals at time T and we construct the ASG as in
Section 2.1.

Now, replace ω by a pure-jump subordinator J with Lévy measure μ supported in (0,1).
Note that the Moran-ASG in [0, T] evolves according to the time reversal of J. The latter is the
subordinator J̄T := (J̄T (β))β∈[0,T] with J̄T (β) := J(T)− J((T − β)−), which has the same law
as J (its law does not depend on T). A simple asymptotic analysis of the rates and probabilities
for the possible events leads to the following definition.

Definition 2.1. (The annealed/quenched ASG.) The annealed ancestral selection graph
G := (G(β))β≥0 with parameters σ, θ, ν0, ν1, and environment driven by a pure-jump subor-
dinator with Lévy measure μ, associated to a sample of size n of the population at time T is the
branching–coalescing particle system starting with n lines and with the following dynamic:

(i) Each line independently splits at rate σ into an incoming line and a continuing line.

(ii) Every given pair of lines independently coalesces into a single one at rate 2.
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FIGURE 4. Illustration of a path of the process Xω (grey path) and the killed ASG GωT (black lines)
embedded in the same picture. Forward time t runs from left to right; backward time β := T − t runs
from right to left. The environment ω jumps at forward times t0, t1, and t2.

(iii) If m is the current number of lines in the ASG, every group of k lines independently
experiences a simultaneous branching at rate

σm,k :=
∫

(0,1)
yk(1− y)m−kμ(dy), (2.5)

i.e. each line in the group splits into an incoming line and a continuing line.

(iii) Each line is independently decorated by a beneficial mutation at rate θν0.

(v) Each line is independently decorated by a deleterious mutation at rate θν1.

Let ω : R→R be a fixed environment. The quenched ancestral selection graph with parame-
ters σ, θ, ν0, ν1, and environment ω of a sample of size n at time T is a branching–coalescing
particle system GωT := (GωT (β))β≥0 starting at β = 0− with n lines and evolving as the annealed
ASG but with (iii) replaced by the following:

(iii′) If at time β we have	ω(T − β)> 0, then any line splits into two lines, an incoming line
and a continuing line, with probability 	ω(T − β), independently from the other lines.

See Figure 4 for an illustration of the type frequency process Xω and the killed ASG GωT .
The branching–coalescing system GωT is clearly well-defined for ω simple. The justification
of the previous definition for general environments is more involved and will be given in
Section 4.1.

Remark 2.3. In the Moran model, a neutral arrow appears from line A to line B at rate 1/N
and from line B to line A at the same rate. Two lines are thus connected by a neutral arrow at
rate 2/N, which explains the rate of coalescence events in (ii).

2.5. Type frequency via the killed ASG

The aim of this section is to relate the type-0 frequency process X to the ASG. To this
end, assume that the proportion of fit individuals at time 0 is equal to x ∈ [0, 1]. Conditionally
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on X(T), the probability of independently sampling n unfit individuals at time T equals (1−
X(T))n. Now, consider the annealed ASG associated to the n sampled individuals in [0, T], and
randomly assign types independently to each line in the ASG at time β = T according to the
initial distribution (x, 1− x). In the absence of mutations, the n sampled individuals are unfit
if and only if all the lines in the ASG at time β = T are assigned the unfit type (because at
any selective event a fit individual can only be replaced by another fit individual). Therefore, if
R(T) denotes the number of lines present in the ASG at time β = T , then conditionally on R(T),
the probability that the n sampled individuals are unfit is (1− x)R(T). We would then expect to
have

E[(1− X(T))n
∣∣X(0)= x]=E[(1− x)R(T)

∣∣R(0)= n].

Mutations determine the types of some of the lines in the ASG even before we assign types
to the lines at time β = T . Hence, we can prune away from the ASG all the sub-ASGs arising
from a mutation event. If in the pruned ASG there is a line ending in a beneficial mutation, we
can infer that at least one of the sampled individuals is fit. If all the lines end up in a deleterious
mutation, we can infer directly that all the sampled individuals are unfit. In the remaining case,
the sampled individuals are all unfit if and only if all the lines present at time β = T in the
pruned ASG are assigned the unfit type. We use this idea in Section 4.2 to construct, for a
given sample of the population at time t= T , branching–coalescing systems Ḡ := (Ḡ(β))β≥0
and ḠωT := (ḠωT (β))β≥0 in the annealed and quenched settings, respectively. Both processes
have a cemetery state †. The main feature of Ḡ (resp. ḠωT ) is that for any β ≥ 0, the individuals
in the sample are all unfit if and only if Ḡ �= † (resp. ḠωT �= †) and all the lines present at time
β in Ḡ (resp. ḠωT ) are unfit. We refer to Ḡ and ḠωT as the annealed and quenched killed ASGs
(k-ASGs), respectively.

Moment dualities. We will now establish duality relations between the process X and the
line-counting process of the k-ASG. For each β ≥ 0, we denote by R(β) the number of lines
present in the annealed k-ASG at time β, with the convention that R(β)= † if Ḡ(β)= †.
The process R := (R(β))β≥0, called the annealed line-counting process of the k-ASG, is a
continuous-time Markov chain with values on N

†
0 :=N0 ∪ {†} and infinitesimal generator

matrix Qμ† :=
(

qμ† (i, j)
)

i,j∈N†
0

defined via

qμ† (i, j) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

i(i− 1)+ iθν1 if j= i− 1,( i
k

)
(σi,k + σ1{k=1}) if j= i+ k, i≥ k≥ 1,

iθν0 if j= †,

−i(i− 1+ θ + σ )− ∫(0,1) (1− (1− y)i)μ(dy) if j= i ∈N0,

(2.6)

where the coefficients σm,k are defined in Equation (2.5). All other entries are zero.
Similarly, for T ∈R and a fixed environment ω ∈D�, we denote by RωT := (RωT (β))β≥0

the line-counting process associated to the quenched k-ASG ḠωT . The process RωT , called the
quenched line-counting process of the k-ASG, is a continuous-time (inhomogeneous) Markov
process with values in N

†
0. It jumps from i ∈N to j ∈N

†
0 \ {i} at rate q0

†(i, j), where q0
† is

the matrix defined in (2.6) with μ= 0. In addition, at each time β ≥ 0 with 	ω(T − β)> 0,
conditionally on {RωT (β −)= i}, i ∈N, we have RωT (β)∼ i+Bin(i, 	ω(T − β)). If θ > 0 and
ν0 ∈ (0, 1), the states 0 and † are absorbing for R and RωT .

Let J be a pure-jump subordinator with Lévy measure μ supported in (0, 1). We write here
XJ instead of X to stress the dependency of the (strong) solution to (1.3) on the environment
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J. Similarly, we write Xω for its quenched version (as introduced in Section 2.3). Since, in
the annealed case, backward and forward environments have the same law, we can construct
the line-counting process of the k-ASG as the strong solution to an SDE involving J and four
other independent Poisson processes encoding the non-environmental events. We denote it
by (RJ(β))β≥0. The next result establishes a formal relation between XJ and RJ : a reinforced
moment duality, which allows us to derive moment dualities in the annealed and quenched
settings (see Figure 4 to visualize forward and backward processes in the same picture).

Theorem 2.3. (Reinforced, annealed, and quenched moment dualities.) For all x ∈ [0, 1], n ∈
N, and T ≥ 0, and any function f ∈ C2([0,∞)) with compact support,

E[(1− XJ(T))nf (J(T)) | XJ(0)= x]=E[(1− x)RJ (T)f (J(T)) | RJ(0)= n], (2.7)

with the convention (1− x)† = 0 for all x ∈ [0, 1]. In particular, if f = 1 we recover the moment
duality (we will often drop the superscript J when using this relation, unless we want to
emphasize the dependency on J):

E[(1− XJ(T))n | XJ(0)= x]=E[(1− x)RJ (T) | RJ(0)= n]. (2.8)

For almost every (with respect to the law of J) environment ω ∈D�,

E
[
(1− Xω(T))n | Xω(0)= x

]=E
[
(1− x)RωT (T−) | RωT (0−)= n

]
. (2.9)

We prove (2.7) and (2.8) in Section 5.1. The proof of the quenched duality (2.9) is given in
Section 6.1. Moreover, Theorem 7.1 extends (2.9) to any simple environment.

Remark 2.4. For θ = 0, (2.8) is a particular case of [20, Lemma 2.14].

Asymptotic type composition. Assume now that θ > 0 and ν0, ν1 ∈ (0, 1). In particular, the
processes X and Xω are not absorbed in {0, 1}. We will describe the asymptotic behavior of
these processes using Theorem 2.3. The quenched case is particularly delicate, because for
a given environment ω, Xω(t) strongly depends on the environment in the recent past, and
only weakly on the environment in the distant past (see Figure 3). Hence, unless ω is constant
after some fixed time t0 (i.e. ω has no jumps after t0), Xω(t) will not converge as t→∞ (see
Remark 2.6 for the case of periodic environments). In contrast, for a given environment ω in
(−∞, 0], we will see that Xω(0), conditionally on Xω(− τ )= x, converges in distribution as
τ→∞, and we will characterize its law; the setting is illustrated in Figure 5 (compare with
Figure 3). To this end, for n ∈N0 define

πn := P(∃β ≥ 0 : R(β)= 0 | R(0)= n),

�n(ω) := P(∃β ≥ 0 : Rω0 (β)= 0 | Rω0 (0−)= n), (2.10)

and set π† := 0 and �†(ω) := 0. Clearly, π0 = 1 and �0(ω)= 1.

Theorem 2.4. (Asymptotic type frequency.) Assume that θ > 0 and ν0, ν1 ∈ (0, 1).

1. The process X has a unique stationary distribution ηX ∈M1([0, 1]), and letting X(∞)

be a random variable distributed according to ηX, we have X(t)
(d)−→ X(∞) as t→∞.

Moreover, for all n ∈N,
E
[
(1− X(∞))n]= πn, (2.11)
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FIGURE 5. An illustration of two paths of Xω: the black (resp. grey) path is defined in the interval [− (τ +
h), 0] (resp. [− τ, 0]) starting at Xω(− (τ + h))= x (resp. Xω(− τ )= x). The peaks of the environment ω
are depicted as grey vertical lines.

and the absorption probabilities (πn)n≥0 satisfy

(σ + θ + n− 1)πn = σπn+1 + (θν1 + n− 1)πn−1

+ 1

n

n∑
k=1

(
n

k

)
σn,k(πn+k − πn), n ∈N, (2.12)

where the coefficients σn,k, k ∈ [n], n ∈N, are defined in Equation (2.5).

2. For almost every (with respect to the law of J) environment ω and for any x ∈ (0, 1),
the distribution of Xω(0) conditionally on {Xω(− τ )= x} has a limit distribution Lω as
τ→∞, which does not depend on x. Moreover,∫ 1

0
(1− y)nLω(dy)=�n(ω), n ∈N, (2.13)

and the convergence of moments is exponential, i.e.∣∣E [(1− Xω(0))n | Xω(− τ )= x
]−�n(ω)

∣∣≤ e−θν0τ , n ∈N. (2.14)

The setting of Theorem 2.4(1) is illustrated in Figure 3, and its proof is given in Section 5.1;
the setting of Theorem 2.4(2) is illustrated in Figure 5, and its proof is given in Section 6.1.
Moreover, Theorem 7.2 extends Theorem 2.4(2) to any simple environment. A refinement of
Theorem 2.4(2) is given in Theorem 7.3 for simple environments under additional conditions.

Remark 2.5. Simpson’s index is a popular tool for describing population diversity. It represents
the probability that two individuals chosen uniformly at random from the population have
the same type. In our case it is given by Sim(t) := X(t)2 + (1− X(t))2. If the types represent
different species, it gives a measure of bio-diversity. If the types represent two alleles of a
gene for a given species, it measures homozygosity. As a consequence of Theorem 2.4, one can
express the moments of Sim(∞) in terms of the coefficients (πn)n≥0. In particular, we have

E[Sim(∞)]=E
[
X(∞)2 + (1− X(∞))2

]
= 1− 2π1 + 2π2.
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FIGURE 6. An illustration of two paths (thin and thick) of XJ⊗τ�ω in [− τ, 0] starting at x. Both paths are
subject to the same deterministic environment ω in [− τ�, 0]; the vertical lines in (− τ�, 0] represent the
peaks of ω. The environment in [− τ,−τ�) is random and driven by J; the peaks of the realization of J
giving rise to the thick (resp. thin) path in [− τ,−τ�) are depicted as solid (resp. dotted) vertical lines.

Remark 2.6. If ω is a periodic environment on [0,∞) with period Tp > 0, the proof of
Theorem 2.4(2) yields that, for any x ∈ (0, 1) and r ∈ [0, Tp), the distribution of Xω(nTp + r),
conditionally on {Xω(0)= x}, has a limit distribution Lωr , when n goes to infinity, which is a

function of ω and r and does not depend on x. Furthermore, Lωr satisfies
∫ 1

0 (1− y)nLωr (dy)=
�n(ωr), where ωr is the periodic environment in (−∞, 0] defined by ωr(t) :=ω(r+ t+
(�−t/Tp� + 1)Tp) for any t ∈ (−∞, 0]. The convergence of moments is exponential as in
(2.14).

Mixed environments. We present now an application illustrating the advantage of studying
both quenched and annealed settings. We consider a population evolving from the distant past
in a (stationary) random environment and analyze the effect of a recent perturbation of the
environment on the type composition at present. To this end, we assume we only know the
distribution of the environment before the perturbation.

In the absence of perturbations, the environment is given by a pure-jump subordinator J in
(−∞, 0] with Lévy measure μ satisfying (2.4). The perturbation occurs in (− τ�, 0] (for some
τ� > 0) and is given by a deterministic environment ω. Let XJ⊗τ�ω be the solution to (1.3) under
the environment J ⊗τ� ω, which coincides with J and ω in (−∞,−τ�] and (− τ�, 0], respec-
tively; see Figure 6 for an illustration. Recall that (Rω0 (β))β∈[0,τ�) is the line-counting process
associated to the quenched k-ASG (see Section 2.5). We are interested in the distribution of
XJ⊗τ�ω(0). The next result provides the moments of this random variable.

Proposition 2.1. Assume that θ > 0 and ν0, ν1 ∈ (0, 1). For any τ� > 0, n ∈N, x ∈ [0, 1], and
almost every (with respect to the law of J) ω ∈D�, we have

lim
τ→∞E

[
(1− XJ⊗τ�ω(0))n | XJ⊗τ�ω(− τ )= x

]
=E

[
πRω0 (τ�−) | Rω0 (0−)= n

]
. (2.15)

Proposition 2.1 is proved in Section 6.1; a refinement of this result is given for simple
environments under the additional condition σ = 0 in Proposition 7.2.
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2.6. Ancestral type via the pruned lookdown ASG

In this section we are interested in the type distribution at present of the individuals that
will be successful in the long run. This distribution may differ substantially from the type
composition at present and may show a bias towards the fit type.

Consider a sample of n individuals at some time T in the future and trace their ancestral
lines using the ASG. We will see in Section 5.2 that the number of lines in the ASG is positive
recurrent (see Lemma 5.2). Hence, the ASG has bottlenecks, and if T is sufficiently large, the
n individuals share a common ancestor at time 0. Assigning types to the lines in the ASG at
time 0 and propagating the types along using the pecking order, we determine the types in the
sample as well as the true genealogy. In particular, we obtain the type of the common ancestor
of the sample. What it means for T to be sufficiently large depends on n and on the realization
of the ASG, but this dependency vanishes as T →∞. Because we are interested in the type of
the individual that is successful in the long run, we can work under this limit consideration. In
what follows we formalize this idea.

Consider a realization G[0,T] := (G(β))β∈[0,T] of the annealed ASG in [0, T] started with one
line, representing an individual sampled at forward time T . If t denotes forward time, we set
β = T − t to denote the backward time (see Figure 4). For β ∈ [0, T], let Vβ be the set of lines
present at time β in G[0,T]. Consider a function c : VT →{0, 1} representing an assignment of
types to the lines in VT . Given G[0,T] and c, we propagate types (forward in time) along the
lines of G[0,T], keeping track, at any time β ∈ [0, T], of the true ancestor in VT of each line in
Vβ . We denote by ac(G[0,T]) the type of the ancestor in VT of the single line in V0. Assume
that, under Px, c assigns independently to each line type 0 with probability x and type 1 with
probability 1− x. The annealed ancestral type distribution at time T is

hT (x) := Px(ac(G[0,T])= 0), x ∈ [0, 1].

In the quenched setting we proceed in the same way, but using Gω[0,T] := (GωT (β))β∈[0,T], the
quenched ASG in [0, T] in the environment ω of an individual sampled at time T , instead of
G[0,T]. The quenched ancestral type distribution at time T is

hωT (x) := Px
(
ac(Gω[0,T])= 0

)
, x ∈ [0, 1],

where, under Px, c assigns independently to each line present in Gω[0,T] at time β = T type 0
with probability x and type 1 with probability 1− x.

In the absence of mutations, the ancestor of the sampled individual is fit if and only if
there is at least one fit line in the ASG having type 0 at time β = T . In the presence of
mutations, determining the type of the ancestor is more involved. In [31] the ancestral type
distribution was obtained for the null environment using the line-counting process of a pruned
version of the ASG, called the pruned lookdown ASG (pLD-ASG). In Section 4.3 we gener-
alize this construction to incorporate the effect of the environment. The main feature of the
pLD-ASG is that the type of the ancestor at time t= 0 of the sampled individual at time
t= T is 0 if and only if there is at least one line in the pLD-ASG at time β = T that has
type 0 (see Lemma 4.3). Hence, hT (x) and hωT (x) can be represented via the corresponding line-
counting processes (which can easily be inferred from the description of the pLD-ASG given in
Section 5.2).

https://doi.org/10.1017/apr.2022.54 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.54


Moran models and Wright–Fisher diffusions in random environment 717

The line-counting process of the annealed pLD-ASG, denoted by L := (L(β))β≥0, is a
continuous-time Markov chain with values on N and generator matrix Qμ := (qμ(i, j))i,j∈N
given by

qμ(i, j) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

i(i− 1)+ (i− 1)θν1 + θν0 if j= i− 1,

i(σ + σi,1) if j= i+ 1,( i
k

)
σi,k if j= i+ k, i≥ k≥ 2,

θν0 if 1≤ j< i− 1,

−(i− 1)(i+ θ )− iσ − ∫(0,1) (1− (1− y)i)μ(dy) if j= i,
(2.16)

where σm,k is defined in (2.5); all other entries are 0.
The pLD-ASG associated to ω ∈D� is well-defined and almost surely contains finitely

many lines at any time; we show this in Section 5.2. The corresponding line-counting pro-
cess (LωT (β))β≥0 started at time T is a continuous-time (inhomogeneous) Markov process with
values in N. It jumps from i ∈N to j ∈N \ {i} at rate q0(i, j), where q0 is the matrix defined in
(2.16) with μ= 0, and in addition, at each time β ≥ 0 such that 	ω(T − β)> 0, conditionally
on {LωT (β −)= i}, i ∈N, we have LωT (β)∼ i+Bin(i, 	ω(T − β)).

We now state the main result of this section, describing the asymptotic behavior of hT (x)
and hωT (x).

Theorem 2.5. (Ancestral type distribution.) The following assertions hold:

1. The process L admits a unique stationary distribution ηL. Moreover, if L(∞) is a ran-

dom variable distributed according to ηL, then L(T)
(d)−→ L(∞) as T →∞. In particular,

h(x) := limT→∞ hT (x) is well-defined, and

h(x)=
∑
n≥0

x(1− x)nan, (2.17)

where the coefficients an := P(L(∞)> n), n ∈N0, satisfy the following recursion (which
is known as Fearnhead’s recursion when μ= 0):

(σ + θ + n+ 1) an = σan−1 + (θν1 + n+ 1) an+1 + 1

n

n∑
j=1

γn+1,j (aj−1 − aj), n ∈N,

(2.18)
where γi,j := ∑j

k=i−j

( j
k

)
σj,k if 1≤ j< i≤ 2j and γi,j := 0 otherwise.

2. Assume that θν0 > 0. For any n ∈N, the distribution of LωT (T −) conditionally on
{LωT (0−)= n} has a limit distribution μω ∈M1(N) as T →∞, which does not depend
on n. In particular, hω(x) := limT→∞ hωT (x) is well-defined and

hω(x)= 1−
∞∑

n=1

μω({n})(1− x)n. (2.19)

Moreover, for any x ∈ [0, 1] and t> 0,∣∣hω(x)− hωT (x)
∣∣≤ 2e−θν0T . (2.20)

https://doi.org/10.1017/apr.2022.54 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.54


718 F. CORDERO AND G. VÉCHAMBRE

The proof of Theorem 2.5(1) is given in Section 5.2; Theorem 2.5(2) is proved in Section
6.2. Theorem 7.4 extends Theorem 2.5(2) to the case θν0 = 0 for simple environments under
additional conditions. A refinement of Theorem 2.5(2) is given in Theorem 7.5 for simple
environments under additional conditions.

In the case θ = 0, Theorem 2.5 yields the following result about the boundary
behavior of X.

Corollary 2.1. (Accessibility of the boundaries.) If θ = 0, then for any T > 0 and x ∈ [0, 1],

hT (x)=E[X(T) | X(0)= x].

Moreover, conditionally on {X(0)= x}, X(T) converges almost surely as T →∞ to a Bernoulli
random variable with parameter h(x). In particular, the absorbing states 0 and 1 are both
accessible from any x ∈ (0, 1).

Remark 2.7. Corollary 2.1 is not a direct consequence of [20, Theorem 3.2], whose statement
does not cover SDEs with a diffusion term (the term

√
2X(t)(1− X(t))dB(t)). We close this

section with an application of our results to the comparison of the (isolated) effects of the
environment and of (genic) selection. To this end, we fix a non-zero measure μ on (0, 1)
satisfying (2.4) and we consider two models, both without mutations. The first model has
selection parameter

σ = σμ :=
∫

(0,1)
yμ(dy), (2.21)

and no environment (i.e. in (1.3) we take S(t) := σμt). The second one has selection parameter
σ = 0 and an environment given by a subordinator with Lévy measure μ (i.e. in (1.3) we take
S(t) := J(t)). We will use the superscript ‘sel’ (resp. ‘env’) to refer to the first (resp. second)
model.

For n ∈N, set ρenv
n := P(Lenv(∞)= n) and ρsel

n := P(Lsel(∞)= n). Consider the probability
generating functions

penv(z) :=
∞∑

n=1

ρenv
n zn and psel(z) :=

∞∑
n=1

ρsel
n zn, z ∈ [0, 1].

Note that penv(z)= 1− henv(1− z) and psel(z)= 1− hsel(1− z).

Proposition 2.2. For any non-zero measure μ on (0,1) satisfying (2.4) we have

ρenv
1 >ρsel

1 = σμ

eσμ − 1
and penv(z)≤ ρ

env
1

ρsel
1

psel(z)= ρenv
1

(
eσμz − 1

σμ

)
, z ∈ [0, 1].

In particular, there is xc ∈ (0, 1) such that, for x ∈ [xc, 1),

henv(x)= P
(

lim
t→∞Xenv(t)= 1|Xenv(0)= x

)
< P
(

lim
t→∞Xsel(t)= 1|Xsel(0)= x

)
= hsel(x).

Remark 2.8. As a consequence of Proposition 2.2 one recovers the classical result of
Kimura [28],

hsel(x)= 1− e−σμx

1− e−σμ
, x ∈ [0, 1].
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Remark 2.9. Consider a Wright–Fisher diffusion with no mutations and selection parameter
σ , evolving in an environment with Lévy measure μ. The quantity σμ in (2.21) corresponds
to the quantity αs in [20]. As shown there, αs is not sufficient to fully describe the strength
of the environment; one also needs to know the shape of rare selection, which is defined as
α∗ := ∫(0,1) log(1+ y)μ(dy)/αs. The joint action of weak selection and the environment is then
described by the quantity αeff := σ + αsα∗, which is called the effective strength of selection.
The main result in [20] establishes that both boundaries are accessible if and only if αeff is
smaller than a quantity β∗ coding for neutral reproductions (β∗ =∞ in our case).

The proofs of Corollary 2.1 and Proposition 2.2 are given in Section 5.2.

3. Moran models and Wright–Fisher processes

This section is devoted to the proofs of Theorem 2.1 and Theorem 2.2 and other related
results.

3.1. Results related to Section 2.1

Graphical representation. We start by making more precise the description of the graphical
representation of the Moran model as an IPS. This will allow us to decouple the ran-
domness of the model coming from the initial type configuration, the randomness coming
from mutations and reproductions, and the randomness coming from the environment. Non-
environmental events are as usual encoded via a family of independent Poisson processes
� := {λ0

i , λ
1
i , {λ�i,j, λ�i,j}j∈[N]\{i}}i∈[N], where (a) for each i, j ∈ [N] with i �= j, (λ�i,j(t))t∈R and

(λ�i,j(t))t∈R are Poisson processes with rates σN/N and 1/N, respectively, and (b) for each

i ∈ [N], (λ0
i (t))t∈R and (λ1

i (t))t∈R are Poisson processes with rates θNν0 and θNν1, respectively.
We call � the basic background. The environment introduces a new independent source of
randomness into the model, which we describe via the collection

� := {(Ui(t))i∈[N],t∈R, (τA(t, ·))A⊂[N],t∈R},
where (c) (Ui(t))i∈[N],t∈R is an [N]×R-indexed family of independent and identically dis-
tributed (i.i.d.) random variables with Ui(t) being uniformly distributed on [0, 1], and (d)
(τA(t, ·))A⊂[N],t∈R is a family of independent random variables with τA(t, ·) being uniformly
distributed on the set of injections from A to [N]. We call � the environmental background.
We assume that the basic and environmental backgrounds are independent, and we call (�,�)
the background.

Recall that in the graphical representation individuals are represented by horizontal lines at
levels i ∈ [N] (see Figure 1). The random appearance of selective and neutral arrows, circles,
and crosses is prescribed by the background as follows. At the arrival times of λ�i,j (resp. λ�i,j),
we draw selective (resp. neutral) arrows from level i to level j. At the arrival times of λ0

i (resp.
λ1

i ), we draw an open circle (resp. a cross) at level i. Given an environment ζ := (tk, pk)k∈I

satisfying (2.1), we define, for each k ∈ I,

Iζ (k) := {i ∈ [N] : Ui(tk)≤ pk} and nζ (k) := |Iζ (k)|,
and we draw, at time tk, for each i ∈ Iζ (k) a selective arrow from level i to level τIζ (k)(t, i).

Continuity with respect to the environment. Now we embark on the proof of Theorem 2.1,
which states the continuity of the type composition in a Moran model with respect to the
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environment. The paths of the fit-counting process are considered as elements of D0,T , which
is endowed with the J1-Skorokhod topology, i.e. the topology induced by the Billingsley metric
d0

T defined in (A.2). Recall also that the restriction of an environment to [0, T] is described by
means of a function in D�T (see (2.3)), which is endowed with the topology induced by the
metric d�T defined in (A.3).

Let us denote by μN(ω) the law of (ZωN (t))t∈[0,T] (recall that ZωN (t) is the number of fit
individuals at time t in a Moran population of size N subject to environment ω). Theorem 2.1
states the continuity of the mapping ω �→μN(ω), where the set of probability measures on
D0,T is equipped with the topology of weak convergence of measures. We will use the fact that
the topology of weak convergence of probability measures on a complete and separable metric
space (E, d) is induced by the metric �E defined in (A.6).

First, we get rid of the small jumps of the environment. To this end, we introduce the
following notation. For δ > 0 and ω ∈D�T , we define ωδ, ωδ ∈D�T via

ωδ(t) :=
∑

u∈[0,t]:	ω(u)≥δ
	ω(u) and ωδ(t) :=

∑
u∈[0,t]:	ω(u)<δ

	ω(u). (3.1)

Clearly, ωδ is simple and ω=ωδ +ωδ . Moreover, ωδ→ 0 pointwise as δ→ 0, and hence for
any t ∈ [0, T],

d�t (ω, ωδ)≤
∑

u∈[0,T]

|	ω(u)−	ωδ(u)| =ωδ(T)−−→
δ→0

0.

In addition, for ω ∈D�T , n ∈N, and �r := (ri)i∈[n] ∈ [0, T]n, we denote by μ�rN(ω) the law of
(ZωN (ri))i∈[n], where [0,N]n is equipped with the distance d1 defined via

d1((xi)i∈[n], (yi)i∈[n]) :=
∑
i∈[n]

|xi − yi|. (3.2)

Proposition 3.1. Let ω ∈D�T . Assume that for any δ > 0 we have Zω
δ

N (0)= ZωN (0); then

�[0,T]n (μ�rN
(
ωδ
)
, μ�rN(ω))≤ nN ωδ(r∗)eσN r∗+ω(r∗), ∀�r ∈ [0, T]n, n ∈N, (3.3)

where r∗ := maxi∈[n] ri. Moreover,

�
D0,T

(μN
(
ωδ
)
, μN(ω))≤Nωδ(T)e(1+σN )T+ω(T). (3.4)

In particular,

(Zω
δ

N (t))t∈[0,T]
(d)−−→
δ→0

(ZωN (t))t∈[0,T].

Proof. For δ > 0, we couple in [0, T] a Moran model with parameters (σN, θN, ν0, ν1) and
environment ω to a Moran model with parameters (σN, θN, ν0, ν1) and environment ωδ (both
of size N) by using the same initial type configuration, the same basic background, and the
same environmental background. For any t ∈ [0, T] and a, b ∈ {0, 1}, we denote by Ya,b

N (t) the
number of individuals that at time t have type a under the environment ω and type b under the
environment ωδ . Clearly, we have∣∣∣ZωδN (t)− ZωN (t)

∣∣∣= ∣∣∣Y1,0
N (t)− Y0,1

N (t)
∣∣∣≤ Y1,0

N (t)+ Y0,1
N (t) := Y �=N (t).
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Note that Y �=N (t) is the number of individuals that have different types at time t under ω and

ωδ . In particular, we have Y �=N (t)≤N almost surely. Let us assume that at time t a graphical
element arises in the basic background, i.e. t is an arrival time of one of the Poisson processes
in the family �. If the graphical element is a mutation, then Y �=N (t)≤ Y �=N (t−). If the graphical
element is a neutral arrow, we have

E
[
Y �=N (t) | Y �=N (t−)

]
= Y �=N (t−)+ 1

N
Y �=N (t−)(N − Y �=N (t−))− 1

N
(N − Y �=N (t−))Y �=N (t−)

= Y �=N (t−).

If the graphical element is a selective arrow, then Y �=N (t) can increase by 1 only if the individual
at the tail of the arrow has a different type at time t under ω and ωδ . Thus

E
[
Y �=N (t) | Y �=N (t−)

]
≤
(

1+ 1

N

)
Y �=N (t−).

Now, let 0≤ s< t≤ T and assume that there are neither jumps of ωδ nor selective events in
(s, t). In particular, in (s, t) only the population driven by ω is affected by the environment.
Moreover, since neutral reproductions and mutations do not increase the expected value of Y �=N ,
we obtain

E
[
Y �=N (t−) | Y �=N (s)

]
≤ Y �=N (s)+N

∑
u∈(s,t)

	ω(u).

In addition, if at time t the environment ωδ jumps (there are only finitely many of these jumps),
then

E
[
Y �=N (t) | Y �=N (t−)

]
≤ Y �=N (t−)(1+	ω(t)).

Let 0≤ t1 < · · ·< tm ≤ T be the jump times of ωδ . The previous discussion yields

E
[
Y �=N (ti+1) | Y �=N (ti)

]
≤E

[(
1+ 1

N

)Ki
] (

Y �=N (ti)+Nεi(δ)
)

(1+	ω(ti+1)), (3.5)

where εi(δ) := ∑u∈(ti,ti+1) 	ω(u) and Ki is the number of selective events in (ti, ti+1). Note
that Ki has a Poisson distribution with parameter NσN(ti+1 − ti). Hence,

E
[
Y �=N (ti+1) | Y �=N (ti)

]
≤ eσN (ti+1−ti)

(
Y �=N (ti)+Nεi(δ)

)
(1+	ω(ti+1)).

Iterating this formula and using that Y �=N (0)= 0 yields

E
[
Y �=N (t)

]
≤ eσN tNωδ(t)

∏
ti≤t

(1+	ω(ti))≤N ωδ(t) eσN t+∑u∈[0,t] 	ω(u). (3.6)

Recall the definition of the space BL(E) in Appendix A.2. We equip [0,N]n with the distance
d1 defined in (3.2). For any n≥ 1 and F ∈BL([0,N]n), we have∣∣∣∣

∫
Fdμ�rN

(
ωδ
)− ∫ Fdμ�rN(ω)

∣∣∣∣=
∣∣∣E [F((Zω

δ

N (rj))j∈[n])
]
−E

[
F((ZωN (rj))j∈[n])

]∣∣∣ .
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Hence, if ‖F‖BL ≤ 1 (see (A.5) for the definition of ‖·‖BL) and we couple Zω
δ

N (t) and ZωN (t) as
before, we get that∣∣∣E [F((Zω

δ

N (rj))j∈[n])
]
−E

[
F((ZωN (rj))j∈[n])

]∣∣∣
≤
∣∣∣E [d1((Zω

δ

N (rj))j∈[n], (ZωN (rj))j∈[n])
]∣∣∣=E

⎡
⎣∑

j∈[n]

|Y �=N (rj)|
⎤
⎦

≤
∑
j∈[n]

Nωδ(rj)e
σN rj+∑u∈[0,rj]

	ω(u)
,

where the last bound comes from (3.6) applied at rj, j ∈ [n]. Taking the supremum over all
F ∈BL([0,N]n) with ‖F‖BL ≤ 1 and using the definition of the distance �[0,N]n in (A.6), we

get (3.3). Now, define Y∗N(t) := supu∈[0,t] Y �=N (u). If at time t a neutral event occurs, then

E[Y∗N(t) | Y∗N(t−)]≤
(

1+ 1

N

)
Y∗N(t−).

Other events can be treated as before, leading to (3.5) with Ki being this time the number of
selective and neutral events in (ti, ti+1). Hence, Equation (3.4) follows similarly to (3.3). The
convergence of Zω

δ

N towards ZωN is a direct consequence of (3.4). �
Proposition 3.2. Let ω ∈D�T and {ωk}k∈N ⊂D�T be such that d�T (ωk, ω)→ 0 as k→∞. If ω is
simple and, for any k ∈N, ZωN (0)= Zωk

N (0), then

(Zωk
N (t))t∈[0,T]

(d)−−−→
k→∞ (ZωN (t))t∈[0,T]. (3.7)

Proof. The proof consists of two parts. In the first part, we construct a time deformation
λk ∈ C↑T with suitable properties. In the second part, we compare Zωk

N ◦ λk and ZωN under an
appropriate coupling of the underlying Moran models.

Part 1: We assume, without loss of generality, that d�T (ωk, ω)> 0 for all k ∈N. Set
εk := 2d�T (ωk, ω), so that d�T (ωk, ω)< εk. By definition of the metric d�T in (A.3), there is

ϕk ∈ C↑T such that

‖ϕk‖0
T ≤ εk and

∑
u∈[0,T]

|	ω(u)−	(ωk ◦ ϕk)(u)| ≤ εk,

where ‖·‖0
T is defined in (A.1). Denote by r1 < · · ·< rn the consecutive jump times of ω in [0,

T]. We assume without loss of generality that 0< r1 ≤ rn < T . The case where ω jumps at T
can be reduced to the previous case, by extending ωk, k ∈N, and ω to [0, T + ε] as constants
in [T, T + ε]. Set γk := T

√
eεk − 1. In the remainder of the proof we assume that k is suffi-

ciently large, so that γk ≤mini∈[n]0 (ri+1 − ri)/3, where r0 := 0 and rn+1 := T . This condition
ensures that the intervals Ik

i := [ri − γk, ri + γk], i ∈ [n], are disjoint and contained in [0, T].
Now, define λk : [0, T]→ [0, T] via the following:

(i) For u /∈ ∪n
i=1Ik

i : λk(u) := u.

(ii) For u ∈ [ri − γk, ri] : λk(u) := ϕk(ri)+mi(u− ri), where mi := (ϕk(ri)− ri + γk)/γk.

(iii) For u ∈ (ri, ri + γk] : λk(u) := ϕk(ri)+ m̄i(u− ri), where m̄i := (ri + γk − ϕk(ri))/γk.

https://doi.org/10.1017/apr.2022.54 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.54


Moran models and Wright–Fisher diffusions in random environment 723

For k sufficiently large, so that εk < log 2, we can infer from ‖ϕk‖0
T ≤ εk and from γk =

T
√

eεk − 1 that mi and m̄i are positive. It is then straightforward to check that λk ∈ C↑T ,
λk(Ik

i )= Ik
i , i ∈ [n], and that

∑
u∈[0,T]

|	ω(u)−	ω̄k(u)| ≤ εk,

where ω̄k :=ωk ◦ λk. Moreover, since ‖ϕk‖0
T ≤ εk, we infer that ϕk(ri) ∈ [e−εk ri, eεk ri]. It

follows that, for k sufficiently large,

1− 2
√

eεk − 1≤mi ≤ 1+ 2
√

eεk − 1, i ∈ [n],

and the same holds for m̄i. Note that we can write λk(t)= ∫ t
0 pk(u)du, with pk : [0, T] �→R

taking only the values (mi)i∈[n], (m̄i)i∈[n], and 1. In particular, we have |pk(u)− 1| ≤ 2
√

eεk − 1
for all u ∈ [0, T]. Thus, for any s, t ∈ [0, T] with s �= t, the slope (λk(s)− λk(t))/(s− t) belongs
to [1− 2

√
eεk − 1, 1+ 2

√
eεk − 1]. Therefore, for k sufficiently large, we have

λk(s)− λk(t)

s− t
,

s− t

λk(s)− λk(t)
≤ 1+ 3

√
eεk − 1, i ∈ [n].

Hence, using that log (1+ x)≤ x for x>−1, we obtain for k sufficiently large

‖λk‖0
T ≤ 3

√
eεk − 1. (3.8)

Part 2: For δ > 0, we couple in [0, T] a Moran model with parameters (σN, θN, ν0, ν1)
and environment ω to a Moran model with parameters (σN, θN, ν0, ν1) and environment ωk

(both of size N) by using (1) the same initial type configuration and (2) the same basic back-
ground, and (3) by using in the second population the environmental background of the first
one, time-changed by λ−1

k . Under this coupling and by construction of the function λk, the
Moran model associated to ω and the Moran model associated to ωk (time-changed by λk)
experience the same basic events out of the time intervals Ik

i . Moreover, at the times ri, the suc-
cess of simultaneous environmental reproductions is decided according to the same uniform
random variables.

For t ∈ [0, T], let Y �=N (t) be the number of individuals that have different types at time t for

ω and at time λk(t) for ωk, and set Y∗N(t) := supu∈[0,t] Y �=N (u).
Consider the event Ek := there are no basic events in ∪i∈[n]Ik

i , and note that

P(Ec
k)≤ n

(
1− e−2N(1+σN+θN )γk

)
. (3.9)

Moreover, on the event Ek, only the population driven by ωk can change in (ri, ri + γk], and
this can only be due to environmental events. Hence,

E[Y∗N(ri + γk)1Ek ]≤E[Y∗N(ri)1Ek ]+N
∑

u∈(ri,ri+γk]

	ω̄k(u). (3.10)

A similar argument yields

E[Y∗N(ri+1 −) 1Ek ]≤E[Y∗N(ri+1 − γk)1Ek ]+N
∑

u∈(ri+1−γk,ri+1)

	ω̄k(u). (3.11)
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Since in the interval Jk
i := (ri + γk, ri+1 − γk] there are no simultaneous jumps of the two

environments, we can proceed as in the proof of Proposition 3.1 to obtain

E
[
Y∗N(ri+1 − γk)1Ek

]≤ e(1+σN )(ri+1−ri)

⎛
⎜⎝E[Y∗N(ri + γk)1Ek ]+N

∑
u∈Jk

i

	ω̄k(u)

⎞
⎟⎠ . (3.12)

Moreover, at time ri+1, there are two possible contributions to take into account: (i) the contri-
bution of selective arrows arising simultaneously in both environments, and (ii) the contribution
of selective arrows arising only on the environment with the biggest jump. This leads to

E
[
Y∗N(ri+1) 1Ek

]≤E[Y∗N(ri+1 −) 1Ek ](1+	ω(ri+1)∧	ω̄k(ri+1))

+N|	ω(ri+1)−	ω̄k(ri+1)|. (3.13)

Using (3.10), (3.11), (3.12), and (3.13), we obtain

E[Y∗N(ri+1) 1Ek ]≤ e(1+σN )(ri+1−ri)

⎡
⎣E[Y∗N(ri) 1Ek ]

+N
∑

u∈(ri,ri+1]

|	ω(u)−	ω̄k(u)|
⎤
⎦ (1+	ω(ri+1)).

Iterating this inequality, using that Y∗N(0)= 0, and adding the contribution of the interval (rn +
γk, T], we obtain

E
[
Y∗N(T) 1Ek

]≤Nεke(1+σN )T+∑u∈(0,T] 	ω(u). (3.14)

Using (3.9), (3.14), (3.8), and the definition of d0
T in (A.2), we obtain for k large enough

E
[
d0

T (ZωN , Zωk
N )
]
≤ 2nN

(
1− e−2N(1+σN+θN )γk

)
+ 3
√

eεk − 1∨
(

Nεk e(1+σN )T+∑u∈(0,T] 	ω(u)
)

.

The result follows from letting k→∞ and using that γk → 0 and εk → 0 as k→∞. �
Proof of Theorem 2.1 (continuity). If ω has a finite number of jumps, the result follows

directly from Proposition 3.2. In the general case, note that for any δ > 0,

�
D0,T

(μN(ωk), μN(ω))≤ �
D0,T

(
μN(ωk), μN

(
ωδk
))

+ �
D0,T

(
μN
(
ωδk
)
, μN

(
ωδ
))+ �

D0,T
(μN(ωδ), μN(ω)), (3.15)

where ωδ is as in (3.1) and, similarly, ωδk(t) := ∑u∈[0,t]:	ωk(u)≥δ 	ωk(u). Recall the definition
of d�T in (A.3). We claim that, for any δ ∈ Aω := {d> 0 :	ω(u) �= d for any u ∈ [0, T]}, we
have

d�T (ωδk, ω
δ)−−−→

k→∞ 0. (Claim 1)
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Assume that Claim 1 is true and let δ ∈ Aω. Note that for any λ ∈ C↑T , we have

ωk,δ(T) :=
∑

u∈[0,T]:	ωk(u)<δ

	ωk(u)=ωk(T)−ωδk(T)=ωk(λ(T))−ωδk(λ(T))

≤ |ωk(λ(T))−ω(T)| + |ω(T)−ωδ(T)| + |ωδ(T)−ωδk(λ(T))|
≤ d0

T (ω, ωk)+ωδ(T)+ d0
T (ωδk, ω

δ)≤ d�T (ω, ωk)+ωδ(T)+ d�T (ωδk, ω
δ),

where we used the definition of d0
T in (A.2) and then Lemma A.1. Combining this with Claim 1

and Proposition 3.1, we obtain

lim sup
k→∞

�
D0,T

(μN(ωk), μN
(
ωδk
)
)≤Nωδ(T)e(1+σN )T+ω(T).

Proposition 3.2 and Claim 1 in turn yield lim supk→∞ �D0,T

(
μN
(
ωδk

)
, μN(ωδ)

)= 0. Hence,

letting k→∞ in (3.15) and using Proposition 3.1, we obtain

lim sup
k→∞

�
D0,T

(μN(ωk), μN(ω))≤ 2Nωδ(T)e(1+σN )T+ω(T).

The previous inequality holds for any δ ∈ Aω. It is plain to see that inf Aω = 0. Hence, letting
δ→ 0 with δ ∈ Aω in the previous inequality yields the result.

It remains to prove Claim 1. Let δ ∈ Aω. Since d�T (ωk, ω)→ 0 as k→∞, we see from the

definition of d�T in (A.3) that there exists (λk)k∈N with λk ∈ C↑T such that

‖λk‖0
T −−−→

k→∞ 0 and εk :=
∑

u∈[0,T]

|	(ωk ◦ λk)(u)−	ω(u)| −−−→
k→∞ 0.

Set ω̄k :=ωk ◦ λk. Clearly, 	ω̄k(u)≤ εk +	ω(u) and 	ω(u)≤ εk +	ω̄k(u), u ∈ [0, T].
Therefore,

ωδk(λk(t))−ωδ(t)=
∑

u∈[0,t]
	ω̄k(u)≥δ

	ω̄k(u)−
∑

u∈[0,t]
	ω(u)≥δ

	ω(u)≤
∑

u∈[0,t]
	ω(u)≥δ−εk

	ω̄k(u)−
∑

u∈[0,t]
	ω(u)≥δ

	ω(u)

=
∑

u∈[0,t]
	ω(u)≥δ−εk

(	ω̄k(u)−	ω(u))+
∑

u∈[0,t]
	ω(u)∈[δ−εk,δ)

	ω(u)≤ d�T (ωk, ω)+
∑

u∈[0,T]
	ω(u)∈[δ−εk,δ)

	ω(u).

Similarly, we obtain

ωδ(t)−ωδk(λk(t))=
∑

u∈[0,t]
	ω(u)≥δ

	ω(u)−
∑

u∈[0,t]
	ω̄k(u)≥δ

	ω̄k(u)

≤
∑

u∈[0,t]
	ω(u)∈[δ,δ+εk)

	ω(u)+
∑

u∈[0,t]
	ω̄k(u)≥δ

(	ω(u)−	ω̄k(u))≤
∑

u∈[0,T]
	ω(u)∈[δ,δ+εk)

	ω(u)+ d�T (ωk, ω).

Thus, using the definition of d0
T in (A.2), we deduce that

d0
T (ωδk, ω

δ)≤ d�T (ωk, ω)+
∑

u∈[0,T]
	ω(u)∈(δ−εk,δ+εk)

	ω(u).

Since δ ∈ Aω, letting k→∞ in the previous inequality yields limk→∞ d0
T (ωδk, ω

δ)= 0. Since
ωδ has a finite number of jumps, Claim 1 follows using Lemma A.1. �
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3.2. Results related to Section 2.3: the Wright–Fisher process as a large-population limit

We start this section by proving that the SDE (1.3) is well-posed.

Proposition 3.3. (Existence and uniqueness.) Let σ, θ ≥ 0, ν0, ν1 ∈ [0, 1] with ν0 + ν1 = 1. Let
J be a pure-jump subordinator with Lévy measure μ supported in (0,1), and let B be a standard
Brownian motion independent of J. Then, for any x0 ∈ [0, 1], there is a pathwise unique strong
solution (X(t))t≥0 to the SDE (1.3) such that X(0)= x0. Moreover, X(t) ∈ [0, 1] for all t≥ 0.

Remark 3.1. The Wright–Fisher diffusion defined via the SDE (1.3) with θ = 0 corresponds
to [20, Equation 10] with Ky, y ∈ (0, 1), being a random variable that takes the value 1 with
probability 1− y and the value 2 with probability y.

Proof. We prove the existence and pathwise uniqueness of strong solutions to (1.3) via [32,
Theorems 3.2 and 5.1]. To this end, we first extend (1.3) to an SDE on R and write it in the
form of [32, Equation 2.1]. Note that by Lévy–Itô decomposition, the pure-jump subordinator
J can be expressed as J(t)= ∫(0,1) x N(t, dx), where N(ds, dx) is a Poisson random measure
with intensity measure μ. We define the functions a, b : R→R and g : R× (0, 1)→R via

a(x) :=√2x(1− x), b(x) := σx(1− x)+ θν0(1− x)− θν1x, g(x, u) := x(1− x)u,

for x ∈ [0, 1], u ∈ (0, 1); a(x) := 0, g(x, u) := 0 for x /∈ [0, 1]; b(x) := θν0 for x< 0 and
b(x) := − θν1 for x> 1. Thus, Equation (1.3) can be extended to the following SDE on R:

X(t)= X(0)+
∫ t

0
a(X(s))dB(s)+

∫ t

0

∫
(0,1)

g(X(s−), u)N(ds, du)+
∫ t

0
b(X(s))ds. (3.16)

Thus, any solution (X(t))t≥0 of (3.16) such that X(t) ∈ [0, 1] for any t≥ 0 is a solution to (1.3),
and vice versa. Note that the functions a, b, g are continuous. Moreover, b= b1 − b2, where

b1(x) := θν0 + σ (x∧ 1)+ and b2(x) := θ (x∧ 1)+ + σ (x∧ 1)2+.

In addition, b2 is non-decreasing. Thus, in order to apply [32, Theorems 3.2 and 5.1], we only
need to verify the sufficient conditions (3.a), (3.b), and (5.a) therein. Condition (3.a) in our
case amounts to proving that x �→ b1(x)+ ∫(0,1) g(x, u)μ(du) is Lipschitz continuous. In fact, a
straightforward calculation shows that

|b1(x)− b1(y)| +
∫

(0,1)
|g(x, u)− g(y, u)|μ(du)≤

(
σ +

∫
(0,1)

uμ(du)

)
|x− y|, x, y ∈R,

and hence (3.a) follows. Condition (3.b) amounts to proving that x �→ a(x) is 1/2-Hölder, which
is already shown in the proof of [19, Lemma 3.6]. Therefore, [32, Theorem 3.2] yields the
pathwise uniqueness for (3.16). Condition (5.a) follows from the fact that the functions a, b,
x �→ ∫

(0,1) g(x, u)2μ(du), and x �→ ∫
(0,1) g(x, u)μ(du) are bounded on R. Hence, [32, Theorem

5.1] ensures the existence of a strong solution to (3.16). It remains to show that any solution
to (3.16) with X(0) ∈ [0, 1] is such that X(t) ∈ [0, 1] for any t ∈ [0, 1]. Sufficient conditions
implying such a result are provided in [17, Proposition 2.1]. The conditions on the diffusion
and drift coefficients are satisfied; namely, a is 0 outside [0, 1], and b(x) is positive for x≤ 0
and negative for x≥ 1. However, the condition on the jump coefficient, x+ g(x, u) ∈ [0, 1] for
every x ∈R, is not fulfilled. Nevertheless, the proof of [17, Proposition 2.1] works without
modifications under the alternative condition x+ g(x, u) ∈ [0, 1] for x ∈ [0, 1] and g(x, u)= 0
for x /∈ [0, 1], which is in turn satisfied. This ends the proof. �
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Lemma 3.1. The solution to the SDE (1.3) is a Feller process with generator A satisfying, for
all f ∈ C2([0, 1],R),

Af (x)= x(1− x)f ′′(x)+ (σx(1− x)+ θν0(1− x)− θν1x)f ′(x)

+
∫

(0,1)
(f (x+ x(1− x)u)− f (x)) μ(du).

Moreover, C∞([0, 1],R) is an operator core for A.

Proof. Since pathwise uniqueness implies weak uniqueness (see [6, Theorem 1]), we infer
from [30, Corollary 2.16] that the martingale problem associated to A in C2([0, 1]) is well-
posed. Moreover, an inspection of the proof shows that this is also true in C∞([0, 1]). Using
[37, Proposition 2.2], we deduce that X is Feller. The fact that C∞([0, 1]) is a core then follows
from [37, Theorem 2.5]. �

Now we will prove the first part of the main result of Section 2.3, i.e. the annealed
convergence of a sequence of Moran models towards the solution to the SDE (1.3).

Proof of Theorem 2.2(1) (annealed convergence.) Let A∗N and A be the infinitesimal gen-
erators of the processes (XN(t))t≥0 and (X(t))t≥0, respectively. Note that (XN(t))t≥0 has state
space

EN := {k/N : k ∈ [N]0}. (3.17)

We will prove that, for all f ∈ C∞([0, 1],R),

sup
x∈EN

|A∗Nf (x)−Af (x)| −−−→
N→∞ 0. (Claim 2)

Provided Claim 2 is true, since X is Feller and C∞([0, 1],R) is an operator core for A (see
Lemma 3.1), the result follows from applying [24, Theorem 17.25]. Thus, it remains to prove
Claim 2. To this end, we write A as A1 +A2 +A3 +A4, where

A1f (x) := x(1− x)f ′′(x),

A2f (x) := (σx(1− x)+ θν0(1− x)− θν1x)f ′(x),

A3f (x) :=
∫

(0,εN )
(f (x+ x(1− x)u)− f (x)) μ(du),

A4f (x) :=
∫

(εN ,1)
(f (x+ x(1− x)u)− f (x)) μ(du).

We also write A∗N =A1
N +A2

N +A3
N +A4

N , where

A1
Nf (x) :=N2x(1− x)

[
	 1

N
f (x)+	− 1

N
f (x)
]
,

A2
Nf (x) :=N2(σNx(1− x)+ θNν0(1− x))

[
	 1

N
f (x)
]
+N2θNν1x

[
	− 1

N
f (x)
]
,

A3
Nf (x) :=

∫
(0,εN )

E
[
f (x+ ξN(x, u))

]− f (x)μ(du),

A4
Nf (x) :=

∫
(εN ,1)

E
[
f (x+ ξN(x, u))

]− f (x)μ(du),
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where	hf (x) := f (x+ h)− f (x), and ξN(x, u) :=H(N,N(1− x), BNx(u))/N, with H(N,N(1−
x), k)∼Hyp(N,N(1− x), k), and BNx(u)∼Bin(Nx, u) being independent; εN > 0 will be
chosen later in an appropriate way.

Let f ∈ C∞([0, 1],R) and note that

sup
x∈EN

|A∗Nf (x)−Af (x)| ≤
4∑

i=1

sup
x∈EN

|Ai
N f (x)−Aif (x)|. (3.18)

Taylor expansions of order three around x for f (x+ 1/N) and f (x− 1/N) yield

sup
x∈EN

|A1
Nf (x)−A1f (x)| ≤ ‖f

′′′‖∞
3N

. (3.19)

Similarly, the triangle inequality and appropriate Taylor expansions of order two yield

sup
x∈EN

|A2
Nf (x)−A2f (x)| ≤ (NσN +NθN)‖f ′′‖∞

2N
+ (|σ −NσN | + |θ −NθN |)‖f ′‖∞. (3.20)

Since NσN → σ and NθN → θ , the right-hand side in (3.20) converges to 0 as N→∞. In
addition, since E[ξN(x, u)]= x(1− x)u, we have

|A3
Nf (x)| ≤ ‖f ′‖∞

∫
(0,εN )

uμ(du), x ∈ [0, 1],

and hence,

sup
x∈EN

|A3
Nf (x)−A3f (x)| ≤ 2||f ′||∞

∫
(0,εN )

uμ(du). (3.21)

For the last term, note first that∣∣E [f (x+ ξN(x, u)) −f (x+ x(1− x)u)
]∣∣≤ ‖f ′‖∞E [|ξN(x, u)− x(1− x)u|]

≤ ‖f ′‖∞
√
E
[
(ξN(x, u)− x(1− x)u)2

]≤ ‖f ′‖∞
√

u

N
,

where in the last inequality we used that

E
[
(ξN(x, u)− x(1− x)u)2

]
= x(1− x)2u(1− u)

N
+ Nx2(1− x)u2

N2(N − 1)
≤ u

N
, (3.22)

which is obtained from standard properties of the hypergeometric and binomial distributions.
Hence,

sup
x∈EN

|A4
Nf (x)−A4f (x)| ≤ ||f ′||∞

∫
(εN ,1)

√
u

N
μ(du)≤ ||f

′||∞√
NεN

∫
(εN ,1)

uμ(du). (3.23)

Now, choose εN := 1/
√

N. Since
∫

(0,1) uμ(du)<∞, Claim 2 follows from plugging (3.19),
(3.20), (3.21), and (3.23) into (3.18) and letting N→∞. �

Before embarking on the proof of the second part of Theorem 2.2, we prove the following
estimates for the Moran model with null environment.

Lemma 3.2. For any x ∈ EN (see (3.17) for its definition) and t≥ 0, we have

E

[(
X0

N(t)− x
)2 | X0

N(0)= x

]
≤
(

1

2
+N(σN + 3θN)

)
t,
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and

−NθNν1t≤E
[
X0

N(t)− x | X0
N(0)= x

]
≤N(σN + θNν0)t.

Proof. Fix x ∈ EN and consider the functions fx, gx : EN → [0, 1] defined via fx(z) :=
(z− x)2 and gx(z) := z− x, z ∈ EN . The process X0

N is a Markov chain with generator

A�,0
N :=A1

N +A2
N , where A1

N and A2
N are defined in the proof of Theorem 2.2. Moreover,

for every z ∈ EN , we have

A�,0
N fx(z)= 2z(1− z)

+N

[
(σNz+ θNν0)(1− z)

(
2(z− x)+ 1

N

)
+ θNν1z

(
2(x− z)+ 1

N

)]

≤ 1

2
+N

[
3
(σN

4
+ θNν0

)
+ 3θNν1

]
≤ 1

2
+N(σN + 3θN),

and

A�,0
N gx(z)=N [(σNz+ θNν0)(1− z)− θNν1z] ∈ [−NθNν1,N(σN + θNν0)].

Hence, Dynkin’s formula applied to X0
N with fx leads to

E

[(
X0

N(t)− x
)2 | X0

N(0)= x

]
=
∫ t

0
E
[
A�,0

N fx(X0
N(s)) | X0

N(0)= x
]

ds

≤
(

1

2
+N(σN + 3θN)

)
t.

Similarly, applying Dynkin’s formula to X0
N with gx, we obtain

E
[
X0

N(t)− x | X0
N(0)= x

]
=
∫ t

0
E
[
A�,0

N gx(X0
N(s)) | X0

N(0)= x
]

ds

∈ [−NθNν1t,N(σN + θNν0)t],

which ends the proof. �
Proposition 3.4. (Quenched tightness.) Assume that NσN → σ and NθN → θ as N→∞. For
any ω ∈D�, the sequence (XωN )N≥1 is tight.

Proof. Let (FN
s )s≥0 denote the natural filtration associated to the process XωN . To prove the

tightness of the sequence (XωN )N≥1, we use [5, Theorem 1]. For this we need to show that the
following conditions hold:

(A1) For each T, ε > 0, there exists a compact set K ⊂R such that

lim inf
N→∞ P

(
XωN (t) ∈K, ∀t≤ T

)≥ 1− ε.

(A2) There exist α > 0 and non-decreasing, càdlàg processes FN , F such that FN is

F0-measurable, FN
(d)=⇒ F, and for any N ≥ 1 and every 0≤ s≤ t,

E
[
1∧ |XωN (t)− XωN (s)|α]≤ FN(t)− FN(s).
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Since, for all t≥ 0 and N ≥ 1, XωN (t) ∈ EN ⊂ [0, 1] (see (3.17) for the definition of EN),
Condition (A1) is satisfied. Now, we claim that there are constants c,C> 0, independent of
N, such that

E
[
(XωN (t)− XωN (s))2 |FN

s

]
≤ c

∑
u∈[s,t]

	ω(u)+C(t− s), for all 0≤ s≤ t. (Claim 3)

If Claim 3 is true, then Condition (A2) is satisfied with α = 2 and FN(t)= F(t)=
c
∑

u∈[0,t] 	ω(u)+Ct, and the result follows from [5, Theorem 1]. The rest of the proof is
devoted to proving Claim 3.

For x ∈ EN and t≥ 0, we set ψx(ω, t) :=Ex[(XωN(t)− x)2]. For s≥ 0, we set ωs(·) :=
ω(s+ ·). From the definition of XωN , it follows that for any 0≤ s< t,

E
[
(XωN(t)− XωN (s))2

∣∣∣FN
s

]
=ψXωN (s)(ωs, t− s). (3.24)

Let 0≤ s< t. We split the proof of Claim 3 into three cases.

Case 1: ω has no jumps in (s, t]. In particular, ωs has no jumps in (0, t− s]. Hence, restricted
to [0, t− s], Xωs

N has the same distribution as X0
N . Using Lemma 3.2 with x= XωN (s) and plug-

ging the result into (3.24), we infer that Claim 3 holds for any c≥ 1 and C≥C1 := 1/2+
supN∈N (N(σN + 3θN)).

Case 2: ω has n jumps in (s, t]. Let t1, . . . , tn ∈ (s, t] be the jump times of ω in (s, t] in
increasing order. We set t0 := s and tn+1 = t. For any i ∈ [n+ 1] and any r ∈ (ti−1, ti), ω has no
jumps in (ti−1, r]. In particular, (ti−1, r] falls into Case 1. Using Claim 3 in (ti−1, r] and letting
r→ ti, we obtain

E
[
(XωN (ti −)− XωN (ti−1))2 |FN

ti−1

]
≤C1(ti − ti−1).

Moreover,

E
[
(XωN (ti)− XωN (ti −))2 |FN

ti−
]
≤E

[(
BN(	ω(ti))

N

)2
]
≤	ω(ti),

where BN(	ω(ti))∼Bin(N, 	ω(ti)). Using the two previous inequalities and the tower
property of the conditional expectation, we get

E
[
(XωN (ti)− XωN (ti−1))2 |FN

s

]
≤ 2C1(ti − ti−1)+ 2	ω(ti). (3.25)

Now, note that

(XωN (t)− XωN (s))2 =
(

n∑
i=0

(XωN (ti+1)− XωN (ti))

)2

=
n∑

i=0

(XωN (ti+1)− XωN (ti))
2 + 2

n∑
i=0

(XωN (ti+1)− XωN (ti))(X
ω
N(ti)− XωN (s)).

Using Equation (3.25), we see that

E

[
n∑

i=0

(XωN (ti+1)− XωN (ti))
2 |FN

s

]
≤ 2C1(t− s)+ 2

n∑
i=1

	ω(ti).
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Moreover, we have

E
[
(XωN (ti+1)− XωN (ti))(X

ω
N(ti)− XωN (s)) |FN

ti

]= ϕXωN (s),XωN (ti)(ωti, ti+1 − ti),

where for x, y ∈ EN and t≥ 0 we set ϕx,y(ω, t) := (y− x)E[XωN (t)− y | XωN (0)= y]. Since, for
any r ∈ (ti, ti+1), ωti has no jumps in (0, r− ti], we can use Lemma 3.2 to infer that for any
x, y ∈ EN ,

ϕx,y(ωti , r− ti)≤N((σN + θNν0)∨ θNν1)(r− ti).

Note that (y− x)Ey[X
ωti
N (ti+1 − ti)− X

ωti
N ((ti+1 − ti)−)]≤	ω(ti+1). Hence, letting r→ ti+1,

we get

ϕx,y(ωti , ti+1 − ti)≤N((σN + θNν0)∨ θNν1)(ti+1 − ti)+	ω(ti+1),

for any x, y ∈ EN , hence in particular for x= XωN (s) and y= XωN (ti). Altogether, we obtain

E
[
(XωN (t)− XωN (s))2 |FN

s

]
≤C2(t− s)+ 3

n∑
i=1

	ω(ti),

where C2 := 2C1 + supN∈N N((σN + θNν0)∨ θNν1). Hence, Claim 3 holds for any C≥C2 and
c≥ 3.

Case 3: ω has infinitely many jumps in (s, t]. For any δ, we consider ωδ as in (3.1) and
couple the processes XωN and Xω

δ

N as in the proof of Proposition 3.1. Note that ωδ has only a
finite number of jumps in any compact interval; thus ωδ falls into Case 2. Moreover, we have

ψx(ω, t)≤ 2Ex[(XωN(t)− Xω
δ

N (t))2]+ 2Ex

[
(Xω

δ

N (t)− x)2
]

≤ 2Ex[|XωN(t)− Xω
δ

N (t)|]+ 2Ex

[
(Xω

δ

N (t)− x)2
]

≤ 2eNσN t+ω(t)
∑

u∈[0,t]
	ω(u)<δ

	ω(u)+ 2Ex

[
(Xω

δ

N (t)− x)2
]
,

where in the last inequality we used Proposition 3.1. Now, using Claim 3 for Xω
δ

N and the
previous inequality, we obtain

E
[
(XωN (t)− XωN (s))2 |FN

s

]
≤ eNσN (t−s)+ω(t−s)

∑
u∈[s,t]
	ω(u)<δ

	ω(u)+ 2C2(t− s)+ 6
∑

u∈[s,t]

	ω(u).

We let δ→ 0 and conclude that Claim 3 holds for any C≥ 2C2 and c≥ 6. �
Now we proceed to prove the quenched convergence of the sequence of Moran models to

the Wright–Fisher diffusion, under the assumption that the environment is simple.

Proof of Theorem 2.2(2) (quenched convergence). Let B := (B(t))t≥0 be a standard
Brownian motion. We denote by X0 the unique strong solution to (1.3) associated to B and the
null environment. Theorem 2.2(1) implies in particular that X0

N converges to X0 as N→∞.
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Now, assume that ω �= 0 is simple. We denote by Tω the (discrete but possibly infinite) set
of jump times of ω in (0,∞). Moreover, for 0< i< |Tω| + 1, we denote by ti := ti(ω) ∈ Tω the
time of the ith jump of ω. We set t0 := 0 and t|Tω|+1 :=∞. We need to prove that

(XωN (t))t≥0
(d)−−−→

N→∞ (Xω(t))t≥0.

Recall that the process Xω starting at x0 can be constructed as follows:

(i) (i)Xω(0)= x0.

(ii) For i ∈N with i≤ |Tω| + 1, the restriction of Xω to the interval (ti−1, ti) is given by a
version of X0 started at Xω(ti−1).

(iii) For 0< i< |Tω| + 1, conditionally on Xω(ti −),

Xω(ti)= Xω(ti −)+ Xω(ti −)(1− Xω(ti −))	ω(ti).

Since the sequence (XωN)N∈N is tight (see Proposition 3.4), it is enough to prove the con-
vergence at the level of the finite-dimensional distributions. More precisely, we will prove by
induction on i ∈N with i≤ |Tω| + 1 that for any finite set I ⊂ [0, ti), we have

((XωN (t))t∈I, XωN (ti −))
(d)−−−→

N→∞ ((Xω(t))t∈I, Xω(ti −)).

For i= |Tω| + 1<∞ we remove the components XωN (ti −) and Xω(ti −) since they do not
make sense. Since XωN (t1 −)= X0

N(t1) and Xω(t1 −)= X0(t1) almost surely, the result for i= 1
follows from Theorem 2.2(1). Now, assume that the result is true for some i< |Tω| + 1 and
let I ⊂ (0, ti+1). Without loss of generality we assume that I = {s1, . . . , sk, ti, r1, . . . , rm},
with s1 < · · ·< sk < ti < r1 < · · ·< rm. We also assume that i< |Tω|; the other case, i.e.
i= |Tω|<∞, follows by an analogous argument.

Let F : [0, 1]k+1 →R be a Lipschitz function with ‖F‖BL ≤ 1 (see (A.5) for the definition
of ‖·‖BL). Note that

E
[
F
((

XωN
(
sj
))k

j=1 , XωN (ti)
)]
=E

[
F(
(
XωN
(
sj
))k

j=1 , XωN (ti −)+ ξN(XωN (ti −), 	ω(ti)))
]
,

where for x ∈ EN (see (3.17) for the definition of EN) and u ∈ (0, 1), we let
ξN(x, u) :=H(N,N(1− x), BNx(u))/N with H(N,N(1− x), k)∼Hyp(N,N(1− x), k), k ∈
[N]0, and BNx(u)∼Bin(Nx, u) being independent of each other and independent of XωN .
Now, set

DN :=E
[
F(
(
XωN
(
sj
))k

j=1 , XωN (ti −)+ ξN(XωN (ti −), 	ω(ti)))
]

−E
[
F(
(
XωN
(
sj
))k

j=1 , XωN (ti −)+ XωN (ti −)(1− XωN (ti −))	ω(ti))
]

.

Using that ‖F‖BL ≤ 1 and (3.22), we see that |DN | ≤√	ω(ti)/N→ 0 as N→∞. Therefore,
the induction hypothesis yields

E
[
F
((

XωN
(
sj
))k

j=1 , XωN (ti)
)]

=DN +E
[
F(
(
XωN
(
sj
))k

j=1 , XωN (ti −)+ XωN (ti −)(1− XωN (ti −))	ω(ti))
]

−−−→
N→∞ E

[
F((Xω

(
sj
)

)k
j=1, Xω(ti −)+ Xω(ti −)(1− Xω(ti −))	ω(ti))

]
=E

[
F
((

Xω
(
sj
))k

j=1 , Xω(ti)
)]

.
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Therefore, ((
XωN
(
sj
))k

j=1 , XωN (ti)
)

(d)−−−→
N→∞

((
Xω
(
sj
))k

j=1 , Xω(ti)
)

. (3.26)

Let G : [0, 1]k+m+2 →R be a Lipschitz function with ‖G‖BL ≤ 1. For x ∈ EN , define

HN(z, x) :=Ex[G(z, x, (X0
N(rj − ti))

m
j=1, X0

N(ti+1 − ti))], ∀z ∈Rk.

Note that

E[G(
(
XωN
(
sj
))k

j=1 , XωN (ti), (XωN (rj))
m
j=1, XωN (ti+1 −))]=E

[
HN

((
XωN
(
sj
))k

j=1 , XωN (ti)
)]

.

(3.27)
Similarly, for x ∈ [0, 1], define

H(z, x) :=Ex[G(z, x, (X0(rj − ti))
m
j=1, X0(ti+1 − ti))], z ∈Rk,

and note that

E[G((Xω
(
sj
)

)k
j=1, Xω(ti), (Xω(rj))

m
j=1, Xω(ti+1 −))]=E

[
H
((

Xω
(
sj
))k

j=1 , Xω(ti)
)]

. (3.28)

Using (3.26) and the Skorokhod representation theorem, we can assume that the random

variables
((

XωN
(
sj
))k

j=1 , XωN (ti)
)

N≥1
and

((
Xω
(
sj
))k

j=1 , Xω(ti)
)

are defined on the same prob-

ability space and that the convergence holds almost surely. In particular, we can write∣∣∣E [HN

((
XωN
(
sj
))k

j=1 , XωN (ti)
)]
−E

[
H
((

Xω
(
sj
))k

j=1 , Xω(ti)
)]∣∣∣≤ R1

N + R2
N, (3.29)

where

R1
N :=

∣∣∣E [HN

((
XωN
(
sj
))k

j=1 , XωN (ti)
)]
−E

[
HN((Xω

(
sj
)

)k
j=1, XωN (ti))

]∣∣∣ ,
R2

N :=
∣∣∣E [HN((Xω

(
sj
)

)k
j=1, XωN (ti))

]
−E

[
H
((

Xω
(
sj
))k

j=1 , Xω(ti)
)]∣∣∣ .

Using that ‖G‖BL ≤ 1, we obtain

R1
N ≤

k∑
j=1

E[|XωN
(
sj
)− Xω

(
sj
) |]−−−→

N→∞ 0. (3.30)

Moreover, since XωN (ti) converges to Xω(ti) almost surely, we conclude using Theorem 2.2 that,
for any z ∈ [0, 1]k, HN(z, XωN (ti)) converges to H(z, Xω(ti)) almost surely. Therefore, using the
dominated convergence theorem, we conclude that

R2
N −−−→N→∞ 0. (3.31)

Plugging (3.30) and (3.31) into (3.29) and using (3.27) and (3.28) yields the result. �

4. The ASG and its relatives

In this section we formalize the definition of the quenched ASG, and we provide definitions
for the k-ASG and the pLD-ASG.
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4.1. Results related to Section 2.4: the quenched ASG

The aim of this section is to prove the following result.

Proposition 4.1. (Existence of the quenched ASG.) Let ω ∈D�. For any n ∈N and T > 0,
there is a branching–coalescing particle system (GωT (β))β≥0 starting at β = 0− with n lines,
that almost surely consists of finitely many lines at each time β ∈ [0, T], and that satisfies the
requirements (i), (ii), (iii′), (iv), and (v) of Definition 2.1.

Proof. We will explicitly construct a branching–coalescing particle system (GωT (β))β≥0
with the desired properties. The main difficulty is that the environment ω may have infinitely
many jumps on each compact interval. Fix T > 0 and n ∈N (sampling size) and define

�mut :=
{
λ0

i , λ
1
i

}
i≥1

, �sel := {λ�i }i≥1 , �coal :=
{
λ�i,j
}

i,j≥1,i �=j
,

where λ0
i , λ1

i , λ�i , and λ�i,j are independent Poisson processes on [0, T] with parameters θν0,
θν1, σ , and 1, respectively. For β ∈ [0, T], let ω̃(β) :=ω(T)−ω((T − β)−) and Iω̃ := {β ∈
[0, T] :	ω̃(β)> 0}; Iω̃ is the countable set of jump times of ω̃. Let Uω̃ := {Ui(β)}i≥1,β∈Iω̃ be
an i.i.d. family of uniform random variables on (0, 1). Assume, without loss of generality, that
the arrival times of λ0

i , λ1
i , λ�i , and λ�i,j, i, j ∈N, i �= j, are countable, distinct from each other,

and distinct from the jump times of ω̃. Let Icoal (resp. Isel) be the set of arrival times of �coal
(resp. �sel).

We first construct a set Vω ⊂N× [0, T] of virtual lines, representing the lines that would
be part of the ASG if there were no coalescences. In particular, once a line enters this set, it
will remain there. The set Vω is constructed on the basis of the set of potential branching times
Ibran := Iω̃ ∪ Isel as follows. Consider the (countable) set

Sbran := {(β1, . . . , βk) : k ∈N, 0≤ β1 < · · ·<βk, βi ∈ Ibran, i ∈ [k]},
and fix an injective function i� : [n]× Sbran →N \ [n]. The set Vω is determined as follows:

1. For any i ∈ [n] (i.e. in the initial sample) and β ∈ [0, T] : (i, β) ∈ Vω.

2. For any (β1, . . . , βk) ∈ Sbran, j ∈ [n], and β ∈ [βk, T] : (i�(j, β1, . . . , βk), β) ∈ Vω if and
only if

• for any � ∈ [k] with β� ∈ Iω̃, Ui�(j,β1,...,β�−1)(β�)≤	ω̃(β�) (or Uj(β1)≤	ω̃(β1) if
�= 1),

• for any � ∈ [k] such that β� ∈ Isel, β� is a jump time of λ�i�(j,β1,...,β�−1) (or of λ�j if
�= 1),

and these are all possible virtual lines; see Figure 7.
Let Vω(β) := {i ∈N : (i, β) ∈ Vω}. According to Lemma 4.1 below, Vω(β) is almost surely

finite for all β ∈ [0, T]. Now, for β ∈ Icoal, let (aβ, bβ ) be the pair (i, j) such that β is an
arrival time of λ�i,j. Since the Poisson processes λ�i,j, i �= j, have distinct jump times, (aβ, bβ ) is
uniquely defined. Let

Ĩcoal := {β ∈ Icoal : aβ, bβ ∈ Vω(β)} and Ĩbran := {β ∈ Ibran : Vω(β −) � Vω(β)}.
Since Vω(T) is independent of �coal and almost surely finite, it follows that Ĩcoal and
Ĩbran are almost surely finite. Let β1 < · · ·<βm be the elements of Ĩcoal ∪ Ĩbran (set β0 := 0
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FIGURE 7. Illustration of the construction of the quenched ASG. The environment ω has jumps at forward
times t0, t1, t2; backward times β1, . . . , β5 belong to the set of potential branching times Ĩbran. Virtual
lines are depicted in grey or black; active lines are black. The ASG in [0, T] consists of the set of active
lines together with their connections and mutation marks.

and βm+1 := T for convenience). We define Vωon(β)⊂ Vω(β), the set of active lines at
time β, as follows (see also Figure 7). For β = 0 we set Vωon(0) := Vω(0), and for β ∈
(β�, β�+1) we set Vωon(β) := Vωon(β�). For β = β� ∈ Ĩcoal, we set Vωon(β�) := Vωon(β� −) \ {aβ�}
if {aβ�, bβ�} ⊂ Vωon(β� −), and Vωon(β�) := Vωon(β� −) otherwise. Finally, for β = β� ∈ Ĩbran,
we set Vωon(β�) := Vωon(β� −)∪ J�, where the set J� consists of the integers i ∈ Vω(β�)\
Vω(β�−) such that i= i�(j, β�) for some j ∈ [n]∩ Vωon(β� −), or i= i�(j, β̂1, . . . , β̂k, β�) for
some (j, β̂1, . . . , β̂k) ∈ i−1

� (Vωon(β� −) \ [n]) with β̂k <β�.
The ASG on [0, T] is then the branching–coalescing system starting with n lines at levels

in [n], consisting at any time β ∈ [0, T] of the lines in Vωon(β), and where the following hold:

(i) For β ∈ Ibran such that Vωon(β −) � Vωon(β) and i ∈ Vωon(β) \ Vωon(β −), either there is
(j, β̂1, . . . , β̂k) ∈ [n]× Sbran with β̂k <β such that i= i�(j, β̂1, . . . , β̂k, β), or there is
j ∈ [n] such that i= i�(j, β). In the first case, line i�(j, β̂1, . . . , β̂k) branches at time β
into i�(j, β̂1, . . . , β̂k) (continuing line) and i (incoming line). In the second case, line j
branches at time β into j (continuing line) and i (incoming line).

(ii) For β ∈ Icoal such that Vωon(β) � Vωon(β −) and i ∈ Vωon(β −) \ Vωon(β), i= aβ and bβ ∈
Vωon(β). Thus, lines i and bβ merge into bβ at time β.

(iii) At each β ∈ [0, T] that is an arrival time of λ0
i (resp. λ1

i

)
for some i ∈ Vωon(β), we mark

line i with a beneficial (resp. deleterious) mutation at time β.

Clearly the branching–coalescing particle system thus constructed satisfies the requirements
(i), (ii), (iii′), (iv), and (v) of Definition 2.1. This ends the proof. �

It remains to prove the following lemma.

Lemma 4.1. The set Vω(β) is almost surely finite for any β ∈ [0, T].
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Proof. We keep using the notation introduced in the proof of Proposition 4.1. For δ > 0, we
consider the environment ωδ defined via (3.1). We couple the sets of virtual lines Vω and Vωδ
associated to ω and ωδ , respectively, by using the same random sets �sel and Uω̃ (note that for
β ∈ Iω̃ with	ω̃(β)< δ,	ω̃δ(β)= 0<Ui(β)). Let NωT (β) := |Vω(β)| and Nω

δ

T (β) := |Vωδ (β)|,
β ∈ [0, T]. Since β �→NωT (β) is non-decreasing, it is enough to prove that NωT (T)<∞ almost

surely. From the construction of the set of virtual lines, it follows that Nω
δ

T (β) increases
almost surely to NωT (β) as δ→ 0. By the monotone convergence theorem, for all β ∈ [0, T]
we get

lim
δ→0

E
[
Nω

δ

T (β) |NωδT (0)= n
]
=E

[
NωT (β) |NωT (0)= n

]
. (4.1)

Recall that ω̃δ(β) :=ωδ(T)−ωδ((T − β)−), β ∈ [0, T], and that ω̃δ has finitely many jumps

in [0, T]. Let T1 < · · ·< TN be the jump times of ω̃δ . The process
(

Nω
δ

T (β)
)
β∈[0,T]

has the

following transitions:

1. On (Ti, Ti+1) : Nω
δ

T jumps from k to k+ 1 at rate kσ .

2. At time Ti : Nω
δ

T jumps from k to k+ Bk(	ω̃δ(Ti)), where Bk(	ω̃δ(Ti))∼
Bin(k, 	ω̃δ(Ti)).

Note that for each Ti we have 	ω̃δ(Ti)=	ω̃(Ti). This yields in particular

E[Nω
δ

T (Ti) |NωδT (Ti −)]= (1+	ω̃(Ti))N
ωδ

T (Ti −). (4.2)

Successively using Lemma 4.2 (see below) and (4.2), we get

E
[
Nω

δ

T (T) |NωδT (0)= n
]
≤ neσT

∏
β∈[0,T]:	ω̃(β)≥δ

(1+	ω̃(β)).

In particular, we have

E[Nω
δ

T (T) |NωδT (0)= n]≤ neσT
∏

β∈Iω̃∩[0,T]

(1+	ω̃(β))<∞. (4.3)

Letting δ go to 0 in (4.3) and using (4.1), we get

E[NωT (T) |NωT (0)= n]≤ neσT
∏

β∈Iω̃∩[0,T]

(1+	ω̃(β))<∞.

This concludes the proof. �
Lemma 4.2. Let 0≤ β1 <β2 ≤ T be such that ω̃δ has no jump times on (β1, β2]. Then
we have

E[Nω
δ

T (β2) |NωδT (β1)]≤ eσ (β2−β1)Nω
δ

T (β1).

Proof. Since ω̃δ has no jump times on (β1, β2], on this interval Nω
δ

T is the Markov chain
on N with generator GNf (n)= σn(f (n+ 1)− f (n)). Let fM(n) := n∧M. Note that, for any
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M, n≥ 1, we have GNfM(n)≤ σ fM(n). Applying Dynkin’s formula to Nω
δ

T on (β1, β2] with
the function fM , we obtain

E
[
fM(Nω

δ

T (β2)) |NωδT (β1)
]
= fM(Nω

δ

T (β1))+E

[∫ β2

β1

GNfM(Nω
δ

T (β))dβ |NωδT (β1)

]

≤ fM(Nω
δ

T (β1))+ σE
[∫ β2

β1

fM(Nω
δ

T (β))dβ |NωδT (β1)

]

= fM(Nω
δ

T (β1))+ σ
∫ β2

β1

E
[
fM(Nω

δ

T (β)) |NωδT (β1)
]

dβ.

Thus, Gronwall’s lemma yields E[fM(Nω
δ

T (β2)) |NωδT (β1)]≤ eσ (β2−β1)fM(Nω
δ

T (β1)). The result
follows from letting M→∞ and using the monotone convergence theorem. �

4.2. Definitions related to Section 2.5: the killed ASG

The k-ASG as a branching–coalescing system of particles is defined as follows (see
Figure 4).

Definition 4.1. (The annealed/quenched k-ASG.) The annealed k-ASG with parameters
σ, θ, ν0, ν1, and environment driven by a pure-jump subordinator with Lévy measure μ, of
a sample of size n is the branching–coalescing particle system Ḡ := (Ḡ(β))β≥0 starting with n
lines and with the following dynamic:

(i) Each line splits into two lines, an incoming line and a continuing line, at rate σ .

(ii) Every given pair of lines coalesces into a single line at rate 2.

(iii) Every group of k lines is subject to a simultaneous branching at rate σm,k (defined in
Equation (2.5)), where m denotes the total number of lines in the ASG before the simul-
taneous branching event. At the simultaneous branching event, each line in the group
involved splits into two lines, an incoming line and a continuing line.

(iv) Each line is killed at rate θν1.

(v) Each line sends the process to the cemetery state † at rate θν0.

Let ω ∈D�. The quenched k-ASG with parameters σ, θ, ν0, ν1, and environment ω, of a
sample of size n at time T is the branching–coalescing particle system ḠωT := (ḠωT (β))β≥0 start-
ing at β = 0− with n lines and evolving according to (i), (ii), (iv), and (v) of the previous
definition, with (iii) replaced by the following:

(iii′) If at time β we have	ω(T − β)> 0, then any line splits into two lines, an incoming line
and a continuing line, with probability 	ω(T − β), independently from the other lines.

Remark 4.1. The branching–coalescing system underlying the quenched k-ASG is well-
defined, because it can be constructed on the basis of the quenched ASG.

4.3. Definitions related to Section 2.6: the pruned lookdown ASG

In this section, we give a detailed construction of the pLD-ASG, which incorporates the
effect of the environment.
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FIGURE 8. LD-ASG (left) and its pLD-ASG (right). Backward time β ∈ [0, T] runs from right to left.
In the LD-ASG, levels remain constant between the dashed lines; in particular, they are not affected by
mutation events. In the pLD-ASG, lines are pruned at mutation events, where an additional updating of
the levels takes place. The bold line in the pLD-ASG represents the immune line.

First, we construct the (annealed/quenched) lookdown ASG (LD-ASG). The latter is the
ASG equipped with a numbering of its lines encoding the hierarchy given by the pecking
order. This is done as follows. Consider a realization of the (annealed/quenched) ASG in
[0, T] starting with one line, which is assigned level 1. When the line at level i coalesces
with the line at level j> i, the resulting line is assigned level i; the level of each line hav-
ing level k> j before the coalescence is decreased by 1. When a group of lines with levels
i1 < i2 < . . . < iN experiences a simultaneous branching, the incoming (resp. continuing) line
of the descendant line with level ik gets level ik + k− 1 (resp. ik + k); a line having level j
before the branching, with ik < j< ik+1, gets level j+ k; a line having level j> iN before the
branching gets level j+N. Mutations do not affect the levels. See Figure 8 (left panel) for
an illustration. The pLD-ASG is obtained via an appropriate pruning of the lines of the LD-
ASG. Before describing the pruning procedure, we identify a special line in the LD-ASG: the
immune line. The immune line at time β is the line in the ASG present at time β that is the
ancestor of the starting line if all the lines at time β are assigned the unfit type. In the absence
of mutations, the immune line changes only if it is involved in a coalescence or branching
event. If it is involved in a coalescence event, the merged line is the new immune line. If it is
involved in a branching event, the continuing line is the new immune line.

In the presence of mutations, the pLD-ASG is constructed simultaneously with the immune
line as follows. Let β1 < · · ·<βm be the times at which mutations occur in the LD-ASG in
[0, T]. In the time interval [0, β1), the pLD-ASG coincides with the LD-ASG and the immune
line evolves as before. Now, assume that we have constructed the pLD-ASG together with its
immune line up to time βi−, where the pLD-ASG contains n lines and the immune line has
level k0 ∈ [n]. The pLD-ASG is extended up to time βi according to the following rules:

(i) If, at time βi, a line with level k �= k0 at βi− is hit by a deleterious mutation, we stop
tracing back this line; all the other lines are extended up to time βi; all the lines with level
j> k at time βi− decrease their level by 1, and the others keep their levels unchanged;
the immune line continues on the same line (possibly with a different level).

(ii) If, at time βi−, the line with level k0 at βi− is hit by a deleterious mutation, we extend
all the lines up to time βi; the immune line gets level n, but remains on the same line;
all lines having a level j> k0 at time βi− decrease their level by 1, and the others keep
their levels unchanged.
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(iii) If, at time βi, a line with level k is hit by a beneficial mutation, we stop tracing back all
the lines with level j> k; the remaining lines are extended up to time βi, keeping their
levels; the line hit by the mutation becomes the immune line.

In [βi, βi+1), i ∈ [m− 1], and [βm, T], the pLD-ASG evolves as the LD-ASG, and the
immune line as in the case without mutations. The next result states the main feature of the
pLD-ASG.

Lemma 4.3. If we assign types at (backward) time T in the pLD-ASG, the true ancestor of the
single line at (backward) time 0 is the line of type 0 with smallest level, or, if all lines have
type 1, it is the immune line.

Proof. The proof is analogous to the proof of [31, Theorem 4], which covers the null
environment case. �

5. Annealed results

5.1. Annealed results related to Section 2.5

We start this section by proving the first part of Theorem 2.3, i.e. Equations (2.7) and (2.8).

Proof of Theorem 2.3 (Part I: reinforced and annealed moment duality). Define the func-
tion H : [0, 1]×N

†
0 × [0,∞) via H(x, n, j) := (1− x)nf (j). Let (Pt)t≥0 and (Qt)t≥0 denote the

semigroups of (X, J) and (R, J), respectively, i.e.

Ptg(x, j)=E[g(X(t), J(t)+ j) | X(0)= x],

Qth(n, j)=E[h(R(t), J(t)+ j) | R(0)= n].

Let (R̂, Ĵ) be a copy of (R, J), which is independent of (X, J). A straightforward calculation
shows that

Pt(QsH)(x, n, j)=E[(1− X(t))R̂(s)f (J(t)+ Ĵ(s)+ j) | X(0)= x, R̂(0)= n]

=Qs(PtH)(x, n, j). (5.1)

Let G and G� be the infinitesimal generators of (X, J) and (R, J), respectively. Clearly, for any
x ∈ [0, 1], the function (n, j) �→ PtH(·, n, ·)(x, j) belongs to the domain of G�. Hence, Equation
(5.1) yields

PtG�H(x, n, j)=G�PtH(x, n, j). (5.2)

We claim that
GH(·, n, ·)(x, j)=G�H(x, ·, ·)(n, j). (Claim 4)

Assume that Claim 4 holds. Define the functions u(t, x, n, j) := PtH(·, n, ·)(x, j) and
v(t, x, n, j) :=QtH(x, ·, ·)(n, j). The Kolmogorov forward equation for Q yields

d

dt
v(t, x, n, j)=G�v(x, ·, ·)(n, j). (5.3)

Moreover, using the Kolmogorov forward equation for P, Claim 4, and (5.2), we get

d

dt
u(t, x, n, j)= PtGH(·, n, ·)(x, j)= PtG�H(x, ·, ·)(n, j)=G�u(x, ·, ·)(n, j).
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Hence, u and v satisfy Equation (5.3). Since u(0, x, n, j)= (1− x)nf (j)= v(0, x, n, j), Equation
(2.7) follows from the uniqueness of the initial value problem associated with G� (see [14,
Theorem 1.3]). Equation (2.8) is obtained using f ≡ 1 in Equation (2.7). It remains to prove
Claim 4. Note first that

GH(·, n, ·)(x, j)= (1− x)n
∫

(0,1]

[
(1− xz)nf (j+ z)− f (j)

]
μ(dz)

+
[
n(n− 1)x(1− x)n−1 − (σx(1− x)+ θν0(1− x)− θν1x) n(1− x)n−1

]
f (j).

(5.4)

In addition,

G�H(x, ·, ·)(n, j)= n((n− 1)+ θν1)[(1− x)n−1− (1− x)n]f (j)

+ σn[(1− x)n+1− (1− x)n]f (j)− nθν0(1− x)nf (j)

+
n∑

k=0

(
n

k

) ∫
(0,1)

yk(1− y)n−k[(1− x)n+kf (j+ y)− (1− x)nf (j)]μ(dy)

=
[
n(n− 1)x(1− x)n−1 − (σx(1− x)+ θν0(1− x)− θν1x) n(1− x)n−1

]
f (j)

+ (1− x)n
n∑

k=0

(
n

k

) ∫
(0,1)

yk(1− y)n−k[(1− x)kf (j+ y)− f (j)]μ(dy).

(5.5)

Moreover, using Fubini’s theorem, we obtain
n∑

k=0

(
n

k

) ∫
(0,1)

yk(1− y)n−k[(1− x)kf (j+ y)− f (j)]μ(dy)

=
∫

(0,1)

[
(1− xy)nf (j+ y)− f (j)

]
μ(dy).

Hence, Claim 4 follows after comparing (5.5) with (5.4). �
We now prove Theorem 2.4(1), which characterizes the asymptotic type frequency in the

annealed setting.

Proof of Theorem 2.4(1) (asymptotic type frequency). We first show that X(t) has a limit in
distribution as t→∞. Since θ > 0 and ν0 ∈ (0, 1), Equation (2.8) in Theorem 2.3 implies that,
for any x ∈ [0, 1], the limit of E[(1− X(t))n | X(0)= x] as t→∞ exists and satisfies

lim
t→∞E[(1− X(t))n|X(0)= x]= πn, n ∈N0, (5.6)

where πn is defined in (2.10). Recall that probability measures on [0, 1] are completely deter-
mined by their positive integer moments and that convergence of positive integer moments
implies convergence in distribution. Therefore, Equation (5.6) implies that there is ηX ∈
M1([0, 1]) such that, for any x ∈ [0, 1], conditionally on {X(0)= x}, the law of X(t) converges
in distribution to ηX as t→∞ and

πn =
∫

[0,1]
(1− z)nηX(dz), n ∈N.
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Using dominated convergence, the convergence of the law of X(t) towards ηX as t→∞ extends
to any initial distribution. As a consequence of this and the Markov property of X, it follows
that X admits a unique stationary distribution, which is given by ηX .

Finally, a first step decomposition for the probability of absorption in 0 of R yields[
n(σ + θ + n− 1)+

n∑
k=1

(
n

k

)
σn,k

]
πn= nσπn+1 + n(θν1 + n− 1)πn−1 +

n∑
k=1

(
n

k

)
σn,kπn+k.

Dividing both sides in the previous identity by n and rearranging terms yields
Equation (2.12). �

5.2. Annealed results related to Section 2.6

In this section we prove Theorem 2.5(1) and Corollary 2.1. Before that we prove the fol-
lowing lemma relating the ancestral type distribution at time T to the number L(T) of lines in
the pLD-ASG at time T .

Lemma 5.1. For all T ≥ 0 and x ∈ [0, 1], we have

hT (x)= 1−E[(1− x)L(T) | L(0)= 1]. (5.7)

Proof. Since types are assigned to the L(T) lines present in the pLD-ASG at (backward)
time T according to independent Bernoulli random variables with parameter x, the result
follows from Lemma 4.3. �

The next result is crucial for describing the asymptotic behavior of hT (x) as T →∞.

Lemma 5.2. (Positive recurrence.) The process L is positive recurrent.

Proof. Since L is irreducible, it is enough to prove that the state 1 is positive recurrent. This
holds if θν0 > 0, because in this case the hitting time of 1 is bounded above by an exponential
random variable with parameter θν0. Now, assume that θ = 0 (the case θν0 = 0 and θν1 > 0
can easily be reduced to this case). We proceed in a way similar to the proof of [16, Lemma
2.3]. Define the function f : N→R+ via

f (n) :=
n−1∑
i=1

1

i
ln

(
1+ 1

i

)
,

with the convention that an empty sum equals 0. Note that f is bounded. Note also that, for
n> 1,

n(n− 1)(f (n− 1)− f (n))=−n ln

(
1+ 1

n− 1

)
≤−1.

This follows from using x= 1/n in the inequality ex < 1/(1− x), which holds for x< 1. For
any ε > 0, set n0(ε) := �1/ε� + 1. Note that for n> n0(ε),

n(f (n+ i)− f (n))= n
n+i−1∑

j=n

1

j
ln

(
1+ 1

j

)
≤ n ln

(
1+ 1

n

)
iε≤ iε.

https://doi.org/10.1017/apr.2022.54 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.54


742 F. CORDERO AND G. VÉCHAMBRE

Hence, for n> n0(ε),

GLf (n)≤−1+ ε

n

n∑
i=1

(
n

i

)
σn,i i+ σε=−1+ ε

∫
(0,1)

n∑
i=1

(
n− 1

i− 1

)
yi(1− y)n−iμ(dy)+ σε

=−1+ ε
∫

(0,1)

yμ(dy)+ σε,

where σn,i is defined in (2.5). Set m0 := n0(ε�), where ε� := 1/
(
2
∫

(0,1) yμ(dy)+ 2σ
)

(and we
set m0 := 1 in the particular case μ= 0 and σ = 0). In particular, for n>m0, we have GLf (n)≤
−1/2.

Define Tm0 := inf{β > 0 : L(β)≤m0}. Applying Dynkin’s formula to L with the function f
and the stopping time Tm0 ∧ k, k ∈N, we obtain

E
[
f (L(Tm0 ∧ k)) | L(0)= n

]= f (n)+E

[∫ Tm0∧k

0
GLf (L(β))dβ | L(0)= n

]
.

Therefore, for n>m0, we have

0≤E
[
f (L(Tm0 ∧ k)) | L(0)= n

]≤ f (n)− 1

2
E[Tm0 ∧ k | L(0)= n].

In particular, we have E[Tm0 ∧ k | L(0)= n]≤ 2f (n). Thus, letting k→∞ in this inequality
yields E[Tm0 | L(0)= n]≤ 2f (n)<∞. Since L is irreducible, the result follows by standard
arguments. �

The first part of the proof of Theorem 2.5(1) builds on the previous two lemmas. The
system of equations (2.18) characterizing the tail probabilities P(L(∞)> n) is obtained via
Siegmund duality. More precisely, consider the continuous-time Markov chain D := (D(β))β≥0
with values in N† :=N∪ {†} with rates

qD(i, j) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(i− 1)(σ + σi−1,1) if j= i− 1, i> 1,

(i− 1)θν1 + i(i− 1) if j= i+ 1, i> 1,

γi,j − γi,j−1 if 1≤ j< i, i> 2,

(i− 1)θν0 if j= †, i> 1,

where † is a cemetery point, and where γi,j := ∑j
k=i−j

( j
k

)
σj,k if 1≤ j< i≤ 2j and γi,j := 0

otherwise (see Theorem 2.5). The states 1 and † are absorbing for D. The next result relates L
and D via duality.

Lemma 5.3. (Siegmund duality.) The processes L and D are Siegmund dual; i.e.

P (L(β)≥ d | L(0)= �)= P (�≥D(β) |D(0)= d) for all �, d ∈N, t≥ 0.

Proof. Define H : N×N∪ {†}→ {0, 1} via H(�, d) := 1{�≥d} and H(�, †) := 0, �, d ∈N.
Let GL and GD be the infinitesimal generators of L and D, respectively. By [23, Proposition 1.2]
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we only have to show that GLH(·, d)(�)=GDH(�, ·)(d) for all �, d ∈N. From (2.16),
we have

GLH(·, d)(�)

= σ� 1{�+1=d} − (�− 1)(�+ θν1) 1{�=d} − θν0

�−1∑
j=1

1{j<d≤�} +
�∑

k=1

(
�

k

)
σ�,k 1{�<d≤�+k}

= σ� 1{�+1=d} − (�− 1)(�+ θν1) 1{�=d} − θν0(d− 1)1{d≤�} + γd,� 1{�<d}. (5.8)

Similarly, we have

GDH(�, ·)(d)= σ (d− 1) 1{d−1=�} − (d− 1)(d+ θν1) 1{�=d} − θν0(d− 1)1{d≤�}

+
d−1∑
j=1

(
γd,j − γd,j−1

)
1{j≤�<d}. (5.9)

Summation by parts yields
∑d−1

j=1

(
γd,j − γd,j−1

)
1{j≤�<d}= γd,�1{�<d}. Thus, the result

follows from comparing (5.9) with (5.8). �
Now we have all the ingredients to prove Theorem 2.5(1).

Proof of Theorem 2.5(1) (ancestral type distribution). Since L is positive recurrent, L(T)
converges in distribution as T →∞ towards the stationary distribution ηL. In particular, we
infer from Equation (5.7) that h(x) := limT→∞ hT (x) exists and satisfies

h(x)= 1−E[(1− x)L(∞)]= 1−
∞∑
�=1

P(L(∞)= �)(1− x)�

=
∞∑
�=0

P(L(∞)> �)(1− x)� − (1− x)
∞∑
�=1

P(L(∞)> �− 1)(1− x)�−1,

and Equation (2.17) follows. It remains to prove (2.18). From Lemma 5.3 we infer that an =
dn+1, where

dn := P(∃β > 0 : D(β)= 1 |D(0)= n), n≥ 1.

Applying a first step decomposition to the process D, we obtain, for n> 1,(
(n− 1)(σ + θ + n)+ γn,n−1

)
dn

= (n− 1)σdn−1 + (n− 1)(θν1 + n)dn+1 +
n−1∑
j=1

(γn,j − γn,j−1)dj. (5.10)

Using summation by parts and rearranging terms in (5.10) yields

(σ + θ + n)dn = σdn−1 + (θν1 + n)dn+1 + 1

n− 1

n−1∑
j=1

γn,j(dj − dj+1), n> 1. (5.11)

The result follows. �
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Proof of Corollary 2.1. Since θ = 0, the line-counting processes R and L have the same
distribution. Hence, combining Lemma 5.1 and (2.8) (from Theorem 2.3) applied to n= 1, we
obtain

hT (x)=E[X(T) | X(0)= x], (5.12)

which proves the first part of the statement. Moreover, for θ = 0, X is a bounded submartin-
gale, and hence X(T) almost surely has a limit as T →∞, which we denote by X(∞). Letting
T →∞ in the identity (5.12) yields

h(x)=E[X(∞) | X(0)= x]. (5.13)

Moreover, using (2.8) (from Theorem 2.3) with n= 2, we get

E[(1− X(T))2 | X(0)= x]=E[(1− x)L(T) | L(0)= 2].

Letting T →∞ and using that L is positive recurrent, we obtain

E[(1− X(∞))2 | X(0)= x]= 1− h(x).

Plugging (5.13) into the previous identity yields the desired result. �
Proof of Proposition 2.2 Using Equation (2.18) in Theorem 2.5 for the two models, we

obtain, for n ∈N,

(n+ 1)ρsel
n+1 = σμρsel

n , and (n+ 1)ρenv
n+1 =

1

n

n∑
j=1

γn+1,j ρ
env
j .

Separately multiplying these equations by zn, z ∈ [0, 1], and summing over n ∈N,
one obtains

(psel)′(z)= ρsel
1 + σμ psel(z), and (penv)′(z)= ρenv

1 +
∞∑

j=1

ρenv
j gj(z),

with gj(z) := ∑2j−1
n=j γn+1,j

zn

n . Solving the ordinary differential equation for psel via variation

of constants, and using that psel(0) and psel(1)= 1, we obtain the desired formulas for ρsel
1 and

psel (see also [13, Theorem 6.1]). Now, using the definitions of the coefficients γn+1,j (defined
below Equation (2.18)) and σm,k (see (2.5)) followed by a straightforward calculation, one
obtains

gj(z)=
j∑

k=1

(
j

k

)
σj,k

z∫
0

uj−1 − uk+j−1

1− u
du=

z∫
0

du
uj−1

1− u

∫
(0,1)

μ(dy) (1− (1− y(1− u))j).

Since (1− h)j ≥ 1− jh for h ∈ (0, 1), we infer that gj(z)≤ σμzj, with equality only if z= 0 or
j= 1. We conclude that

(penv)′(z)<ρenv
1 + σμ penv(z), z ∈ (0, 1].

Letting f (z) := ρenv
1 + σμ penv(z), we then have f ′(z)/f (z)≤ σμ, so, after integration,

log (f (z)/f (0))≤ σμz. Since penv(0)= 0, this yields

penv(z)≤ ρenv
1

(
eσμz − 1

σμ

)
= ρenv

1

ρsel
1

psel(z).
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Moreover, since penv(1)= psel(1)= 1, we conclude that ρenv
1 ≥ ρsel

1 . Assume now that ρenv
1 =

ρsel
1 . It follows that penv(z)≤ psel(z) for z ∈ [0, 1]. Hence,

1=
1∫

0

(penv)′(z)dz<

1∫
0

(ρenv
1 + σμ penv(z))dz≤

1∫
0

(ρsel
1 + σμ psel(z))dz=

1∫
0

(psel)′(z)dz= 1,

which is a contradiction. Thus, ρenv
1 >ρsel

1 . In particular, for z �= 0 sufficiently small, penv(z)>
psel(z). Hence, the last statement follows from the fact that henv(z)= 1− penv(1− z) and
hsel(z)= 1− psel(1− z). �

6. Quenched results

6.1. Quenched results related to Section 2.5

In this section we prove the quenched parts of the results stated in Section 2.5. We start with
the proof of the second part of Theorem 2.3, which establishes the quenched moment duality
(2.9) for almost every environment ω.

Proof of Theorem 2.3 (Part II: quenched moment duality). Since both sides of (2.9) are
right-continuous in T , it is sufficient to prove that, for any bounded measurable function
g : D�T →R,

E[(1− XJ(T))ng((Js)s∈[0,T])|XJ(0)= x]=E[(1− x)RJ
T (T−)g((Js)s∈[0,T])|RJ

T (0−)= n]. (6.1)

Let H := {g : D�T →R : such that holds}. Thanks to the annealed moment duality, Equation
(2.8), every constant function belongs to H. Moreover, H is closed under increasing lim-
its of non-negative bounded functions in H. We claim that (6.1) holds for functions of the
form g(ω)= g1(ω(t1)) · · · gk(ω(tk)), with 0< t1 < · · ·< tk < T and gi ∈ C2([0,∞)) with com-
pact support. If the claim is true, then thanks to the monotone class theorem, H will contain
any measurable function g, which will then complete the proof.

We prove the claim by induction on k. For k= 1, we need to prove that for t1 ∈ (0, T),

E[(1− XJ(T))ng1(J(t1))|XJ(0)= x]=E[(1− x)RJ
T (T−)g1(J(t1))|RJ

T (0−)= n]. (6.2)

Note first that, using the Markov property for XJ in [0, t1], Equation (2.8), and the fact that t1
and T are almost surely continuity times for J, we obtain

E
[
(1− XJ(T))ng1(J(t1)) | XJ(0)= x

]
=E

[
g1(J(t1))Ê

[
(1− X̂Ĵ(T − t1))n | X̂Ĵ(0)= XJ(t1)

]
| XJ(0)= x

]
=E

[
g1(J(t1))Ê

[
(1− XJ(t1))R̂Ĵ

T−t1
((T−t1)−) | R̂Ĵ

T−t1 (0−)= n

]
| XJ(0)= x

]
,

where the subordinator Ĵ is defined via Ĵ(h) := J(t1 + h)− J(t1). The processes X̂Ĵ and R̂Ĵ
T−t1

are independent copies of XJ and RJ
T−t1

, which are driven by Ĵ (which is in turn independent
of (J(u))u∈[0,t1]). Using first Fubini’s theorem, then Equation (2.7) in Theorem 2.3 and the fact
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that 0 and t1 are almost surely continuity times for J, we find that the last expression equals

Ê

[
E

[
g1(J(t1))(1− XJ(t1))R̂Ĵ

T−t1
((T−t1)−) | XJ(0)= x

]
| R̂Ĵ

T−t1 (0−)= n

]

= Ê
[
E
[
g1(J(t1))(1− x)RJ

t1
(t1−) | RJ

t1 (0−)= R̂Ĵ
T−t1 ((T − t1)−)

]
| R̂Ĵ

T−t1 (0−)= n
]

.

The proof of the claim for k= 1 is achieved using the Markov property for RJ
T in the (backward)

interval [0, T − t1]. Let us now assume that the claim is true up to k− 1. We proceed as before
to prove that the claim holds for k. For j ∈ [k], define Gωj,k(z) := ∏k

i=j gi(z+ω(ti − t1)). Using

the Markov property for XJ in [0, t1] followed by the inductive step, we obtain

E

[
(1− XJ(T))n

k∏
i=1

gi(J(ti))|XJ(0)= x

]

=E
[
g1(J(t1))Ê

[
(1−X̂Ĵ(T − t1))n GĴ

2,k(J(t1))|X̂Ĵ(0)= XJ(t1)
]
| XJ(0)= x

]
=E

[
g1(J(t1))Ê

[
(1−XJ(t1))R̂Ĵ

T−t1
((T−t1)−) GĴ

2,k(J(t1))|R̂Ĵ
T−t1 (0−)= n

]
|XJ(0)= x

]
.

By Fubini’s theorem, the reinforced duality Equation (2.7), and the fact that 0 and t1 are almost
surely continuity times for J, the last expression equals

Ê

[
E

[
(1− XJ(t1))R̂Ĵ

T−t1
((T−t1)−)GĴ

1,k(J(t1))|XJ(0)= x

]
|R̂Ĵ

T−t1 (0−)= n

]

= Ê
[
E
[
(1− x)RJ

t1
(t1−)GĴ

1,k(J(t1))|RJ
t1(0−)= R̂Ĵ

T−t1((T − t1)−)
]
|R̂Ĵ

T−t1 (0−)= n
]

.

The result follows from applying the Markov property for RJ
T in the (backward) interval

[0, T − t1]. �
Proof of Theorem 2.4(2) (asymptotic type frequency). Let ω be such that Equation (2.9)

holds between −τ and 0. In particular,

E
[
(1− Xω(0))n|Xω(− τ )= x

]=E
[
(1− x)Rω0 (τ−)|Rω0 (0−)= n

]
. (6.3)

Since we assume that θ > 0 and ν0, ν1 ∈ (0, 1), the right-hand side converges to �n(ω)
(defined in (2.10)), which proves that the moment of order n of 1− Xω(0) conditionally on
{Xω(− τ )= x} converges to �n(ω). Since we are dealing with random variables supported on
[0, 1], the convergence of the positive integer moments proves the convergence in distribution
and the fact that the limit distribution Lω satisfies (2.13).

It remains to prove (2.14). For υ ∈M1(N†
0) with finite support, let υωs denote the distribu-

tion of Rω0 (s−) given that Rω0 (0−)∼ υ. Let Tω0,† be the absorption time of Rω0 at {0, †}. Note
that Tω0,† is stochastically bounded by an exponential random variable with parameter θν0.
Therefore,

υωτ (N)= Pυ
(
Rω0 (τ −) ∈N

)= Pυ
(
Tω0,† > τ

)≤ e−θν0τ .

Hence, we have

Pυ
(∃s≥ 0 s.t. Rω0 (s)= 0

)= υωτ ({0})+
∑
k≥1

Pυ
(
Rω0 (τ −)= k & ∃s≥ τ s.t. Rω0 (s)= 0

)
≤ υωτ ({0})+ υωτ (N)≤ υωτ ({0})+ e−θν0τ .
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Thus, we obtain

υωτ ({0})≤ Pυ
(∃s≥ 0 s.t. Rω0 (s)= 0

)≤ υωτ ({0})+ e−θν0τ . (6.4)

Similarly, we have

Eυ

[
(1− x)Rω0 (τ−)

]
=
∑
k≥0

(1− x)kυωτ ({k})≤ υωτ ({0})+ υωτ (N)≤ υωτ ({0})+ e−θν0τ .

Hence,

υωτ ({0})≤Eυ [(1− x)Rω0 (τ−)]≤ υωτ ({0})+ e−θν0τ . (6.5)

Recall from Section 2.5 that�n(ω) := P(∃s≥ 0 s.t. Rω0 (s)= 0 | Rω0 (0−)= n). Choosing υ = δn

in (6.4) and in (6.5) and subtracting both inequalities, we get∣∣∣E [(1− x)Rω0 (τ−) | Rω0 (0−)= n
]
−�n(ω)

∣∣∣≤ e−θν0τ .

This inequality together with (2.9) (i.e. the quenched moment duality) yields the desired
result. �

Proof of Proposition 2.1. Let ω ∈D� be such that (2.9) holds. Let Jω := J ⊗τ� ω. Consider
the process XJω in [− τ, 0] with τ > τ�. Using the Markov property, we obtain

E
[
(1− XJω (0))n | XJω (− τ )= x

]
=
∫ 1

0
E
[
(1− Xω(0))n | Xω(− τ�)= y

]
P(X(− τ�) ∈ dy | X(− τ )= x),

where X is the solution to (1.3) with subordinator J. Combining the previous identity with (2.9)
for Xω in (− τ�, 0), and using the translation invariance of X, we obtain

E
[
(1− XJω (0))n | XJω (− τ )= x

]=∫ 1

0
E
[
(1− y)Rω0 (τ�−) | Rω0 (0−)= n

]
P(X(τ − τ�) ∈ dy | X(0)= x).

Hence, letting τ→∞ and using Theorem 2.4(1), we get

lim
τ→∞E

[
(1− XJω (0))n | XJω (− τ )= x

]
=
∫ 1

0
E
[
(1− y)Rω0 (τ�−) | Rω0 (0−)= n

]
P(X(∞) ∈ dy),

and the result follows from Equation (2.11) in Theorem 2.4(1). �

6.2. Quenched results related to Section 2.6

This section is devoted to the proof of Theorem 2.5(2), which describes the asymptotic
behavior of the ancestral type distribution.

Lemma 6.1. For all T ≥ 0, x ∈ [0, 1], and ω ∈D�, we have

hωT (x)= 1−E[(1− x)LωT (T−) | LωT (0−)= 1]. (6.6)
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Proof. The proof is analogous to the proof of Lemma 5.1. �
Now we proceed to prove Theorem 2.5(2).

Proof of Theorem 2.5(2) (ancestral type distribution). Recall that θν0 > 0 by assumption.
For μ ∈M1(N), we denote by μωT (β) the distribution of LωT (β −) given that LωT (0−)∼μ. Let
t> s> 0. Note that we have μωt (t)= (μωt (t− s))ωs (s), so

dTV (μωt (t), μωs (s))= dTV ((μωt (t− s))ωs (s), μωs (s)), (6.7)

where dTV (μ1, μ2) stands for the total variation distance between μ1 and μ2.
Assume now that LωT (0−)∼μ. By construction, LωT jumps from any state i to the state 1 with

rate q0(i, 1)≥ θν0 > 0 (see (2.16)). Let L̂ωT be a process with initial distribution μ, evolving as
LωT , but jumping from i to 1 at rate q0(i, 1)− θν0 ≥ 0. We decompose the dynamic of LωT as
follows: (1) LωT evolves as L̂ωT on [0, ξ ], where ξ is an independent exponential random variable
with parameter θν0, (2) at time ξ , LωT jumps to the state 1 regardless of its current position, and
(3) conditionally on ξ , LωT has the same law on [ξ,∞) as an independent copy of LωT−ξ started

with one line. This idea allows us to couple LωT to a copy of it, L̃ωT , with starting law μ̃, so
that the two processes are equal on [ξ,∞). Since LωT (T −)∼μωT (T) and L̃ωT (T −)∼ μ̃T

T (ω), we
have

dTV (μωT (T), μ̃ωT (T))≤ P
(
L̃ωT (T −) �= LωT (T −)

)≤ P (ξ > T)= e−θν0T . (6.8)

This, together with (6.7), implies that for any μ ∈M1(N) and any t> s> 0,

dTV (μωt (t), μωs (s))≤ e−θν0s. (6.9)

In particular, (μωt (t))t>0 is Cauchy as t→∞ for the total variation distance. Therefore,
(μωt (t))t>0 has a limit μω ∈M1(N). Moreover, (6.8) implies that μω does not depend on μ,
and the first part of Theorem 2.5(2) is proved. The identity (2.19) then follows by Lemma 6.1.

Setting s= T and letting t→∞ in (6.9) yields dTV (μω, μωT (T))≤ e−θν0T . Since hω(x)=
1−E

[
(1− x)Zω∞

]
and hωT (x)= 1−E

[
(1− x)ZωT

]
, where Zω∞ ∼ (δ1)ω and ZωT ∼ (δ1)ωT (T),

we get

|hωT (x)− hω(x)| ≤ dTV ((δ1)ω, (δ1)ωT (T))≤ e−θν0T ,

completing the proof. �

7. Further quenched results for simple environments

In this section we provide, for simple environments, extensions and refinements of the
results obtained in Sections 2.5 and 2.6 in the quenched setting. Recall the quenched diffusion
Xω defined in Section 2.3.

7.1. Extensions of quenched results in Section 2.5

First we extend the main quenched results in Section 2.5, which hold for almost every
environment, to any simple environment.

Theorem 7.1. (Quenched moment duality for simple environments.) The quenched moment
duality (2.9) holds for any simple environment.
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The proof of Theorem 7.1 has two main ingredients: a moment duality between the jumps
of the environment, and a moment duality at the jumps. These results are covered by the next
two lemmas.

Lemma 7.1. (Quenched moment duality between the jumps.) Let 0≤ s< t≤ T, and assume
that ω has no jumps in (s,t). For all x ∈ [0, 1] and n ∈N, we have

E
[
(1− Xω(t−))n | Xω(s)= x

]=E
[
(1− x)RωT ((T−s)−) | RωT (T − t)= n

]
.

Proof. In (s, t), the processes Xω and Rωt evolve as in the annealed case with μ= 0.
Therefore, the result follows from applying Theorem 2.3 with μ= 0. �

Lemma 7.2. (Quenched moment duality at jumps.) Assume that ω ∈D� is simple and has a
jump at time t< T. Then, for all x ∈ [0, 1] and n ∈N, we have

E
[
(1− Xω(t))n | Xω(t−)= x

]=E
[
(1− x)RωT (T−t) | RωT ((T − t)−)= n

]
.

Proof. On the one hand, since Xω(t)= Xω(t−)+ Xω(t−)(1− Xω(t−))	ω(t) almost surely,
we have

E
[
(1− Xω(t))n | Xω(t−)= x

]= [1− x(1+ (1− x)	ω(t))]n = [(1− x)(1− x	ω(t))]n .
(7.1)

On the other hand, conditionally on {RωT ((T − t)−)= n}, we have RωT (T − t)∼ n+ Y where
Y ∼Bin(n, 	ω(t)). Therefore,

E
[
(1− x)RωT (T−t) | RωT ((T − t)−)= n

]
=E

[
(1− x)n+Y]

= (1− x)n [1−	ω(t)+	ω(t)(1− x)]n = [(1− x)(1− x	ω(t))]n . (7.2)

The combination of (7.1) and (7.2) yields the result. �

Proof of Theorem 7.1. Let ω be a simple environment. Let (ti)m
i=1 be the increasing sequence

of jump times of ω in [0, T]. Without loss of generality we assume that 0 and T are both
jump times of ω. In particular, t1 = 0 and tm = T . Let (Xω(s))s∈[0,T] and (RωT (β))β∈[0,T] be
independent realizations of the Wright–Fisher process and the line-counting process of the
k-ASG, respectively. For s ∈ [0, T], denote by μωs (x, ·) and μ̄ωs (x, ·) the laws of Xω(s) and
Xω(s−), respectively, given that Xω(0)= x. Partitioning with respect to the values of Xω(tm −)
and using Lemma 7.2 at t= T , we get

E
[
(1− Xω(T))n | Xω(0)= x

]= ∫ 1

0
E
[
(1− Xω(tm))n | Xω(tm −)= y

]
μ̄ωtm (x, dy)

=
∫ 1

0
E
[
(1− y)RωT (0) | RωT (0−)= n

]
μ̄ωtm (x, dy)

=E
[
(1− Xω(tm −))RωT (0) | RωT (0−)= n, Xω(0)= x

]
=: IωT (x, n).
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For t< T , set qωn,k(t) := P
(
RωT (t)= k | RωT (0−)= n

)
. Partitioning with respect to the values

of Xω(tm−1) and RωT (0), and using Lemma 7.1, we get

IωT (x, n)=
∑
k∈N†

0

E
[
(1− Xω(tm −))k | Xω(0)= x

]
qωn,k(0)

=
∑
k∈N†

0

qωn,k(0)
∫ 1

0
E
[
(1− Xω(tm −))k | Xω(tm−1)= y

]
μωtm−1

(x, dy)

=
∑
k∈N†

0

qωn,k(0)
∫ 1

0
E
[
(1− y)RωT ((T−tm−1)−) | RωT (0)= k

]
μωtm−1

(x, dy)

=E
[
(1− Xω(tm−1))RωT ((T−tm−1)−) | RωT (0−)= n, Xω(0)= x

]
.

If m= 2, the proof of (2.9) is already complete. If m> 2, we continue as follows. Partitioning
with respect to the values of RωT ((T − tm−1)−) and of Xω(tm−1 −), and using Lemma 7.2, we
obtain

IωT (x, n)=
∑
k∈N†

0

E
[
(1− Xω(tm−1))k | Xω(0)= x

]
qωn,k((T − tm−1)−)

=
∑
k∈N†

0

qωn,k((T − tm−1)−)
∫ 1

0
E
[
(1− Xω(tm−1))k | Xω(tm−1 −)= y

]
μ̄ωtm−1

(x, dy)

=
∑
k∈N†

0

qωn,k((T − tm−1)−)
∫ 1

0
E
[
(1− y)RωT (T−tm−1)|RωT ((T − tm−1)−)=k

]
μ̄ωtm−1

(x, dy)

=E
[
(1− Xω(tm−1 −))RωT (T−tm−1) | RωT (0−)= n, Xω(0)= x

]
.

Iterating this procedure, using successively Lemma 7.1 and Lemma 7.2 (the first one is applied
on the intervals (ti−1, ti), while the second one is applied at the times ti), we finally obtain

E[(1− Xω(T))n | Xω(0)= x]=E
[
(1− x)RωT (T−)|RωT (0−)= n

]
,

which ends the proof. �
Theorem 7.2. (Quenched asymptotic type frequency for simple environments) The statement
of Theorem 2.4(2) holds for any simple environment.

Proof. The proof is analogous to the proof of Theorem 2.4(2), but using Theorem 7.1 instead
of Theorem 2.3. �
Refinements for σ = 0. Under this additional assumption, we provide a more explicit
expression for �n(ω) (defined in (2.10)). This is possible thanks to the following explicit
diagonalization of Q0

† (the transition matrix of R under the null environment).

Lemma 7.3. Assume that σ = 0, and set λ†
k := − q0

†(k, k) for k ∈N
†
0 and γ †

k := q0
†(k, k− 1)

for k ∈N, where qμ† (·, ·) is defined in (2.6). In addition, let D† be the diagonal matrix with

diagonal entries (− λ†
i )i∈N†

0
, and let U† := (u†

i,j)i,j∈N†
0

and V† := (v†
i,j)i,j∈N†

0
be defined via
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u†
i,j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i∏
�=j+1

(
γ

†
�

λ
†
�−λ†

j

)
for i ∈N0 & j ∈ [i]0,

0 for i ∈N0 & j> i, or i= † j ∈N0,

θν0

i∑
k=1

k
λ

†
k

i∏
�=k+1

γ
†
�

λ
†
�

for i ∈N0 & j= †,

1 for i= j= †,

(7.3)

v†
i,j :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

i−1∏
�=j

(
−γ †

�+1

λ
†
i −λ†

�

)
for i ∈N0 & j ∈ [i]0,

0 for i ∈N0 & j> i, or i= † j ∈N0,

−θν0

λ
†
i

i∑
k=1

k
i−1∏
�=k

(
−γ †

�+1

λ
†
i −λ†

�

)
for i ∈N0 & j= †,

1 for i= j= †,

(7.4)

with the convention that an empty sum equals 0 and an empty product equals 1. Then we have
Q0

† =U†D†V† and U†V† = V†U† = I, where I denotes the identity matrix.

Proof of Lemma 7.3. For any i ∈N
†
0, let ei := (ei,j)j∈N†

0
be the vector defined via ei,i := 1

and ei,j := 0 for j �= i. Order N†
0 as {†, 0, 1, 2, . . .}, so that the matrix (Q0

†) is upper triangular

with diagonal elements (− λ†,−λ0,−λ1,−λ2, . . . ). For n ∈N
†
0, let vn ∈ Span{ei : i ∈ [n]0 ∪

{†}} be the eigenvector of (Q0
†) associated with the eigenvalue −λn, normalized so that its

coordinate with respect to en is 1. It is not difficult to see that these eigenvectors exist and
that we have v† = e† and v0 = e0. For n≥ 1, writing vn = c†e† + c0e0 + . . .+ cn−1en−1 + en

and multiplying by 1
−λn

(Q0
†) on both sides, we obtain another expression for vn as a linear

combination of e†, e0, . . . , en−1, en. Identifying the two expressions, we obtain that ck = v†
n,k,

for k≤ n− 1. In particular, we have

vn = v†
n,†e† + v†

n,0e0 + · · · + v†
n,n−1en−1 + v†

n,nen.

Proceeding in a similar way, one obtains that

en = u†
n,†v† + u†

n,0v0 + · · · + u†
n,n−1vn−1 + u†

n,nvn.

We thus get that V † U † =U † V † = I and (Q0
†) = V † D†U † (the matrix products are

well-defined, because they involve sums of finitely many non-zero terms). This ends the
proof. �

Now, consider the polynomials S†
k , k ∈N0, defined via

S†
k (x) :=

k∑
i=0

v†
k,i xi, x ∈ [0, 1]. (7.5)

For z ∈ (0, 1), define the matrices B(z) := (Bi,j(z))i,j∈N†
0

and �†(z) := (�†
i,j(z))i,j∈N†

0
via

Bi,j(z) :=
⎧⎨
⎩
P(i+ Bi(z)= j) for i, j ∈N,

1 for i= j ∈ {0, †},
0 otherwise,

& �†(z) :=U † B(z) V † , (7.6)
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where Bi(z)∼Bin(i, z). We will see in the proof of Theorem 7.3 that �†(z) is
well-defined.

Theorem 7.3. Assume that σ = 0, θ > 0, and ν0, ν1 ∈ (0, 1). Let ω be a simple environ-
ment. Denote by N :=N(τ ) the number of jumps of ω in (− τ, 0), and let (Ti)N

i=1 be the
sequence of the jump times in decreasing order; set T0 := 0. For any m ∈ [N], define the matrix
A†

m(ω) := (A†,m
i,j (ω))i,j∈N†

0
via

A†
m(ω) :=�†(	ω(Tm)) exp

(
(Tm−1 − Tm)D†

)
. (7.7)

Then, for all x ∈ (0, 1) and n ∈N, we have

E
[
(1− Xω(0))n | Xω(− τ )= x

]= n2N∑
k=0

C†
n,k(ω, τ )S†

k (1− x), (7.8)

where the matrix C†(ω, τ ) := (C†
n,k(ω, τ ))k,n∈N†

0
is given by

C†(ω, τ ) :=U†

[
A†

N(ω)A†
N−1(ω) · · · A†

1(ω)
] 

exp
(
(TN + τ )D†

)
, (7.9)

with the convention that an empty product of matrices is the identity matrix. Moreover, for all
n ∈N,

�n(ω)=C†
n,0(ω,∞) := lim

τ→∞C†
n,0(ω, τ )= lim

τ→∞

(
U†

[
A†

N(τ )(ω) · · · A†
1(ω)

] )
n,0
, (7.10)

where the previous limits are well-defined.

Proof. Let us first show that the matrix products in (7.6), (7.7), and (7.9) are well-defined
and that C†

n,k(ω, τ )= 0 for all k> n2N . To this end, order N†
0 as {†, 0, 1, 2, . . .}, so that the

matrices U † and V † are upper triangular. Note also that Bj,i(z)= 0 for i> 2j. Therefore, for

any n ∈N and any v= (vi)i∈N†
0

such that vi = 0 for all i> n, the vector ṽ :=U † (B(z) (V † v))

is well-defined and satisfies ṽi = 0 for all i> 2n. It follows that the matrix �†(z) in (7.6)
is well-defined. Moreover, since exp ((Tm−1 − Tm)D†) is diagonal, the product defining the
matrix A†

m(ω) in (7.7) is also well-defined. Furthermore, for any n ∈N and any vector v=
(vi)i∈N†

0
such that vi = 0 for all i> n, the vector ṽ := A†

m(ω)v satisfies ṽi = 0 for all i> 2n.

In particular, for any m≥ 1, the product exp (− (TN + τ )D†)A†
m(ω)A†

m−1(ω) · · · A†
1(ω)U † is

well-defined. Additionally, for n≥ 1 and a vector v= (vi)i∈N†
0

such that vi = 0 for all i> n,

the vector ṽ := exp (− (TN + τ )D†)A†
m(ω)A†

m−1(ω) · · · A†
1(ω)U † v satisfies ṽi = 0 for all i>

2mn. Transposing, we see that the matrix C†(ω, τ ) in (7.9) is well-defined and satisfies
C†

n,k(ω, τ )= 0 for all k> n2N .

For s> 0, define the stochastic matrix P†
s (ω) := (p†

i,j(ω, s))i,j∈N†
0

via

p†
i,j(ω, s) := P(Rω0 (s−)= j | Rω0 (0−)= i).

Hence, defining ρ(y) := (yi)i∈N†
0
, y ∈ [0, 1] (with the convention y† := 0), we obtain

E[yRω0 (τ−) | Rω0 (0−)= n]= (P†
τ (ω)ρ(y))n = (P†

τ (ω)U†S†(y))n, (7.11)
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where we used that ρ(y)=U†S†(y) with S†(y) := (S†
k (y))k∈N†

0
. Thus, Theorem 7.1 and Equation

(7.11) yield

E[(1− Xω(0))n | Xω(− τ )= x]=
∞∑

k=0

(
P†
τ (ω)U†

)
n,k

S†
k (1− x). (7.12)

Now, consider the semigroup M† := (M†(s))s≥0 of the line-counting process of the k-ASG in
the null environment, which is defined via M†(s) := exp(sQ0

†). Thanks to Lemma 7.3, M†(β)=
U†E†(β)V†, where E†(β) is the diagonal matrix with diagonal entries (e−λ

†
j β )j∈N†

0
.

Assume first that N(τ )= 0 (i.e. ω has no jumps in [− τ, 0]). In this case, we have

P†
τ (ω)U† =M†(τ )U† =U†E†(τ )V†U† =U†E†(τ )=C†(ω, τ ),

where we used that V†U† = I. Hence, (7.8) follows from (7.12).
Assume now that N(τ )≥ 1 (i.e. ω has at least one jump in [− τ, 0]). Disintegrating with

respect to the values of Rω0 ((− Ti)−) and Rω0 (− Ti), i ∈ [N], we get

P†
τ (ω)=M†(− T1)B(	ω(T1))M†(T1 − T2)B(	ω(T2)) · · ·B(	ω(TN))M†(TN + τ ). (7.13)

Using this, the relation M†(β)=U†E†(β)V†, the definition of the matrices�† and A†
i (see (7.6)

and (7.7)), and the fact that V†U† = I, we obtain

P†
τ (ω)U†

=U†E†(− T1)�†(	ω(T1)) E†(T1 − T2)�†(	ω(T2)) · · ·�†(	ω(TN)) E†(TN + τ )

=U†A†
1(ω) A†

2(ω) · · · A†
N(ω) E†(TN + τ )

=U†

[
A†

N(ω)A†
N−1(ω) · · · A†

1(ω)
] 

E†(TN + τ )=C†(ω, τ ), (7.14)

which proves (7.8) also in this case.
It remains to prove that C†

n,0(ω, τ ) converges to �n(ω) as τ→∞. For ω= 0 (i.e. the null

environment), on the one hand (7.9) yields C†
n,0(ω, τ )= e−λ

†
0τu†

n,0, and on the other hand (7.11)
together with M†(β)=U†E†(β)V† and V†U† = I yields

E[yR0
0(τ−) | R0

0(0−)= n]=
n∑

k=0

e−λ
†
kτu†

n,kS†
k (y).

Since λ†
k > 0 for k ∈N and λ†

0 = 0, the desired convergence follows by letting τ→∞ in the

previous identity. For later use, note that we have �n(0)= u†
n,0. The general case is a direct

consequence of the following proposition. �
Proposition 7.1. Assume that σ = 0, θ > 0, ν0, ν1 ∈ (0, 1), and ω is a simple environment. We
have ∣∣∣C†

n,0(ω, τ )−�n(ω)
∣∣∣≤ e−θν0τ .

Proof. Let ωτ be the environment that coincides with ω in (− τ,∞) and that is constant
and equal to ω(− τ ) in (−∞,−τ ] (which means that ωτ has no jumps in (−∞,−τ ]). Since
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P†
τ (ωτ )=P†

τ (ω) and ωτ has no jumps in (−∞,−τ ], we obtain

�n(ωτ )=
∑
k≥0

p†
n,k(ωτ , τ ) P(∃β ≥ τ s.t. Rωτ0 (β)= 0 | Rωτ0 (τ −)= k)

=
∑
k≥0

p†
n,k(ω, τ )�k(0)=

∑
k≥0

p†
n,k(ω, τ ) u†

k,0 = (P†
τ (ω)U†)n,0 =C†

n,0(ω, τ ), (7.15)

where in the last line we used �k(0)= u†
k,0 (from the end of the previous proof) and (7.14).

Now combining (7.15) with (6.4) applied to ωτ with υ = δn yields

p†
n,0(ω, τ )= p†

n,0(ωτ , τ )≤C†
n,0(ω, τ )≤ p†

n,0(ωτ , τ )+ e−θν0τ = p†
n,0(ω, τ )+ e−θν0τ . (7.16)

Then, combining (6.4) applied to ω with υ = δn and (7.16), we get

C†
n,0(ω, τ )− e−θν0τ ≤�n(ω)≤C†

n,0(ω, τ )+ e−θν0τ ,

and the result follows. �
Remark 7.1. If ω has no jumps in (− τ, 0), then C†(ω, τ )=U† exp (τD†). In particular,
�n(0)= u†

n,0.

Remark 7.2. Under the assumptions of Theorem 7.3, the Simpson index (see Remark 2.5) is
given by

E[Simω(∞)]=E[Xω(∞)2 + (1− Xω(∞))2]= 1− 2C†
1,0(ω,∞)+ 2C†

2,0(ω,∞).

Remark 7.3. If ω is a simple periodic environment with period Tp > 0, then (7.10) can
be written as �n(ω)= limm→∞ (U†B(ω)m)n,0 where B(ω) := [A†

N(Tp)(ω) · · · A†
1(ω)] . As an

application of Theorem 7.3 we obtain the following refinement of Proposition 2.1 for mixed
environments composed of a pure-jump subordinator J and a simple environment ω (see
Figure 6).

Proposition 7.2. Assume that σ = 0, θ > 0, and ν0, ν1 ∈ (0, 1). For any τ� > 0, n ∈N, x ∈
[0, 1], and any simple environment ω, we have

lim
τ→∞E

[
(1− XJ⊗τ�ω(0))n|XJ⊗τ�ω(− τ )= x

]= n2N∑
j=0

⎛
⎝n2N∑

k=j

C†
n,k(ω, τ�)v

†
k,j

⎞
⎠ πj, (7.17)

where N denotes the number of jumps of ω in [−τ�, 0].

Proof. Let ω be a simple environment. Proceeding as in the proof of Proposition 2.1, but
using Theorem 7.1 instead of Theorem 2.3, we obtain

lim
τ→∞E

[
(1− XJ⊗τ�ω(0))n|XJ⊗τ�ω(− τ )= x

]=E
[
πRω0 (τ�−) | Rω0 (0−)= n

]
.

Since U†V† = I and the stochastic matrix P†
τ�

(ω) := (p†
i,j(ω, τ�))i,j∈N†

0
defined via

p†
i,j(ω, τ�) := P(Rω0 (τ� −)= j | Rω0 (0−)= i)

satisfies C†(ω, τ�)=P†
τ�

(ω)U† (see (7.14)), the result follows. �
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7.2. Extensions of quenched results in Section 2.6

In this section we assume that σ = 0 and extend some of the quenched results stated in
Section 2.6 concerning the ancestral type distribution for simple environments. The next result
allows us to get rid of the condition θν0 > 0 in Theorem 2.5(2).

Theorem 7.4. (Ancestral type distribution for simple environments.) Assume that σ = 0, and
let ω ∈D� be a simple environment with infinitely many jumps in [0,∞) and such that the
distance between the successive jumps does not converge to 0. Then the statement of Theorem
2.5(2), except for Equation (2.20), remains true.

Proof. The case θν0 > 0 is already covered by Theorem 2.5(2). Assume now that θν0 = 0,
σ = 0, and that ω is as in the statement. For μ ∈M1(N), we denote by μωT (β) the distribution
of LωT (β −) given that LωT (0−)∼μ. We claim that, for all μ, μ̃ ∈M1(N),

dTV (μωT (T), μ̃ωT (T))−−−→
T→∞ 0, (Claim 5)

where dTV (μ1, μ2) stands for the total variation distance between μ1 and μ2. If Claim 5 is
true, the rest of the proof follows as in the proof of Theorem 2.5(2). In what follows we prove
Claim 5.

Let 0< T1 < T2 < · · · be the sequence of the jump times of ω, and set T0 := 0 for con-
venience. On (Ti, Ti+1), LωT has transition rates given by (q0(k, j))k,j∈N (see (2.16)). For any
k> l, let H(k, l) denote the hitting time of l by a Markov chain starting at k and with transition
rates given by (q0(i, j))i,j∈N. Let (Sl)l≥2 be a sequence of independent exponential random vari-
ables with parameter (l− 1)θν1 + l(l− 1)/2 and note that Sl ∼H(l, l− 1) for l≥ 2. Using the
Markov property, one can easily see that H(k,1) is equal in distribution to

∑k
l=2 Sl. Therefore,

for any i such that Ti+1 < T and any k≥ 1, we have

P
(
LωT ((T − Ti)−)= 1 | LωT (T − Ti+1)= k

)=P
(

k∑
l=2

Sl ≤ Ti+1 − Ti

)

≥ P

( ∞∑
l=2

Sl ≤ Ti+1 − Ti

)
. (7.18)

Clearly
∑∞

l=2 E[Sl]<∞; thus S∞ := ∑∞
l=2 Sl <∞ almost surely. Moreover, since for

l≥ 2 the support of Sl contains 0, the support of S∞ contains 0 as well. In particular
q(s) := P(

∑∞
l=2 Sl ≤ s) is positive for all s> 0. Thus, we get from (7.18) that

P
(
LωT ((T − Ti)−)= 1 | LωT (T − Ti+1)= k

)≥ q(Ti+1 − Ti), k≥ 1. (7.19)

Let LωT , L̃ωT , and LωTi
, i≥ 0, be independent copies of the line-counting process of the pLD-ASG

with environment ω (the subscript indicates the sampling time) and LωT (0−)∼μ, L̃ωT (0−)∼ μ̃,
and LωTi

(0−)= 1. Let

i(T) := max{i ∈N0 : Ti < T, LωT ((T − Ti)−)= L̃ωT ((T − Ti)−)= 1},
with the convention that the maximum of an empty set is −∞. Set T−∞ := −∞ for
convenience. We define (Uω

T (β))β≥0 and (Ũω
T (β))β≥0 by setting Uω

T (β) := LωT (β) and
Ũω

T (β) := L̃ωT (β) for β < T − Ti(T) and Uω
T (β) := Ũω

T (β)= LωTi(T)
(β − (T − Ti(T))) for

https://doi.org/10.1017/apr.2022.54 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.54


756 F. CORDERO AND G. VÉCHAMBRE

β ≥ T − Ti(T). Note that Uω
T and Ũω

T have the same distributions as LωT and L̃ωT , respec-
tively. In particular, we have Uω

T (T −)∼μωT (T) and Ũω
T (T −)∼ μ̃ωT (T). Moreover, we have

UT (ω, β)= ŨT (ω, β) for all β ≥ T − Ti(T). Therefore,

dTV (μωT (T), μ̃ωT (T))≤ P
(
Uω

T (T −) �= Ũω
T (T −)

)≤ P (i(T)=−∞) . (7.20)

Let N(T) be the number of jumps of ω in [0, T]. According to (7.19), for k1, k2 ≥ 1 with
k1 �= k2 we have

P
(
LωT ((T − Ti)−)= 1, L̃ωT ((T − Ti)−)= 1 | LωT (T − Ti+1)= k1, L̃ωT (T − Ti+1)= k2

)
≥ q(Ti+1 − Ti)

2.

Therefore, using (7.20), we obtain

dTV (μωT (T), μ̃ωT (T))≤ P (I0(T)=−∞)≤
N(T)∏
i=1

(
1− q(Ti − Ti−1)2

)
=: ϕω(T).

Note that ϕω does not depend on μ and μ̃. Recall that by assumption the sequence of jump
times T1, T2, . . . is infinite and the distance between the successive jumps does not converge to
0. Therefore, there is ε > 0 such that, for infinitely many indices i, we have Ti+1 − Ti > ε. Thus,
the number of factors smaller than 1− q(ε)2 < 1 in the product defining ϕω(T) converges to
infinity as T →∞. We deduce that ϕω(T)→ 0 as T →∞, which proves Claim 5, concluding
the proof. �

The following diagonalization of Q0 (the transition matrix of the process L under the null
environment) will allow us to obtain a more explicit expression for hωT (x).

Lemma 7.4. Assume that σ = 0, and for k ∈N set λk := − q0(k, k) and γk := q0(k, k− 1),
where qμ(·, ·) is defined in (2.16). In addition, make the following definitions:

(i) Let D be the diagonal matrix with diagonal entries (− λi)i∈N.

(ii) Let U := (ui,j)i,j∈N, where, for all i ∈N, ui,i := 1; ui,j := 0 for j> i; when i≥ 2,
ui,i−1 := γi/(λi − λi−1); and the coefficients (ui,j)j∈[i−2] are defined via the recurrence
relation

ui,j := 1

λi − λj

⎛
⎝γiui−1,j + θν0

⎛
⎝ i−2∑

l=j

ul,j

⎞
⎠
⎞
⎠ . (7.21)

(iii) Let V := (vi,j)i,j∈N, where, for all i ∈N, vi,i := 1; vi,j := 0 for j> i; and when i≥ 2, the
coefficients (vi,j)j∈[i−1] are defined via the recurrence relation

vi,j := −1

(λi − λj)

⎡
⎣
⎛
⎝ i∑

l=j+2

vi,l

⎞
⎠ θν0 + vi,j+1γj+1

⎤
⎦ . (7.22)

(We adopt the convention that an empty sum equals 0.) Then we have Q=UDV and UV =
VU = I, where I denotes the identity matrix.
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Proof. The proof is analogous to the proof of Lemma 7.3. �
Now we consider the polynomials Sk, k ∈N, defined via

Sk(x) :=
k∑

i=1

vk,ix
i. (7.23)

In addition, for z ∈ (0, 1), we define the matrices B(z) := (Bi,j(z))i,j∈N and
�(z) := (�i,j(z))i,j∈N via

Bi,j(z) := P(i+ Bi(z)= j), i, j ∈N, and �(z) :=U B(z) V , (7.24)

where Bi(z)∼Bin(i, z). The fact that the matrix product defining �(z) is well-defined can be
justified similarly as in the proof of Theorem 7.3. The same is true for the matrix products in
(7.25) and (7.27).

Theorem 7.5. Assume that σ = 0, and letω be a simple environment with infinitely many jumps
on [0,∞) and such that the distance between the successive jumps does not converge to 0. Let
N be the number of jumps of ω in (0,T), and let (Ti)N

i=1 be the sequence of the jump times
in increasing order. We set T0 := 0 for convenience. For any m ∈ [N], we define the matrix
Am(ω) := (Am

i,j(ω))i,j∈N by

Am(ω) := exp ((Tm − Tm−1)D) �(	ω(Tm)). (7.25)

Then for all x ∈ (0, 1), n ∈N, we have

hωT (x)= 1−
2N∑

k=1

C1,k(ω, T)Sk(1− x), (7.26)

where the matrix C(ω, T) := (Cn,k(ω, T))k,n∈N is given by

C(ω, T) :=U exp((T − TN)D) [A1(ω)A2(ω) · · · AN(ω)] . (7.27)

Moreover, for any x ∈ (0, 1),

hω(x)= 1−
∞∑

k=1

C1,k(ω,∞)Sk(1− x), (7.28)

where the series in (7.28) is convergent and where

C1,k(ω,∞) := lim
m→∞

(
U [A1(ω)A2(ω) · · · Am(ω)] 

)
1,k
, (7.29)

and the above limit is well-defined.

Proof. We are interested in the generating function of LωT (T −). For s> 0, we define the
stochastic matrix PT

s (ω) := (pT
i,j(ω, s))i,j∈N via

pT
i,j(ω, s) := P(LωT (s−)= j | LωT (0−)= i).
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We also define (M(s))s≥0 via M(s) := exp (sQ0); i.e. M is the semigroup of L0. Let T1 < T2 <

· · ·< TN be the sequence of jump times of ω in [0, T]. Disintegrating with respect to the values
of LωT ((T − Ti)−) and LωT (T − Ti), i ∈ [N], we obtain

PT
T (ω)=M(T − TN)B(	ω(TN))M(TN − TN−1)B(	ω(TN−1)) · · ·B(	ω(T1))M(T1). (7.30)

In addition,

E[yLωT (T−) | LωT (0−)= n]= (PT
T (ω)ρ(y))n, where ρ(y) := (yi)i∈N. (7.31)

Thanks to Lemma 7.4, we have M(β)=UE(β)V , where E(β) is the diagonal matrix with diag-
onal entries (e−λjβ )j∈N. Moreover, ρ(y)=US(y), where S(y) := (Sk(y))k∈N. Using this together
with Equation (7.30) and the relations M(β)=UE(β)V and VU = I, we obtain

PT
T (ω)ρ(y)

=UE(T − TN)�(	ω(TN)) E(TN − TN−1)�(	ω(TN−1)) · · ·�(	ω(T1)) E(T1)S(y).
(7.32)

Thus, using the definition of the matrices Ai(ω), we get

PT
T (ω)ρ(y)=UE(T − TN)AN(ω) AN−1(ω) · · · A1(ω) S(y)

=UE(T − TN) [A1(ω)A2(ω) · · · AN(ω)] S(y)=C(ω, T)S(y).

Now, using the previous identity, Lemma 6.1, and Equation (7.31), we obtain

hωT (x)= 1−E
[
(1− x)LωT (T−) | LωT (0−)= 1

]
= 1−

∞∑
k=1

C1,k(ω, T)Sk(1− x).

Proceeding as in the proof of Theorem 7.3, one shows that C1,k(ω, T)= 0 for k> 2N , and
(7.26) follows.

Let us now analyze C1,k(ω, T) as T →∞. First note that, on the one hand, from (7.26) we
have

E[yLωT (T−) | LωT (0−)= 1]=
∞∑

k=1

C1,k(ω, T)Sk(y).

On the other hand, we have

E[yLωT (T−) | LωT (0−)= 1]=
∞∑

k=1

P(LωT (T −)= k | LωT (0−)= 1)yk.

Since U is the change-of-basis matrix from (yk)k∈N to (Sk(y))k∈N, we deduce that

C1,k(ω, T)=
∑
i∈N

ui,kP(LωT (T −)= i | LωT (0−)= 1)=E[uLωT (T−),k | LωT (0−)= 1]. (7.33)

From Theorem 7.4, we know that the distribution of LωT (T −) converges when T →∞.
In addition, according to Lemma 7.5 the function i �→ ui,k is bounded, and hence C1,k(ω, T)
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converges to a real number. Recall that T1 < T2 < · · · is the increasing sequence of the jump
times of ω and that this sequence converges to infinity. Therefore

lim
T→∞C1,k(ω, T)= lim

m→∞C1,k(ω, Tm)= lim
m→∞

(
U [A1(ω)A2(ω) · · · Am(ω)] 

)
1,k
,

where we used (7.27) in the last step. This shows that the limit on the right-hand side of (7.29)
exists and equals limT→∞ C1,k(ω, T).

It remains to prove (7.28) together with the convergence of the corresponding series. We
already know from Theorem 7.4 that hωT (x) converges to hω(x) when T →∞, and we have just
proved (7.26) and that for any k≥ 1, C1,k(ω, T) converges to C1,k(ω,∞), defined in (7.29),
when T →∞. Now we claim that, for all y ∈ [0, 1] and T > T1,

|C1,k(ω, T)Sk(y)| ≤ 4k × (2ek)(k+θ)/2e−λkT1 . (Claim 6)

Assume that Claim 6 is true. Then (7.28) and the convergence of the series follow using the
dominated convergence theorem. It only remains to prove Claim 6. As in the proof of (7.33),
one shows that

PT
(T−T1)+(ω)ρ(y)= E[yLωT (T−T1) | LωT (0−)= 1]=

∞∑
k=1

C̃1,k(ω, T)Sk(y),

where C̃1,k(ω, T)=E[uLωT (T−T1),k | LωT (0−)= 1]. Proceeding as in the proof of (7.32), we can
prove that

PT
(T−T1)+(ω)ρ(y)

=UE(T − TN)�(	ω(TN)) E(TN − TN−1)�(	ω(TN−1)) · · ·�(	ω(T1)) S(y). (7.34)

Since E(T1) is diagonal with entries (e−λjT1 )j∈N, we conclude from (7.32) and (7.34) that
C1,k(ω, T)= e−λkT1 C̃1,k(ω, T). Therefore

C1,k(ω, T)= e−λkT1E[uLωT (T−T1),k | LωT (0−)= 1].

This together with Lemma 7.5 (see below) implies that, for all k≥ 1 and t≥ 0,

|C1,k(ω, T)| ≤ (2ek)(k+θ)/2e−λkT1 .

Combining this with Lemma 7.7, we obtain Claim 6, which concludes the proof. �
Lemma 7.5. For all k≥ 1,

sup
j≥1

uj,k ≤ (2ek)(k+θ)/2.

Proof. Let k≥ 1. By the definition of the matrix U in Lemma 7.4, the sequence (uj,k)j≥1
satisfies

uj,k = 0 for j< k, uk,k = 1, uk+1,k = γk+1

λk+1 − λk
,
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uk+l,k = 1

λk+l − λk

⎛
⎝γk+luk+l−1,k + θν0

l−2∑
j=0

uk+j,k

⎞
⎠ for l≥ 2.

Let Mj
k := supi≤j ui,k. By the definitions of γj+1, λk+1, λk (see Lemma 7.4), we have

γk+1 = λk+1 − (k− 1)θν0 >λk+1 − λk.

This together with the above expressions yields that

Mk
k = 1, Mk+1

k = λk+1 − (k− 1)θν0

λk+1 − λk
≤ λk+1

λk+1 − λk
= 1+ λk

λk+1 − λk
.

Moreover, for l≥ 2, we have

uk+l,k ≤Mk+l−1
k

γk+l + (l− 1)θν0

λk+l − λk
=Mk+l−1

k
λk+l − (k− 1)θν0

λk+l − λk
≤Mk+l−1

k
λk+l

λk+l − λk
.

Hence, we have

Mk+l
k =Mk+l−1

k ∨ uk+l,k ≤Mk+l−1
k × λk+l

λk+l − λk
=Mk+l−1

k ×
(

1+ λk

λk+l − λk

)
.

As a consequence, we have

sup
j≥1

uk,j ≤
∞∏

l=1

(
1+ λk

λk+l − λk

)
=: M∞

k . (7.35)

Since λk+l ∼ l2 as l→∞, it is easy to see that the infinite product M∞
k is finite. Then,

M∞
k = exp

[ ∞∑
l=1

log

(
1+ λk

λk+l − λk

)]
≤ exp

[ ∞∑
l=1

λk

λk+l − λk

]
≤ exp

[
λk log (2ek)

2(k− 1)

]
,

where we used Lemma 7.6 (see below) in the last step. Since λk = (k− 1)(k+ θ ) (see Lemma
7.4), the desired result follows. �
Lemma 7.6. For all k ∈N,

∞∑
l=1

1

λk+l − λk
≤ log(2ek)

2(k− 1)
.

https://doi.org/10.1017/apr.2022.54 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.54


Moran models and Wright–Fisher diffusions in random environment 761

Proof. Using the definition of λk in Lemma 7.4, we have

∞∑
l=1

1

λk+l − λk
≤

∞∑
l=1

1

(k+ l)(k+ l− 1)− k(k− 1)

≤ 1

(k+ 1)k− k(k− 1)
+
∫ ∞

k

1

x(x+ 1)− k(k− 1)
dx

= 1

2k
+
∫ ∞

1

1

u2 + (2k− 1)u
du= 1

2k
+ lim

a→∞

∫ a

1

1

u(u+ 2k− 1)
du

≤ 1

2k− 1

[
1+ lim

a→∞

(∫ a

1

1

u
du−

∫ a

1

1

u+ 2k− 1
du

)]

= 1

2k− 1

[
1+ lim

a→∞ log

(
a2k

a+ 2k− 1

)]
≤ log (2ek)

2(k− 1)
. �

Lemma 7.7. For all k ∈N, we have

sup
y∈[0,1]

|Sk(y)| ≤ 4k.

Proof. By definition of the polynomials Sk in (7.23), we have for k≥ 1

sup
y∈[0,1]

|Sk(y)| ≤
k∑

i=1

|vk,i|. (7.36)

Let us fix k≥ 1 and define Sk
j := ∑k

i≥j |vk,i|. Note that Sk
j = 0 for j> k and that Sk

k = 1 by the
definition of the matrix (vi,j)i,j∈N in Lemma 7.4. In particular, the result is true for k= 1. Thus,
we assume that k> 1 from now on. Using (7.22), we see that for any j ∈ [k− 1],

Sk
j = Sk

j+1 + |vk,j| = Sk
j+1 +

∣∣∣∣∣∣
−1

(λk − λj)

⎡
⎣
⎛
⎝ k∑

l=j+2

vk,l

⎞
⎠ θν0 + vk,j+1γj+1

⎤
⎦
∣∣∣∣∣∣

≤ Sk
j+1 +

1

(λk − λj)

[
Sk

j+2θν0 + (Sk
j+1 − Sk

j+2)γj+1

]

≤
(

1+ γj+1

λk − λj

)
Sk

j+1 +
θν0 − γj+1

λk − λj
Sk

j+2.

Note that
θν0−γj+1
λk−λj

≤ 0, because of the definition of the coefficients γi in Lemma 7.4. Thus, for
j ∈ [k− 1],

Sk
j ≤
(

1+ γj+1

λk − λj

)
Sk

j+1. (7.37)

By the definitions of γj+1, λk, λj in Lemma 7.4, and using that j< k, we have

γj+1

λk − λj
= (j+ 1)j+ jθν1 + θν0

k(k− 1)− j(j− 1)+ (k− j)θν1 + (k− j)θν0

≤ (j+ 1)j

j(k− 1)− j(j− 1)
+ jθν1

(k− j)θν1
+ θν0

(k− j)θν0
≤ 2

j+ 1

k− j
.
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In particular,

1+ γj+1

λk − λj
≤ k+ j+ 2

k− j
.

Plugging this into (7.37) yields, for all j ∈ [k− 1],

Sk
j ≤

k+ j+ 2

k− j
Sk

j+1.

Then, applying the previous inequality recursively and combining with Sk
k = 1, we get

k∑
i=1

|vk,i| = Sk
1 ≤

k−1∏
j=1

k+ j+ 2

k− j
=
(

2k+ 1

k− 1

)
=
(2k+1

k−1

)+ (2k+1
k+2

)
2

≤ 22k+1/2= 4k.

Combining with (7.36), we obtain the desired result. �
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Appendix A. J1-Skorokhod topology and weak convergence

A.1 Definitions and remarks on the J1-Skorokhod topology

For T > 0, as in the beginning of Section 2 we denote by D0,T the space of càdlàg functions
in [0, T] with values on R. Let C↑T denote the set of increasing, continuous functions from
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[0, T] onto itself. For λ ∈ C↑T , we set

‖λ‖0
T := sup

0≤u<s≤T

∣∣∣∣log

(
λ(s)− λ(u)

s− u

)∣∣∣∣ . (A.1)

We define the Billingsley metric d0
T in D0,T via

d0
T (f , g) := inf

λ∈C↑T
{‖λ‖0

T ∨ ‖f − g ◦ λ‖T,∞}, where ‖f‖T,∞ := sup
s∈[0,T]

|f (s)|. (A.2)

The metric d0
T induces the J1-Skorokhod topology in D0,T . An important feature is that the

space (D0,T , d0
T ) is separable and complete. The role of the time-change λ in the definition of

d0
T is to capture the fact that two càdlàg functions can be close in spite of a small difference

between their jumping times.
For T > 0, a function ω ∈D0,T is said to be pure-jump if

∑
u∈(0,T] |	ω(u)|<∞ and for all

t ∈ (0, T],

ω(t)−ω(0)=
∑

u∈(0,t]

	ω(u),

where 	ω(u) :=ω(u)−ω(u−), u ∈ [0, T]. In the set of pure-jump functions, we consider the
following metric:

d�T (ω1, ω2) := inf
λ∈C↑T

⎧⎨
⎩‖λ‖0

T ∨
∑

u∈[0,T]

|	ω1(u)−	(ω2 ◦ λ)(u)|
⎫⎬
⎭ . (A.3)

The next result provides comparison inequalities between the metrics d0
T and d�T .

Lemma A.1 Let ω1 and ω2 be two pure-jump functions with ω1(0)=ω2(0)= 0; then

d0
T (ω1, ω2)≤ d�T (ω1, ω2).

If ω1 and ω2 are non-decreasing, and ω1 jumps exactly n times in [0, T], then

d�T (ω1, ω2)≤ (4n+ 3)d0
T (ω1, ω2).

Proof. Let λ ∈ C↑T and set f :=ω1 and g :=ω2 ◦ λ. Since f and g are pure-jump functions
with the same value at 0, we have, for any t ∈ [0, T],

|f (t)− g(t)| =
∣∣∣∣∣∣
∑

u∈[0,t]

(	f (u)−	g(u))

∣∣∣∣∣∣≤
∑

u∈[0,t]

|	f (u)−	g(u)| .

The first inequality follows. Now, assume that ω1 and ω2 are non-decreasing and that ω1 has n
jumps in [0, T]. Let t1 < · · ·< tn be the consecutive jump times of ω1. We first prove that, for
any k ∈ [n], ∑

u∈[0,tk]

|	f (u)−	g(u)| ≤ (4k+ 1)‖f − g‖tk,∞, (A.4)
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where ‖·‖t,∞, t> 0, is defined in (A.2). We proceed by induction on k. Note that

∑
u∈[0,t1]

|	f (u)−	g(u)| =
∑

u∈[0,t1)

	g(u)+ |	f (t1)−	g(t1)| ≤ g(t1 −)+ 2‖f − g‖t1,∞

≤ 3‖f − g‖t1,∞,

which proves (A.4) for k= 1. Now, assuming that (A.4) is true for k ∈ [n− 1], we obtain

∑
u∈[0,tk+1]

|	f (u)−	g(u)| =
∑

u∈[0,tk]

|	f (u)−	g(u)| +
∑

u∈(tk,tk+1)

	g(u)

+ |	f (tk+1)−	g(tk+1)|
≤ (4k+ 1)‖f − g‖tk,∞ + g(tk+1 −)− g(tk)+ 2‖f − g‖tk+1,∞
= (4k+ 1)‖f − g‖tk,∞ + (g(tk+1 −)− f (tk+1 −))− (g(tk)− f (tk))+ 2‖f − g‖tk+1,∞
≤ (4k+ 1)‖f − g‖tk,∞ + 4‖f − g‖tk+1,∞ ≤ (4(k+ 1)+ 1)‖f − g‖tk+1,∞.

Hence, (A.4) also holds for k+ 1. This ends the proof of (A.4) by induction. Finally, using
(A.4), we get

∑
u∈[0,T]

|	f (u)−	g(u)| =
∑

u∈[0,tn]

|	f (u)−	g(u)| +
∑

u∈(tn,T]

	g(u)

≤ (4n+ 1)‖f − g‖tn,∞ + g(T)− g(tn)≤ (4n+ 3)‖f − g‖T,∞,

ending the proof. �

A.2. Bounded Lipschitz metric and weak convergence

Let (E, d) denote a complete and separable metric space. It is well known that the topology
of weak convergence of probability measures on E is induced by the Prokhorov metric. An
alternative metric inducing this topology is given by the bounded Lipschitz metric, whose
definition is recalled in this section.

Definition 1. (Lipschitz function.) A real-valued function F on (E, d) is said to be Lipschitz if
there is K > 0 such that

|F(x)− F(y)| ≤Kd(x, y), for all x, y ∈ E.

We denote by BL(E) the vector space of bounded Lipschitz functions on E. The space BL(E)
is equipped with the norm

‖F‖BL := sup
x∈E
|F(x)| ∨ sup

x,y∈E: x �=y

{ |F(x)− F(y)|
d(x, y)

}
, F ∈ BL(E). (A.5)

Definition 2. (Bounded Lipschitz metric.) Let μ, ν be two probability measures on E. The
bounded Lipschitz distance between μ and ν is defined by

�E(μ, ν) := sup

{∣∣∣∣
∫

Fdμ−
∫

Fdν

∣∣∣∣ : F ∈BL(E), ‖F‖BL ≤ 1

}
. (A.6)
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The bounded Lipschitz distance defines a metric on the space of probability measures on
E. Moreover, the bounded Lipschitz distance metrizes the weak convergence of probability
measures on E; i.e.

�E(μn, μ)−−−→
n→∞ 0 ⇐⇒ μn

(d)−−−→
n→∞ μ.

Appendix B. Table of notation

Notation Meaning First appears

X = (X(t))t≥0 Solution of (1.3) Sec. 1
σ, θ, ν0, ν1 Parameters of selection and mutation Sec. 1
J = (J(t))t≥0 Pure-jump subordinator Sec. 1
μ Lévy measure of J Sec. 1
ζ = (ti, pi)i∈I Collection of jumps of J Sec. 1
S(t) σ t+ J(t) Sec. 1
Ds,t, D Spaces of càdlàg functions Sec. 2
ω= (ω(t))t≥0 Deterministic environment Sec. 2.1
D�T /D� Set of environments (ω(t))t∈[0,T]/ω Sec. 2.1
σN, θN Parameters of Moran model Sec. 2.1
	ω(t) Jump of ω at time t Sec. 2.1
0 Null environment Sec. 2.1
(ZωN (t))t≥0 Quenched � of fit individuals Sec. 2.1
(ZJ

N(t))t≥0 Annealed � of fit individuals Sec. 2.2
AN Generator of

(
ZJ

N(t)
)

t≥0 Sec. 2.2
A0

N AN in the case μ= 0 Sec. 2.2
Xω = (Xω(t))t≥0 Quenched version of X Sec. 2.3
JN, ωN J(· /N), ω(· /N) Sec. 2.3
XN, XωN ZJN

N (N·)/N, ZωN
N (N·)/N Sec. 2.3

J̄T = (J̄T (β))β∈[0,T] Time reversal of J Sec. 2.4
(G(β))β≥0/(GωT (β))β≥0 Annealed/quenched ASG Sec. 2.4
σm,k Rates of simultaneous branchings Sec. 2.4
(Ḡ(β))β≥0/(ḠωT (β))β≥0 Annealed/quenched killed ASG Sec. 2.5
(R(β))β≥0/(RωT (β))β≥0 Line-counting process of Ḡ/ḠωT Sec. 2.5
Qμ† = (qμ† (i, j))i,j∈N†

0
Generator of (R(β))β≥0 Sec. 2.5

πn/�n(ω) Absorption probabilities of R/RωT Sec. 2.5
ηX/Lω Limit distribution of X(t)/Xω(0) Sec. 2.5
X(∞) Random variable with law ηX Sec. 2.5
J ⊗τ ω Mixed environment Sec. 2.5
hT (x)/hωT (x) Ancestral type distribution at T Sec. 2.6
h(x)/hω(x) Ancestral type distribution Sec. 2.6
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Notation Meaning First appears

(L(β))β≥0/(LωT (β))β≥0 pLD-ASG’s line-counting process Sec. 2.6
Qμ = (qμ(i, j))i,j∈N Generator of (L(β))β≥0 Sec. 2.6
ηL/μ

ω Limit law of L(T)/LωT (T −) Sec. 2.6
L(∞) Random variable with law ηL Sec. 2.6
an P(L(∞)> n) Sec. 2.6
γi,j Coefficients in recursion (2.18) Sec. 2.6
μN(ω) Law of (ZωN (t))t∈[0,T] Sec. 3.1
ωδ/ωδ ω with small/large jumps removed Sec. 3.1
A∗N/A Generator of XN/X Sec. 3.2
EN State space of XN Sec. 3.2
d0

T /d�T Metric on D0,T /D�T App. A.1
C↑T Increasing, continuous f : [0, T]→ [0, T] App. A.1
‖·‖0

T , ‖·‖T,∞ Functional norms App. A.1
BL(E) Bounded Lipschitz functions F : E→R App. A.2
‖·‖BL Norm on BL(E) App. A.2
�E(·, ·) Bounded Lipschitz metric App. A.2
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