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Abstract

We prove that if s ≥ 2 is a fixed integer, then the equation nsn + 1 = (bm − 1)/(b − 1) has only finitely many
positive integer solutions (n, b, m) with b ≥ 2 and m ≥ 3. When s = 2, it has no solution.
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1. Introduction

A Cullen number is a positive integer of the form n2n + 1. Arithmetic properties of
these numbers have been investigated in various papers. In 1976, Hooley [2] showed
that almost all Cullen numbers are composite. Luca and Stănică [5] showed that there
are only finitely many Fibonacci numbers among the Cullen numbers. More recently,
Luca and Noubissie [4] showed that the largest prime factor of n2n + 1 ± m! tends to
infinity with max{m, n} and found all pairs (m, n) such that this number is of the form
±3a · 5b · 7c for some nonnegative integers a, b, c.

An s-Cullen number is a number of the form nsn + 1 where s ≥ 2 is a fixed integer.
Grantham and Graves [1] studied the Diophantine equation

nsn + 1 =
bm − 1
b − 1

, (1.1)

and showed that under the abc conjecture, it has only finitely many positive integer
solutions (n, s, b, m) with s ≥ 2, b ≥ 2 and m ≥ 3. In this note, we assume that s ≥ 2 is
fixed and prove that the equation (1.1) has only finitely many positive solutions in the
remaining variables (n, b, m) again with b ≥ 2 and m ≥ 3. More precisely, we have the
following result.

THEOREM 1.1.

(i) For a fixed integer s ≥ 2, the Diophantine equation (1.1) has only finitely many
positive integer solutions (n, b, m) with b ≥ 2 and m ≥ 3.

(ii) When s = 2, it has no solution.

© The Author(s), 2022. Published by Cambridge University Press on behalf of Australian Mathematical
Publishing Association Inc. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

264

https://doi.org/10.1017/S0004972722000065 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S0004972722000065
https://orcid.org/0000-0002-7758-3537
https://orcid.org/0000-0003-1321-4422
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0004972722000065&domain=pdf
https://doi.org/10.1017/S0004972722000065


[2] Repunit Cullen numbers 265

2. The proof

We consider (i) and (ii) together. Let s := qα1
1 · · · q

αk
k , where q1, . . . , qk are distinct

primes and α1, . . . ,αk are positive integers. We expand the right-hand side and obtain

nsn = bm−1 + · · · + b. (2.1)

The proof proceeds in two cases.

Case 1. gcd(b, s) > 1.
Assume that q is prime and q | gcd(s, b). Letting νq(�) denote the exponent of q in

the factorisation of the nonzero integer �, we see that νq(nsn) ≥ nνq(s) in the left-hand
side of (2.1) whereas in the right-hand side of (2.1), we have νq(bm−1 + · · · + b) = νq(b).
Thus, if qα‖s, then qnα | b. Let i be such that q1, . . . , qi all divide b. If i = k, we then
get that sn | b, so the right-hand side of (2.1) is at least b2 > s2n > nsn, which is a
contradiction. In particular, when s = 2, Case 1 cannot occur. Next, take i < k. Write
s1 := qα1

1 · · · q
αi
i and put s2 := s/s1 and b1 := b/sn

1. Then (2.1) can be rewritten as

n(s1s2)n = b(bm−2 + · · · + 1) = b
(bm−1 − 1

b − 1

)
= b1sn

1

(bm−1 − 1
b − 1

)
.

Cancelling sn
1, we get

nsn
2 = b1

(bm−1 − 1
b − 1

)
,

and since b1 and s2 are coprime, it follows that b1 | n. Thus,

(n/b1)sn
2 = bm−2 + · · · + 1,

or

(n/b1)sn
2 − 1 = b(bm−3 + · · · + 1).

The right-hand side is nonzero, since m ≥ 3, and qn
1 | b. Applying a linear form in

q1-adic logarithms to the left-hand side (which is nonzero since s2 ≥ 2), we get

n ≤ νq1 (b) ≤ νq1 ((n/b1)sn
2 − 1) � (log n)2,

where the constant implied by the � symbol depends on s (in fact, it is of size
O(q1 log s2) = O(s log s), where the constant implied by O is absolute). This gives a
bound on n in this case.

Case 2. gcd(b, s) = 1.
Since (2.1) can be rewritten as

nsn = b
(bm−1 − 1

b − 1

)
,

and s and b are coprime, we get b | n. Thus,

bm−1 − (b − 1)(n/b)sn = 1. (2.2)
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In particular,

bm−1 = (b − 1)(n/b)sn + 1.

Since b | n, it follows that nm−1 ≥ bm−1 > sn ≥ 2n, and so m � n/log n. However,
bm−1 < n2sn + 1 < s4n, so m � n, where the constant implied by the last � symbol
depends on s (it is in fact of size O(log s) where the constant implied by the O symbol
is absolute). Next, we rewrite (2.2) as

1 − ((b − 1)(n/b)b1−msn =
1

bm−1 .

On the left-hand side (which is nonzero since the right-hand side is nonzero), we apply
a linear form in logarithms á la Baker to get

−(m − 1) log 2 ≥ −(m − 1) log b = log |((b − 1)(n/b))b−msn − 1|

≥ 0.5|n log s − m log b + log((b − 1)(n/b)|

� −(log n)2 log(max{m, n})

� −(log n)3,

where the constant implied by the� symbol can be taken to be

O(log s log log(s + 1))

and the constant implied by O is absolute. Hence,
n

log n
� m � (log n)3,

giving n � (log n)4, so n is bounded. This finishes the proof of (i).
For (ii), when s = 2, only Case 2 is possible so b is odd and the left-hand side of

(2.1) is even. Hence, (bm−1 − 1)/(b − 1) is even and b is odd showing that m − 1 is
even. Thus, (2.2) gives

(b(m−1)/2)2 − δ(b − 1)(n/b)(2�n/2�)2 = 1, for some δ ∈ {1, 2}.

Thus, (X, Y) := (b(m−1)/2, 2�n/2�) satisfy

X2 − dY2 = 1, with d ∈ {(b − 1)(n/b), 2(b − 1)(n/b)}. (2.3)

Thus, (X, Y) = (Xk, Yk) is the kth solution of the Pell equation (2.3). Since Y is a power
of 2, by the existence of primitive divisors for Lucas sequences, the only possibilities
are k ∈ {1, 2}. Thus,

2n/2 ≤
√

dYk ≤ (X1 +
√

dY1)2 < e2·3
√

d log d,

where the last inequality follows from Lemma 1 in [3]. Since d ≤ 2(b − 1)(n/b) < 2n,
we get

(n/2) log 2 < 6
√

2n log(2n),
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giving n < 105. To reduce it, we played around with Mathematica. If m ≤ 8, then since
b | n, we get

n2n + 1 ≤ n8 − 1
n − 1

,

which gives n ≤ 29. If m ≥ 9, then n2n ≡ b + b2 + b3 + · · · + b7 (mod b8). For each
n < 105, we generated all odd divisors b > 1 of n and checked whether the above
congruence held, and if it did, we recorded the value of b. The only b found was
b = 3. Since n2n = (3m − 1)/2 ≥ (39 − 1)/2, we get n ≥ 10. If m − 1 ≥ n, we then get
n2n = 3m−1 + · · · + 1 > 3n, which is a contradiction for n ≥ 10. Thus,

n2n = 3
(3m−1 − 1

2

)
,

so 2n+1 | 3m−1 − 1. This implies that m − 1 is even and further, calculating the exponent
of 2 in 3m−1 − 1, we get

n + 1 ≤ ν2(3m−1 − 1) = 3 + ν2((m − 1)/2)

< 3 + (log(n/2))/log 2 = 2 + (log n)/log 2

< 1.5 log n + 2,

which is false for n ≥ 10. This shows that m ≥ 9 is not possible, and so only
m ≤ 8 is possible for which we already saw that n ≤ 29. Finally, we took all n ∈ [2, 29],
found all odd divisors b > 1 of n (if any), calculated the potential m using the equation
m − 1 := �log(n2n + 1)/log b� and checked whether (1.1) holds with s = 2. No solution
was found.

This finishes the proof.

3. Comments

Closely related to Cullen numbers are the Woodall numbers of the form n2n − 1 or,
more generally, nsn − 1 with some s ≥ 2. Our argument does not extend to Woodall
numbers so we leave the topic of exploring the analogous Diophantine equation (1.1)
with Cullen numbers replaced by Woodall numbers to the interested reader.
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