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Background. The efficient organization and communication of brain networks underlie cognitive processing and their
disruption can lead to pathological behaviours. Few studies have focused on whole-brain networks in obesity and binge
eating disorder (BED). Here we used multi-echo resting-state functional magnetic resonance imaging (rsfMRI) along with
a data-driven graph theory approach to assess brain network characteristics in obesity and BED.

Method. Multi-echo rsfMRI scans were collected from 40 obese subjects (including 20 BED patients) and 40 healthy
controls and denoised using multi-echo independent component analysis (ME-ICA). We constructed a whole-brain func-
tional connectivity matrix with normalized correlation coefficients between regional mean blood oxygenation level-
dependent (BOLD) signals from 90 brain regions in the Automated Anatomical Labeling atlas. We computed global
and regional network properties in the binarized connectivity matrices with an edge density of 5%–25%. We also verified
our findings using a separate parcellation, the Harvard–Oxford atlas parcellated into 470 regions.

Results. Obese subjects exhibited significantly reduced global and local network efficiency as well as decreased modu-
larity compared with healthy controls, showing disruption in small-world and modular network structures. In regional
metrics, the putamen, pallidum and thalamus exhibited significantly decreased nodal degree and efficiency in obese sub-
jects. Obese subjects also showed decreased connectivity of cortico-striatal/cortico-thalamic networks associated with pu-
taminal and cortical motor regions. These findings were significant with ME-ICA with limited group differences
observed with conventional denoising or single-echo analysis.

Conclusions. Using this data-driven analysis of multi-echo rsfMRI data, we found disruption in global network prop-
erties and motor cortico-striatal networks in obesity consistent with habit formation theories. Our findings highlight the
role of network properties in pathological food misuse as possible biomarkers and therapeutic targets.
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Introduction

The resting-state brain network shows functional
topological features such as small-world and modular
organization, which enables efficient information pro-
cessing and communication through the network
(Achard et al. 2006; Achard & Bullmore, 2007;
Bullmore & Sporns, 2009, 2012). Graph-theoretical ana-
lysis of resting-state functional magnetic resonance im-
aging (rsfMRI) data reveals the topological properties
of whole-brain functional networks in a data-driven

manner. While the application of graph-theoretic ana-
lysis to the brain networks is still relatively new,
brain network properties in rsfMRI measurements
have been found to be disrupted in various neuro-
psychiatric disorders such as Alzheimer’s disease
(Supekar et al. 2008; Yao et al. 2010), schizophrenia
(Liu et al. 2008; van den Heuvel et al. 2010), major de-
pression (Zhang et al. 2011) and attention-deficit/
hyperactivity disorder (Wang et al. 2009).

Here, we aimed to examine alterations in brain net-
work properties in individuals with obesity with and
without binge eating disorder (BED). BED is a compul-
sive eating behaviour characterized by rapid food in-
take that has been hypothesized in preclinical models
to have overlaps with disorders of addiction
(Gearhardt et al. 2011; Avena et al. 2012; Smith &
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Robbins, 2013). Across both human and rodent studies
of binge eating, the striatum and dopaminergic system
has been implicated as a crucial mediator of problem-
atic and compulsive eating behaviours. In rodent stud-
ies of binge eating, repeated access to sucrose is
associated with increased dopamine signalling in the
ventral striatum (Hajnal & Norgren, 2002; Rada et al.
2005) and reduced dopamine D2 receptor binding in
the dorsolateral striatum (Bello et al. 2002). Rodents
with a knockdown of dorsolateral striatum dopamine
D2 receptor expression show compulsive food intake
(Johnson & Kenny, 2010). In humans with BED, food
stimuli elicit a similar enhancement of striatal dopa-
mine release (Wang et al. 2011). Finally, reduced striat-
al D2/3 receptor availability has been demonstrated in
humans with obesity (de Weijer et al. 2011), a feature
that is common for both obesity with and without
BED.

However, little is known about alterations in resting-
state brain networks in obesity and pathological beha-
viours towards food. While there are no known graph-
theoretic analyses of brain networks in obesity and
BED, some evidence of aberrant functional organiza-
tion comes from studies using independent component
analysis of rsfMRI data. Obese individuals seem to
show increased connectivity strength of the putamen
(Garcia-Garcia et al. 2013) but this was in a relatively
small sample (n = 16). Functional connectivity strength
of the left orbitofrontal cortex and right putamen was
positively associated with fasting insulin levels and
negatively with insulin sensitivity across obese and
lean individuals (Kullmann et al. 2012), thereby sug-
gesting a role for putaminal network dynamics in the
regulation of food intake. Disrupted network organiza-
tion has been also implicated in disorders of addiction,
which may be potential markers that may be expressed
in obesity as well. For example, decreased small-world
characteristic and/or reduced global efficiency was
observed in heroin-dependent individuals (Liu et al.
2009; Jiang et al. 2013) and drug-dependent subjects
(Wang et al. 2015). Heavy smokers also displayed
decreased global efficiency and increased local
efficiency in the network (Lin et al. 2015). Finally,
pathological gamblers demonstrated regional alter-
ation of network properties in the paracingulate
gyrus and supplementary motor area (SMA)
(Tschernegg et al. 2013).

In the current study, we examine global and regional
network properties of the resting-state brain network
in 40 obese subjects (including 20 obese BED patients)
in comparison with 40 matched healthy controls in a
data-driven approach using graph theory analysis
and network-based statistics (NBS) (Zalesky et al.
2010). We hypothesize that subjects with obesity (or
BED) will have disrupted topological properties in

cortical–striatal networks with particular implications
for the dorsolateral striatum or putamen. We also use
a recently developed multi-echo fMRI acquisition
and multi-echo independent component analysis
(ME-ICA) which improves signal quality via removing
non-blood oxygenation level-dependent (BOLD) noise
(Kundu et al. 2013), since previous graph-theoretic
studies of compulsive behaviours may be disadvan-
taged by limited sample sizes and low signal:noise
ratio with conventional single-echo rsfMRI.

Method

Participants

A total of 40 obese subjects [body mass index (BMI)
>30 kg/m2] and 40 age- and gender-matched healthy
controls (BMI of 18.1–25.9 kg/m2) were recruited via
community- and university-based advertisements in
Cambridge (See Table 1 for demographic information).
Of the 40 obese subjects, 20 were identified as BED
patients using Research Diagnostic Criteria from the
Diagnostic and Statistical Manual of Mental Disorders,
version IV (American Psychiatric Association, 2000). In
the data analysis, we first compared all 40 obese sub-
jects v. healthy controls, and subsequently compared
the two obese subgroups, i.e. 20 obese BED patients
v. 20 obese subjects without BED. Other psychiatric
disorders were screened with the Mini International
Neuropsychiatric Interview (Sheehan et al. 1998).
Participants were excluded if they had a current
major depressive episode or another major psychiatric
disorder including substance addiction, major medical
illness, or were taking psychotropic medication. The
National Adult Reading Test was used to assess intel-
ligence quotient (IQ). Participants completed the Binge
Eating Scale (BES; Gormally et al. 1982) and the Beck
Depression Inventory (BDI; Beck & Beamesderfer,
1974). Participants were reimbursed for their time
and written informed consent was obtained. The
study was approved by the University of Cambridge
Research Ethics Committee. The authors assert that
all procedures contributing to this work comply with
the ethical standards of the relevant national and insti-
tutional committees on human experimentation and
with the Helsinki Declaration of 1975, as revised in
2008.

Multi-echo rsfMRI

We acquired BOLD fMRI data during wakeful rest for
10 min in all participants. During the rsfMRI scan, par-
ticipants were asked to fixate on the white cross on the
black background shown on the screen. To enhance
signal:noise ratio, we utilized a novel multi-echo pla-
nar imaging sequence and independent components
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analysis (ME-ICA) in which BOLD signal components
were identified with linear echo time (TE) dependency
in the rsfMRI signal (Kundu et al. 2012, 2013). Data
were acquired with a Siemens 3T Tim Trio scanner
using a 32-channel head coil at the Wolfson Brain
Imaging Centre at the University of Cambridge. T1-
weighted anatomical images were acquired using a
magnetization prepared rapid gradient echo
(MPRAGE) sequence [176 × 240 field of view (FOV);
1-mm in-plane resolution; inversion time, 1100 ms].
Functional images were acquired with a multi-echo
planar imaging sequence with online reconstruction
[repetition time, 2.47 s; flip angle, 78°; matrix size
64 × 64; in-plane resolution, 3.75 mm; FOV, 240 mm;
32 oblique slices, alternating slice acquisition slice
thickness 4.0 mm with 10% gap; integrated parallel im-
aging techniques (iPAT) factor, 3; band width = 1698
Hz/pixel; TE = 12, 28, 44 and 60 ms].

Data preprocessing was conducted using ME-ICA
(ME-ICA v2.5 beta10; http://afni.nimh.nih.gov)
(Kundu et al. 2013). The anatomical image was first
skull-stripped and then was non-linearly warped to
the Montreal Neurological Institute (MNI) anatomical
template using AFNI. Motion correction and anatomic-
al–functional co-registration was conducted in the
functional data of the shortest TE using AFNI. The
functional data were normalized to the MNI template
using the non-linear warping computed from the ana-
tomical image. After preprocessing the dataset of each
TE, multi-echo rsfMRI data were decomposed with
FastICA into approximately independent components,
and non-BOLD components were identified with TE-
dependency. BOLD contrast is associated with a
change in the transverse relaxation rate R*

2 induced
by a change in blood oxygenation, which is linearly de-
pendent with TE. In contrast, non-BOLD signal inten-
sity changes are independent of TE. F values for
these TE-dependent and -independent factors were
computed in a voxel-wise manner for each component,

and were summarized into two pseudo F statistics; κ
and ρ, respectively (Kundu et al. 2012). Then, BOLD
components were identified as the components with
higher κ and lower ρ using thresholds derived from
rank orderings (κ-spectrum and ρ-spectrum). Non-
BOLD components which had lower κ and higher ρ
were removed. After preprocessing with ME-ICA, we
applied a high-pass filter (>0.01 Hz) on the denoised
rsfMRI data.

To assess the effectiveness of ME-ICA denoising, we
also tested a conventional single-echo fMRI denoising
method. In this single-echo fMRI analysis, the data
underwent the same preprocessing but the non-BOLD
components (which presumably include motor artifact)
determined by ME-ICA were not excluded. Then, we
regressed out six head movement parameters and
their temporal derivatives (frame-wise motion) and ap-
plied a bandpass filter of 0.01–0.1 Hz range. The same
graph theory analysis was conducted in this dataset
processed with a conventional denoising method.

Graph theory analysis

Graph-theoretical analysis reveals the topological
properties of whole-brain networks in a data-driven
manner. In this framework, the brain network is usual-
ly deconstructed into multiple brain regions and con-
nections between them, which are nodes and edges
in the graph, respectively. Using the Automated
Anatomical Labeling (AAL) atlas (Tzourio-Mazoyer
et al. 2002), we divided the whole brain except the cere-
bellum into 90 (45 for each hemisphere) cortical and
subcortical regions to define the nodes of the network.
Separately, we performed the same network construc-
tion using the Harvard–Oxford Atlas with even-sized
parcellations of 470 regions (H-O470) used in a previ-
ous study (Patel & Bullmore, 2015) to confirm the
findings in graph theory metrics. We estimated
Pearson’s correlation ri,j between the regional mean

Table 1. Demographic and clinical characteristics

Study group

Characteristic BED (n = 20) Obesity without BED (n = 20) Healthy controls (n = 40) p

Male gender, n (%) 9 (45) 13 (65) 20 (50) N.S.
Age, years 43.7 (9.6) 42.7 (11.1) 41.8 (11.7) N.S.
Body mass index, kg/m2 33.0 (2.4) 33.4 (3.9) 22.5 (2.0) <0.001
Binge Eating Scale 23.2 (7.8) 11.0 (9.6) 5.0 (4.5) <0.001
IQ 115.7 (7.1) 115.1 (5.8) 120.5 (4.4) 0.015
Beck Depression Inventory 14.8 (7.2) 8.0 (8.0) 4.7 (5.1) <0.001

Data are given as mean (standard deviation) unless otherwise indicated.
BED, Binge eating disorder; N.S., non-significant; IQ, intelligence quotient.
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rsfMRI signals from the brain regions (nodes) i and j.
Then, we normalized ri,j using Fisher’s r-to-z trans-
form, resulting in zi,j, a 90 × 90 functional connectivity
matrix for each subject for AAL and a 470 × 470 matrix
for the H-O470 atlas.

In most graph-theoretical studies, global threshold-
ing is used to construct a binarized network
(Bullmore & Sporns, 2009; Rubinov & Sporns, 2010)
in order to control the number of edges in the network
across subjects. If the element zi,j of the functional con-
nectivity matrix is greater than a threshold τ, the corre-
sponding element of the binarized network matrix, ai,j,
is set to 1, otherwise it is set to 0. A varying level of
threshold τ creates a graph with a different edge dens-
ity s, which is the ratio of the number of edges existing
in the network to the maximum number of possible
edges, n(n− 1)/2 for a graph consisting of n nodes.

In order to balance an appropriate level of sparse-
ness in the networks for all subjects, we determined
the range of edge density (5% 4 s4 25%) in which
the network of the healthy control group holds the
small-world property according to the following cri-
teria: (1) the average number of edges (degree) over
all nodes �k in the binarized network was larger than
log(N) (Watts & Strogatz, 1998; Jiang et al. 2013); and
(2) the normalized local efficiency of the network for
each healthy control was higher than 1 (see below for
the definition). We calculated each graph theory par-
ameter along the edge density range of 5% 4 s 4
25% with an increment of 1% and then averaged it
into a summarized scalar over the above range.

We calculated the following graph theory metrics in
the binarized networks using the Brain Connectivity
Toolbox (http://www.brain-connectivity-toolbox.net)
(Rubinov & Sporns, 2010) with MATLAB software
(http://www.mathworks.com): (1) global network
properties: global efficiency, local efficiency, modular-
ity, normalized global efficiency, normalized local
efficiency; (2) regional (nodal) network properties:
nodal degree, nodal efficiency and nodal betweenness
centrality.

Global network properties

Efficiency is a measure of parallel information transfer
in the network which is more biologically relevant for
the brain functional network. Efficiency of information
transfer between nodes i and j can be defined as the in-
verse of the shortest path length Li,j, the number of
edges in the shortest path between nodes i and j.
Efficiency has a value between 0 (no path is available
between nodes i and j) and 1 (nodes i and j are directly
connected with an edge). Global efficiency (Eglob) of the
network G is defined as the average value of efficiency
for all pairs of nodes in the network as defined as the

following:

Eglob = 1
N(N − 1)

∑
i=j[G

1
Li,j

.

Local efficiency of node i can be defined using the
same efficiency metric in the subgraph Gi which is con-
sisting of the neighbouring nodes of the node i as the
following:

Eloc(i) = 1
ki(ki − 1)

∑
j=k[Gi

1
L j,k

,

where ki is the degree of node i, the number of edges
linked with the node i (i.e. the number of neighbouring
nodes). Since the subgraph Gi does not include the
node i, local efficiency can be considered as the a meas-
ure of fault tolerance indicating how efficient the com-
munication is without node i. Local efficiency of the
entire network (Eloc) was calculated as the average of
local efficiency across all nodes in the network.

The resting-state brain network has been reported to
be one of small-world networks which lies somewhere
between a random and a regular network and has high
efficiency in both global and local scales (Latora &
Marchiori, 2001; Achard et al. 2006; Achard &
Bullmore, 2007). Compared with a random network,
a small-world network retains local clustering organ-
ization (i.e. higher local efficiency than a random net-
work) but also has short path lengths via a few
shortcut connections (i.e. global efficiency comparable
with a random network). To confirm small-world
properties of the network, we calculated the normal-
ized efficiency, the ratio between the efficiency of the
original network and the efficiency of a randomly
rewired network [E(orig.)/E(random)]. As a small-
world network has higher Eloc than a random network,
normalized local efficiency, Eloc(orig.)/Eloc(random), is
expected to be higher than 1 (normalized Eloc > 1). In
contrast, a small-world network has Eglob similar to a
random network, normalized global efficiency,
Eglob(orig.)/Eglob(random), should be near 1 (normalized
Eglob≈ 1). To calculate normalized local and global
efficiency, we generated 100 random control networks
for each network by randomly rewiring edges in the
network when preserving the degree of each node.
Then, we estimated normalized Eglob and Eloc as the
ratio of real Eglob and Eloc to average Eglob and Eloc in
100 random control networks, respectively.

Modular organization is another feature of the brain
network. A network can be fully subdivided into a set
of non-overlapping modules M in a way that maxi-
mizes the number of within-module edges and mini-
mizes the number of between-module edges. Then,
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modularity in the network can be defined as:

Q =
∑
u[M

euu −
∑
v[M

euv

( )2
⎡
⎣

⎤
⎦,

where euv is the proportion of all edges that connect
nodes in module u with nodes in module v (Blondel
et al. 2008; Rubinov & Sporns, 2010). We used the
Louvain algorithm (Blondel et al. 2008) to identify
modular structure in the network which maximizes
the modularity Q.

Local (nodal) network properties

To assess how much a central role each brain region
(each node) takes part in the network, we estimated
nodal degree, nodal efficiency and nodal betweenness
centrality. Nodal degree ki is defined as the number of
edges linked to the node. A node with a high degree is
more likely to have a central role in communication in
the network, since it has many connections with other
nodes in the network. Nodal efficiency is defined as
average efficiency between the index node i and all
other nodes in the network as the following:

Enode(i) = 1
N − 1

∑
j[G

1
Li,j

,

where Li,j is the shortest path length between each pair
of nodes. Nodal betweenness centrality is a measure of
the number of shortest paths mediated with the index
node i. In other words, it represents the number of
paths in the network that can be slowed or discon-
nected when the node i is removed. Nodal between-
ness centrality is defined as:

BCi =
∑

j=k[G(−i)

δ j,k(i)
δ j,k

,

where δj,k is the number of shortest paths between
nodes j and k and δj,k is the number of shortest paths
between nodes j and k that pass through node i.

Here we used global and local efficiency as a net-
work metric reflecting small-world characteristics in-
stead of using clustering coefficient and path length,
because efficiency measures can be robustly estimated
when some nodes are disconnected from the rest of the
network (Latora & Marchiori, 2001).

In the present study, brain regions susceptible for
MRI signal loss such as the orbitofrontal and medial
temporal parts of the brain had disconnected nodes
in some subjects even at edge density as high as 25%.
However, there was no significant group difference
in amplitude of BOLD rsfMRI fluctuation in these
brain regions. We also confirmed our findings in global
network properties with the network generated from
the minimum spanning tree with additional edges

above global threshold τ (Alexander-Bloch et al. 2010;
Lin et al. 2013) in which all nodes were ensured to be
connected.

Statistical analysis for global and local network
properties

Two-sample t tests were performed to assess group
differences in clinical characteristics and graph-theoret-
ical parameters between each patient group and the
healthy control group using SPSS (version 17.0;
USA). We used Pearson’s χ2 test to estimate the differ-
ence in gender between groups. Significant between-
group differences were determined at p < 0.05 (two-
tailed). Bonferroni correction was used to control for
multiple comparisons in testing regional network
properties (n = 90 for the AAL atlas). Pearson’s correl-
ation r was examined for correlation between the
brain network properties and individual covariates
such as BMI and BES.

NBS: region-to-region connectivity

For group comparisons in region-to-region connectiv-
ity, we utilized NBS (Zalesky et al. 2010), which deals
with multiple comparisons by detecting clusters of
connections that significantly differ across groups in-
stead of testing individual connections. We used NBS
to compare region-to-region connectivity zi,j in the
obese subjects and healthy controls using an initial
threshold on the t statistics (T > 3) of individual edge
differences as described in Zalesky et al. (2010). The
interconnected graph component was identified in
the set of the suprathreshold links with t statistic
higher than a threshold of T = 3 in group comparison
of region-to-region connectivity zi,j (normalized correl-
ation coefficient). A family-wise error (FWE)-corrected
p value was computed for the size of the graph compo-
nent (i.e. the number of interconnected links) using
10 000 permutation tests (p < 0.05, FWE-corrected).

Results

Demographic variables

There was no significant difference in gender ratio and
age in the obese subjects with and without BED and
healthy controls. BMI was significantly higher in both
obese subgroups compared with healthy controls (p <
0.001, one-way analysis of variance; ANOVA), but
did not differ between the two obese subgroups.
There was also significant difference in BES across
groups (p < 0.001, one-way ANOVA), with the obese
BED patients exhibiting higher BES compared with
the obese subjects without BED or healthy controls
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(Table 1). IQ and BDI were also significantly different
between groups.

Overall summary

In the following we compared 40 obese v. 40 healthy
controls along with comparisons of obese subjects
with and without BED in: (i) global network metrics
using AAL90 (Fig. 1a, b) with confirmation with
H-O470 (Fig. 1b, d) and minimum spanning tree ana-
lysis; (ii) regional (nodal) network metrics using
AAL90 (Table 2) and confirmation with H-O470 (on-
line Supplementary Table S1); (iii) region-to-region
connectivity (Fig. 2). BMI correlations with global
(Fig. 3a), local (Fig. 3b) and network cluster connectiv-
ity weights are reported. Finally we also compare the
result with single-echo rsfMRI analysis using conven-
tional denoising (online Supplementary Table S2).

Global network properties

We examined global network properties in the whole-
brain networks constructed with parcellation using the
AAL atlas and the H-O470 atlas as shown in Fig. 1.
There were no group differences between the obese

BED patients (n = 20) and the obese subjects without
BED (n = 20) in any of global network metrics (all p >
0.22, Fig. 1c, d). Thus, we collapsed both obese groups
with and without BED into one group of all obese sub-
jects (n = 40) and compared this group with healthy
controls (n = 40) in all subsequent data analyses. The
global network properties in the obese BED patients
subgroup (n = 20) v. healthy controls and the obese
subgroup without BED (n = 20) v. healthy controls are
reported in the online Supplementary material (see on-
line Supplementary Fig. S1).

The obese subjects (n = 40) exhibited decreased glo-
bal and local efficiency compared with healthy controls
(n = 40) in the whole-brain network constructed with
the 90 regions of the AAL atlas (p = 0.0012 and p =
0.0001, respectively; see Fig. 1a). We estimated normal-
ized efficiency measures with respect to the randomly
rewired control networks, and found that normalized
local efficiency was significantly lower in the obese
subjects compared with healthy controls in both atlases
(p = 0.001). In addition, modularity in the whole-brain
network was also significantly reduced in the obese
group compared with healthy controls (p = 0.002).
Taken together, these findings suggest decreased

Fig. 1. Alteration in global network properties in obese subjects. (a and b) Obese subjects (n = 40) showed reduced global
efficiency (E_glob), local efficiency (E_loc), modularity and normalized local efficiency compared with healthy controls
(n = 40). (c and d) Obese binge eating disorder (BED) patients (n = 20) and obese subjects without (w/o) BED (n = 20) did not
differ in any global network properties (all p > 0.22). In (a) and (c), results are in the Automated Anatomical Labeling (AAL)
atlas with 90 brain regions, and confirmed in (b) and (d) in the Harvard–Oxford (H-O) atlas with 470 equivalent parcellations.
Values are means, with standard errors represented by vertical bars. * p < 0.01, ** p < 0.001.
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small-world characteristics and poor modularization of
the network in the obese subjects. In contrast, there
was no group difference in normalized global
efficiency, and the observed difference in global
efficiency might be attributed to group differences in
degree distribution (see online Supplementary
Fig. S2). The obese subjects had a larger number of
nodes with few connections (k4 1) which are more
likely to be distal or isolated in the network.

All these group differences in global network prop-
erties were observed in the whole-brain network con-
sisting of 470 regions in the H-O470 atlas as well
(Fig. 1b). We also found group differences in global
efficiency, local efficiency, modularity and normalized
local efficiency within the whole-brain network con-
structed from the minimum spanning tree with add-
itional edges with global thresholding (all p < 0.05,
data not shown).

Regional network properties

We then identified brain regions with a significant dif-
ference in regional (nodal) network properties between
the obese group and their matched healthy controls.
Using the AAL atlas, we found a significant decrease
in nodal degree and nodal efficiency in the bilateral pu-
tamen, thalamus and right pallidum (p < 0.05,
Bonferroni correction; Table 2), reflecting a decreased
number of connections and reduced efficiency of

information flow with these subcortical regions.
Using the H-O470 atlas, we found a similar decrease
in nodal degree and efficiency in subparcellated
regions of the putamen, thalamus and pallidum (p <
0.05, Bonferroni correction; see online Supplementary
Table S1). Although other regions also showed differ-
ences between groups, we focus here only on the
regions replicated across both atlases. No significant
difference was found between the obese BED patients
and the obese subjects without BED at the same sign-
ificance level (all p > 0.37, Bonferroni correction).

NBS

Using NBS, we compared the region-to-region func-
tional connectivity measure, normalized correlation
coefficients across the regional mean rsfMRI signals
in the AAL atlas, between the obese group and healthy
controls. NBS identified a network cluster of signifi-
cantly decreased functional connectivity in the cor-
tico-striatal/cortico-thalamic network in the obese
groups compared with healthy controls (p < 0.05,
FWE-corrected; see Fig. 2). The network cluster of
decreased functional connectivity in the obese subjects
consisted of the bilateral putamen, pallidum and thal-
amus as well as cortical regions associated with motor/
somatosensory and associative function such as the
primary motor cortex (precentral gyrus), SMA, para-
central lobule, primary somatosensory gyrus

Table 2. Brain regions with abnormal nodal network characteristics in the entire group of obese subjects as compared with the healthy controls
using the AAL90 atlasa

Network metric Brain regions Obese subjects Healthy controls p, Bonferroni corrected

Nodal degree
Control > obese Left thalamus 10.0 21.4 <0.001

Right thalamus 11.0 20.4 0.002
Right putamen 5.6 12.2 0.002
Left putamen 4.7 10.2 0.007
Right pallidum 1.4 4.2 0.042

Obese > control Right superior occipital gyrus 19.5 15.4 0.037
Nodal efficiency
Control > obese Left thalamus 0.303 0.485 <0.001

Right thalamus 0.310 0.477 0.003
Left putamen 0.219 0.359 0.004
Right pallidum 0.114 0.244 0.006
Right putamen 0.234 0.376 0.008
Right dorsal cingulate gyrus 0.547 0.588 0.014
Right inferior frontal gyrus, opercular part 0.394 0.459 0.022
Left pallidum 0.097 0.206 0.047

Nodal betweenness
Control > obese Left superior frontal gyrus 115 224 0.048

AAL, Automated Anatomical Labeling.
a Reported in arbitrary units.
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(postcentral gyrus), superior parietal lobule and super-
ior temporal cortex. In addition, the left amygdala was
also included in this cluster of decreased connectivity.
NBS did not identify a cluster of significantly increased

functional connectivity in the obese subjects compared
with healthy controls. With the H-O470 atlas, we did
not expect to find and did not find significant differ-
ences using NBS analysis, as parcellation using this

Fig. 2. Decreased region-to-region functional connectivity in obese subjects. Comparison of region-to-region connectivity
using network-based statistics controlling for multiple comparisons (p < 0.05, network-based statistics) (Automated Anatomical
Labeling atlas with 90 brain regions; AAL90 atlas). This network represents decreased connectivity in all obese subjects
compared with healthy controls. L, Left; R, right; PCL, paracentral lobule; SPG, superior parietal gyrus; PreCG, precentral
gyrus; SMA, supplementary motor area; PoCG, postcentral gyrus; DCG, middle cingulate gyrus; STG, superior temporal
gyrus; PUT, putamen; THA, thalamus; PAL, pallidum; AMYG, amygdala.

Fig. 3. Correlation between network metrics and body mass index (BMI; kg/m2) across all subjects (n = 80). (a) Correlation
between BMI and global network metrics across all subjects (Automated Anatomical Labeling atlas with 90 brain regions;
AAL90 atlas). (b) Correlation between BMI and local network metrics focusing on the left putamen across all subjects (AAL90
atlas).
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atlas is associated with a markedly larger number of
multiple comparisons (470 × 469/2) relative to the de-
gree of freedom (i.e. number of volumes, n = 239) in
our rsfMRI data.

Correlation with clinical variables

We estimated correlations between clinically relevant
measures such as BMI and BES and global network
metrics using Pearson correlations. BMI in all subjects
(n = 80) was negatively correlated with global
efficiency, local efficiency, modularity and normalized
local efficiency (all R <−0.32 and p < 0.01; see Fig. 3a),
suggesting a less efficient and less modular organiza-
tion of the brain network in subjects with higher
BMI. These correlations remained significant after
regressing out the effect of age. No significant correl-
ation was found with BES, IQ or BDI scores across
individuals (all p > 0.20).

We also examined correlations with clinical mea-
sures and regional network metrics of regions signifi-
cantly implicated in the regional network analyses,
specifically, the bilateral putamen, pallidum and thal-
amus. BMI was negatively correlated with nodal de-
gree and efficiency in these six subcortical regions (all
R <−0.27 and p < 0.05; see Fig. 3b for left putamen
results) as well as nodal betweenness centrality of left
thalamus and left putamen (R =−0.34 and p = 0.003,
and R =−0.25 and p = 0.027, respectively). BES was
negatively correlated with nodal degree and efficiency
in the bilateral putamen (all R <−0.24 and p < 0.05), but
these correlations with BES were not preserved after
controlling the effect of BMI.

Average connectivity weights in the network cluster
identified with NBS were also negatively correlated
with BMI and BES (R =−0.30 and p = 0.008, and
R =−0.27 and p = 0.026, respectively). However, correl-
ation with BES did not remain significant after control-
ling the effect of BMI.

Comparison with the conventional single-echo
analysis

To compare these findings with conventional rsfMRI
analyses, we conducted the same graph-theoretical
analysis but using a conventional single-echo fMRI
denoising method (regressing out head motion and
bandpass filtering) instead of ME-ICA. In this single-
echo fMRI analysis, the obese subjects did not show
any difference from their matched healthy control
group in global network characteristics except
decreased local efficiency at a trend level (p = 0.065;
see online Supplementary Table S2). No alteration in
nodal network properties in the thalamic and striatal
regions was found in the single-echo fMRI analysis.

Discussion

We compared whole-brain network properties of
obese subjects using data-driven graph-theoretical
approaches and highlighted convergent findings
across two atlases differing by regions and number of
parcellations. The obese subjects exhibited alterations
in global network properties, particularly decreased
local efficiency and modularity. Reduced modularity
suggested disrupted modular organization of the net-
work and poor functional segregation as well. In com-
parison with random control networks, normalized
local efficiency was specifically impaired, indicating
that local clustering structures were disrupted, becom-
ing closer to a random network compared with healthy
controls. Taken together with the lack of group differ-
ence in normalized global efficiency, these findings
correspond to reduced small-world characteristics in
the brain network of obese subjects. The normalized
global efficiency in both control and obese groups
was of a similar level comparable with random net-
works; thus any further random-like organization in
the obese subjects did not further affect global
efficiency in the brain network. Global efficiency was
rather decreased in the obese subjects due to their de-
gree distribution containing a larger number of distal
or isolated nodes of degree k4 1. Clinically relevant
measures of BMI were also negatively correlated with
all of the implicated global network metrics.

There are a limited number of studies applying
graph-theoretical analysis with density-based thresh-
olding in rsfMRI data in substance abuse (Breckel
et al. 2013; Jiang et al. 2013; Lin et al. 2015; Sjoerds
et al. 2015; Wang et al. 2015). A previous study in her-
oin-dependent individuals (Jiang et al. 2013) found a
significantly lower normalized clustering coefficient
and small-world characteristics which are in accord-
ance with our findings of decreased normalized local
efficiency. Similarly, decreased local efficiency and
small-world characteristics were reported in chronic
substance abusers (Wang et al. 2015). Our finding sug-
gests that a network disruption in local clustering
structure and small-world characteristics might link
substance abuse and pathological misuse of food.

Beyond these global network alterations, the regional
(nodal) network properties and region-to-region con-
nectivity revealed alterations mainly in subcortical
regions including the bilateral thalamus, putamen and
pallidum using a data-driven hypothesis-free analysis.
Profound alterations in nodal degree and efficiency
were found in the putamen, pallidum and thalamus in
the obese subjects consistently across two separate par-
cellation atlases after a stringent Bonferroni correction
for multiple comparison. Decreased nodal degree and
efficiency indicated a reduced number of connections
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and communication efficiency in the putamen, pallidum
and thalamus with other brain regions. Convergent with
decreased nodal degree in the striatal and thalamic
regions, the obese group also exhibited decreased func-
tional connectivity in a cortico-striatal/cortico-thalamic
network involving the bilateral putamen, pallidum and
thalamus with cortical regions that encompass motor
and associative function in addition to the left amygdala.
Correlation with BMI and BES scores suggested that
these regional alterations are particularly associated
with obesity and maladaptive eating behaviour.

Although our findings were data-driven and hy-
pothesis-free, the observations dovetail with theories
of habit formation in which positive reinforcement
through long-term drug exposure shifts flexible goal-
directed behaviours towards automatic inflexible ha-
bitual behaviours implicating the putamen (Everitt
et al. 2008). These findings in the putamen build on
two smaller studies demonstrating impairments in pu-
taminal connectivity in obesity and correlating with in-
sulin sensitivity but demonstrating an increase rather
than a decrease in connectivity using independent
components analysis of resting-state data (Kullmann
et al. 2012; Garcia-Garcia et al. 2013). Converging evi-
dence implicates a role for lower D2/3 receptors in the
striatum and particularly the dorsolateral striatum (pu-
tamen) in obesity and binge eating in rodent and
human studies (Wang et al. 2001; de Weijer et al.
2011). Rodent binge eating models suggest a role for
lower D2 receptor binding particularly in the dorsolat-
eral striatum (Colantuoni et al. 2001; Bello et al. 2002).
Whether the D2 receptor levels are predictive of or sec-
ondary to obesity remains to be established. Disrupted
nodal degree and clustering coefficient in the left caud-
ate and bilateral putamen have also been associated
with alcohol dependence severity and duration
(Sjoerds et al. 2015).

We further showed that the ME-ICA rsfMRI is asso-
ciated with significant group differences in global net-
work metrics compared with single-echo rsfMRI using
conventional denoising techniques, which is consistent
with reports of an enhanced signal:noise ratio in ME-
ICA (Kundu et al. 2012, 2013). It emphasizes the rele-
vance of more sensitive techniques to demonstrate
group differences of the resting-state brain network
in clinical studies. In the present study, the smaller
sample size of obese BED patients and obese subjects
without BED subgroups might limit any differences
in network alteration associated with BED.

Using graph-theoretical analysis, we revealed
altered network topological structures in obesity in
both whole-brain network and regional levels. A
novel ME-ICA technique in the present study enabled
detection of group differences with a stringent statistic-
al threshold. We emphasize global impairments in

network efficiency in obesity with disrupted local net-
work organization closer to random networks. We fur-
ther highlight impairments in cortico-striatal/cortico-
thalamic circuitry focusing on putaminal and cortical
motor regions consistent with abnormalities in striatal
dopaminergic processing in obesity. The network
alterations found in the present study were primarily
associated with severity of obesity (i.e. BMI); thus
one might need to take into account obesity as a poten-
tial confounding factor in group analysis of brain net-
work properties particularly in graph theory analysis.
Our findings highlight the role of network properties
in pathological food misuse as possible biomarkers
and therapeutic targets.

Supplementary material

The supplementary material for this article can be
found at https://doi.org/10.1017/S0033291716002646
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