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Separability and Entanglement

22.1 Introduction

In this chapter, we discuss the structure of signal amplitudes in terms of the

separability and entanglement of quantum register states. We review the concepts

of subregisters , splits , partitions , factorizable Hilbert spaces, the separability of

states, separations, and entanglements .

All Hilbert spaces in this chapter are taken to be complex and finite dimen-

sional, and denoted by capital calligraphic Latin letters, such as H. We do not

restrict the discussion to quantum bits, but ultimately, it is those in which we

are most interested.

Suppose X and Y are two finite-dimensional Hilbert spaces with a surjective

linear map U from X to Y.1 Suppose further that U has the property that it

preserves norm, that is, if for any element x in X we have ‖Ux‖Y = ‖x‖X ,

where ‖x‖X ≡ √
(x, x)X is the Hilbert space “length” of x in X and ‖y‖Y ≡√

(y, y)Y is the Hilbert space “length” of y in Y. Then U is called an isometric

isomorphism. Under these conditions, it is necessarily the case that X and Y have

the same dimension and, as far as basic Hilbert space properties are concerned,

are identical. We denote this form of equality by X � Y.

22.2 Quantum Registers

Hilbert spaces per se are central to quantized detector networks (QDN) but that

is on the mathematical side. Physics brings in empirical context that adds an

extra flavor to the discussion, requiring the mathematics of tensor products and

quantum registers. We define a quantum register as the tensor product of two or

more finite-dimensional Hilbert spaces, referred to as subregisters . In principle,

1 Here surjective means that UX = Y, where UX is the image of X in Y under the linear
map U . This condition is not imposed in our definition of semi-unitary operators (which are
linear maps).
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subregisters can have any dimension, including one. In the following, we shall

rule out one-dimensional Hilbert spaces as being of no empirical interest to us.

Example 22.1 Let U , V, and W be three complex, finite-dimensional

Hilbert spaces of dimensions 3, 2, and 4, respectively. Consider the tensor

product X defined as

X ≡ U (1) ⊗W ⊗ U (2) ⊗ V, (22.1)

where U (1) and U (2) are copies of U . Then X is a complex Hilbert space of

dimension 3× 4× 3× 2 = 72.

The number of subregisters in a given quantum register H is called the rank of

that register and denoted rankH. In Example 22.1, X has rank four. A rank-one

Hilbert space will be called an atom.

The dimension of a rank-r register must have at least r non-trivial factors.

For example, a rank-two register of dimension 63 is the tensor product of a

7-dimensional atom with a nine-dimensional atom, or the tensor product of a

21-dimensional atom with a 3-dimensional atom.

The subregister concept, and by implication, that of rank, is contextual,

because it is possible to encounter situations where a subregister could be

thought of as a register itself, with its own subregisters. In other words, atoms

can have constituents.

Example 22.2 Positronium is generally described as an unstable bound

state of an electron and a positron. When viewed as a single particle,

positronium comes in two forms: para-positronium and ortho-positronium. The

former has a particle spin angular momentum classification j = 0 (spin zero),

described by a singlet spin state in a one-dimensional Hilbert space Hpara,

while the latter has spin j = 1 (spin one) described by spin states in a three-

dimensional Hilbert space Hortho.

On the other hand, a nonrelativistic analysis of positronium in terms of

its two constituents would lead to its spin being modeled in terms of a four-

dimensional Hilbert space Helectron ⊗Hpositron, a rank-two tensor product of

an electron spin space Helectron, and a positron spin space Hpositron.

Mathematically, we may write

Hpara ⊕Hortho � Helectron ⊗Hpositron, (22.2)

where the symbol ⊕ denotes a direct sum of vector spaces. The direct sum of

two Hilbert spaces is a Hilbert space with dimension equal to the sum of the

two Hilbert spaces being summed. The group theory of such bound states and

their decomposition leads in this case to the rule 1⊕ 3 � 2⊗ 2 (Lichtenberg,

1970).
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Throughout this chapter, we adhere to our convention that subscripts label

stages while superscripts label subregisters. Stages concern dynamics, which is

not the focus in the present chapter, so we avoid subscripts in this chapter.

As we have seen before in this book, the ordering of subregisters in a tensor

product will not usually be regarded as significant; i.e., Ha ⊗Hb will mean the

same mathematically as Hb⊗Ha, as well as physically. What is important is the

fact that each subregister can be identified, meaning that labels are physically

significant.

The reason for this is based on the physics of observation. For instance, given

two detectors Da and Db, we may represent them by two Hilbert spaces Ha

and Hb, respectively. There will in general be no natural way of ordering these

detectors, and so there is no logical reason to order Ha and Hb in a tensor

product. What matters is the labeling, which can be regarded as part of the

empirical contextual information always available to observers.

With these comments in mind, we henceforth suppress the tensor product

symbol ⊗, so that HaHb and HbHa both mean Ha ⊗Hb.

Given two Hilbert spaces Ha and Hb of dimension da and db, respectively, the

tensor product HaHb is a Hilbert space of rank two and dimension dadb. We

define H[ab] as a rank-one Hilbert space (that is, an atom) of dimension dadb

that is isometrically isomorphic to HaHb, that is,

H[ab] � HaHb. (22.3)

Specifically, H[ab] is the same mathematically as HaHb, but its physical context,

that it is a tensor product, is now ignored.

Likewise, given three Hilbert spaces Ha, Hb, Hc, we define H[abc] to be an

atom isometrically isomorphic to HaHbHc, and so on for higher rank registers.

Note the trivial identity H[a] � Ha.

As we have indicated previously, the order of superscripts in the above is not

significant, so H[ab] = H[ba], and so on.

22.3 Splits

A split is any convenient way of grouping the subregisters in a quantum register

into two or more factor registers, or atoms , each of which is regarded for the

purposes of that split as a Hilbert space of rank one, that is, a Hilbert space not

itself split into two or more factor registers. For large-rank quantum registers,

very many different splits will be possible.

Example 22.3 The rank-three register HaHbHc may be split in five distinct

ways:

HaHbHc � HaH[bc] � HbH[ac] � HcH[ab] � H[abc]. (22.4)

Note that one of these ways is the original register itself.
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The number of ways of splitting a rank-n quantum register is the same as the

number of ways Bn of partitioning a given set of cardinality n, a historically

important topic in combinatorial mathematics. The Bn are called Bell numbers2

and satisfy many curious and interesting relations in diverse fields, such as

probability, game theory, and number theory. For instance,

Bn+1 =
n∑

k=0

n!

k!(n− k)!
Bk, B0 = 1, (22.5)

from which we find the sequence {Bn, n = 1, 2, . . .} = {1, 2, 5, 15, 52, . . .}. An
explicit formula for Bn is given by Dobinski’s formula,

Bn =
1

e

∞∑
k=0

kn

k!
. (22.6)

22.4 Partitions

Consider a set {Ha : a = 1, 2, . . . , r} of Hilbert spaces, denoting the dimension

of Ha by da. Then the rank-r quantum register H[r] ≡ H1H2 . . .Hr is a vector

space of dimension d[r] ≡ d1d2 . . . dr that contains both entangled and separable

states.

The classification of states in such a register into separable or entangled types

is too limited for us, so we introduce the more useful concepts of separations and

entanglements . We explain our terminology starting with the separable sets.

Separations

For any two subregisters Ha,Hb of the quantum register H[r], such that a 	= b,

we define the rank-two separation Hab to be the subset of the tensor product

HaHb consisting of all separable elements in that tensor product, that is,

Hab ≡
{
φaψb : φa ∈ Ha, ψb ∈ Hb

}
. (22.7)

By definition, Hab includes the zero vector 0ab of the tensor product HaHb. Note

that Hab = Hba.

The separation concept readily generalizes to higher rank separations as fol-

lows. Pick an integer k in the interval [1, r] and then select k different elements

a1, a2, . . . , ak of this interval. Then the rank-k separation Ha1a2...ak

is the subset

of Ha1Ha2

. . .Hak

given by

Ha1a2...ak ≡
{
ψa1

ψa2

. . . ψak

: ψai ∈ Hai

, 1 � i � k
}
. (22.8)

Every element of a rank-k separation has k factors. A rank-one separation of a

subregister is by definition equal to that subregister, and is therefore a Hilbert

space in its own right. Separations of rank greater than one, however, cannot

2 After E. T. Bell (Bell, 1938).
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be Hilbert spaces because they do not contain entangled states, which all tensor

products of rank two or more necessarily do.

Rank-Two Entanglements

We can now construct the entanglements , which are defined in terms of com-

plements. Starting with the lowest rank possible, we define the rank-two entan-

glement Hab to be the complement of the separation Hab in the tensor product

HaHb, that is,

Hab ≡ HaHb −Hab. (22.9)

Note that Hab cannot be a vector space because it does not contain the zero

vector.

The original tensor product space considered as a set is therefore the union

HaHb = Hab ∪Hab (22.10)

of the set Hab of all separable states and the set Hab of all entangled states.

These two subsets are disjoint and neither is a vector space.

Separation Products

The generalization of the above to larger rank entanglements is straightforward,

but first it will be useful to extend our notation to include the concept of

separation product.

Suppose A and B are subsets of Hilbert spaces Ha and Hb, respectively, where

a 	= b. We define the separation product A•B to be the subset of HaHb given by

A •B ≡ {ψφ : ψ ∈ A, φ ∈ B} . (22.11)

Properties of the separation product are:

1. The separation product is symmetric, that is, A • B = B • A. This means

that the separation product is not equivalent to the Cartesian product A×B,

which is the set of all ordered pairs of elements.

2. Hab = Ha • Hb. Note that this is not the same thing as HaHb, which in our

notation is the tensor product of Ha and Hb.

3. The separation product is associative, commutative, and cumulative, i.e.(
Ha • Hb

)
• Hc = Ha •

(
Hb • Hc

)
≡ Habc

Hab • Hc = Habc. (22.12)

The separation product can also be defined to include entanglements. For

example,

Hab • Hc =
{
φψ : φ ∈ Hab, ψ ∈ Hc

}
. (22.13)

Significantly, while the separation product of two separations is a separation, the

separation product of two entanglements is not an entanglement, that is,

Hab • Hcd 	= Habcd. (22.14)
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A further notational simplification is to use a single H symbol, incorporating

the separation product symbol • with indices directly, as the following example

illustrates.

Example 22.4 Given Hilbert spaces Ha,Hb, . . . ,Hi, we may write

Hcd•hi•abefg ≡ Hab • Hcd • Hefg • Hhi. (22.15)

Other expansions are possible, given that separations such as Hefg can be

expanded further as separation products.

Associativity of the separation product applies to both separations and entan-

glements, as can be readily proved.

Higher Rank Entanglements

We can now define higher rank entanglements, such as Habc, Habcd, and so on.

These are defined in terms of complements, in the same way thatHab was defined.

Example 22.5 Consider the rank-three tensor product HaHbHc and the

following disjoint subsets: Habc, Ha•bc,Hb•ac,Hc•ab. These are all separable

in one way or another. For instance, Habc is completely separable, while the

other three subsets referred to are partially separable. If we remove all those

subsets from HaHbHc, then what is left will be completely entangled, which

is what we want to define. Hence we define the rank-three entanglement Habc

as the complement

Habc ≡ HaHbHc −Habc ∪Ha•bc ∪Hb•ac ∪Hc•ab. (22.16)

We will refer to a set such as Habc as a rank-three entanglement, and so

on. In general, higher rank entanglements such as Habcd in the above require

a deal of filtering out of separations and cross-entanglements from the original

tensor product Hilbert space for their definition to be possible, which accounts

partly for the fact that entanglements are generally not as conceptually simple

or intuitive as separations. From this we can appreciate just how complicated

the entanglement structure of qubit registers can be.

Exercise 22.6 Show that the rank-four entanglement Habcd is given by

Habcd ≡ HaHbHcHd

−Habcd ∪Hab•cd ∪Hac•bd ∪Had•bc ∪Hbc•ad ∪Hbd•ac ∪Hcd•ab

∪Hab•cd ∪Hac•bd ∪Had•bc ∪Ha•bcd ∪Hb•acd ∪Hc•abd ∪Hd•abc.

(22.17)
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Entanglement Partitions

The decomposition of a quantum register H into the union of disjoint separations

and entanglements will be called an entanglement partition of H, and each

element of that partition will be referred to as a partition element . We can now

list the various entanglement partitions that we have encountered, along with

the number of partition elements in each:

rank register
number of

partition elements

1 Ha 1 = B1

2 HaHb 2 = B2

3 HaHbHc 5 = B3

4 HaHbHcHd 15 = B4

(22.18)

A calculation gives 52 partition elements in the entanglement partition of a

rank-five quantum register, which we recognize as B5, the 5th Bell number.

The conjecture, then, is that the entanglement partition of a rank-r quantum

register has Br partition elements. This was proved by Eakins (Eakins, 2004),

and shows that the entanglement structure of large-rank quantum registers will

be too complicated to deal with without computer assistance.

The relationships between separations and entanglements are subtle, as are the

relationships between splits and entanglement partitions. Although the number

of partitions in the entanglement partition of a rank-r quantum register is the

same as the number of splits and given by the Bell numbers, splits and partitions

cannot coincide for r > 1. Every factor register in a split is a vector space,

whereas no partition element is a vector space. Both splits and partitions are

essential and unavoidable features in quantum mechanics and hence in the QDN

account of quantum measurement and causal set structure.

A final simplification in this line of investigation is to use the above superscript

notation to label the various elements of entanglements and separations. So, for

example, Ψabc•de•fgh denotes a state in the partition element Habc•de•fgh and so

on. Translated into direct terms, this means the following. First, this state is an

element of the rank-eight quantum register

H[8] ≡ HaHbHcHdHeHfHgHh. (22.19)

Second, we may write this state in the factorized form

Ψabc•de•fgh = ψaψbψcψdeψfgh, (22.20)

where ψa ∈ Ha, ψb ∈ Hb, ψc ∈ Hc, ψde ∈ Hde, and ψfgh ∈ Hfgh.

Exercise 22.7 Investigate the superposition (vector addition) properties of

separations and entanglements.

https://doi.org/10.1017/9781009401432.023 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401432.023


298 Separability and Entanglement

22.5 Quantum Zipping

We may avoid the material presented in this chapter when dealing with most

situations discussed so far in this book, because those tend to involve relatively

low-rank quantum registers with subregisters of relatively low dimension. How-

ever, we envisage the application of QDN or its analogues to large-rank, large-

dimensionality contexts. Then it will be necessary to have some organization

principles available. The split, partition, separation, and entanglement concepts

discussed above appear unavoidable in this respect.

Consider the inner product between two pure labstates in a quantum register

H. Each state will come from a specific partition. Depending on the details of the

two partitions concerned, this inner product may or may not factorize. This is

because factor states can only take inner products in combinations that lie in the

same factor Hilbert space of some split of the H, a process we refer to as quantum

zipping . Using the notation for splits, partitions, separations, and entanglements

given in the previous chapter, the following example illustrates the point.

Example 22.8 Consider the rank-eight quantum register H[1...8]. By

inspection, the inner product of the states Ψ123•456•78 and Φ145•23•678 takes

the factorized form

Φ145•23•678Ψ123•456•78 = (φ1ψ1)(φ23ψ2ψ3)(φ4φ5φ678ψ456•78), (22.21)

which cannot be simplified further. Figure 22.1 illustrates the factorization

structure of this inner product. The numbers 1 to 8 represent the individual

atoms of the quantum register, not necessarily detectors.

This example is reasonably simple, as the two labstates involved can be ordered

as shown. In general, more complex patters will occur, and then the correspond-

ing zip diagrams will be more complicated.

The separation and entanglement structure of labstates should be of impor-

tance in any experiment. A significant application of these concepts is to causal

sets , studied in the next chapter.

Figure 22.1. Quantum zipping.
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