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Abstract

In this paper, we derive a number of explicit lower bounds for rational approximation to certain cubic
irrationalities, proving, for example, that

1 _,<

for any non-zero integers p and q. A number of these irrationality measures improve known results,
including those for -^5, s/l and s/T\. Some Diophantine consequences are briefly discussed.
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11Y50, 11Y65.
Keywords and phrases: Effective irrationality measures, cubic irrationalities, Pad6 approximants, simul-
taneous figurate numbers..

1. Introduction

If 6 is an algebraic number of degree n, then Liouville's theorem states that

6 - -

for any non-zero integers p and q, where c{0) is an effective constant. Improvements
upon this have implications for the study of Diophantine equations. A stronger
inequality was proven by Roth [18], who deduced that, if e > 0, then

c(9, e)q~
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330 Michael A. Bennett [2]

for non-zero p,q € Z, where the constant c(8, e) is, unfortunately, not computable.
An effective improvement upon Liouville was, however, obtained by Baker [1,2] for
specific classes of algebraic numbers. In particular, he showed that

(1)
q

^ - 6 -2.955

for all positive integers p and q, whence solutions of the equation

JC3 - 2y3 = u

satisfy

/— - «« , , \ 23

By a more detailed analysis of certain Pad6 approximants involved in Baker's res-
ults, Chudnovsky [7] derived some effective improvements upon them. For example,
he showed that

(2) > cq
-2.42971

for p, q € Z with q ^ 0 and c some effectively computable constant. The actual
value of c, however, was not given. In 1986, Easton [8] produced explicit versions of
a number of Chudnovsky's bounds for cubic irrationalities. Analogous to (1) and (2),
he gave the inequality

(3)
q

> 2.2 x 10" V 2 7 9 5

for integers p and q (q ^ 0).
In [4], while studying simultaneous approximation to algebraic numbers, the author

derived a result on approximation to a single algebraic number that is asymptotically
equivalent to the aforementioned work of Chudnovsky. This follows work of Rickert
[16] and, in the one dimensional case, is essentially Theorem 2 of Heimonen, et al.
[10]. For the purposes of obtaining explicit bounds, this new approach has some
computational advantages. Critical to Easton's estimates are upper and lower bounds
due to McCurley [13] upon the function

d(x,3,2)= logp

p<x
p = 2 mod 3
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[3] Irrationality of algebraic numbers 331

where the sum is over prime p. We obtain stronger results primarily because we are
able to avoid consideration of 6(x, 3, 2) and instead utilize sharper bounds due to
Schoenfeld [19] (see also Rosser and Schoenfeld [17]) for the function

Applying these techniques yields, analogous to (1) and (3), the inequality

(4)

for positive integers p and q, which implies that

, - 2 . 5

for all non-negative integers x and v. In the following, we describe the computations
necessary to derive a slightly stronger version of (4) and related results for other cubic
irrationalities. In particular, we prove

THEOREM 1.1. Suppose that a and N are positive integers satisfying

where

K{a) =

1

>a\(a)\

if ord3 a = 0

if ord3a = 1

if ord3 a > 1

and that p and q are any positive integers. Then we have

where

We apply this result to produce explicit measures of irrationality for certain algebraic
numbers of the form J/m with m e 2, including those considered by Chudnovsky.
Specifically, we show
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COROLLARY 1.2. If p andq are positive integers, then we have

[4]

where we may take 9,c(9) and X(9) as follows:

9

72
73
75
76
77
Tio
TIT
712
TH
7l5
717
7l9
720
722

c(9)
0.25
0.39
0.29
0.01
0.08
0.15
0.22
0.28
0.35
0.19
0.01
0.02
0.01
0.08

HO)
2.47
2.76
2.80
2.35
2.70
2.45
2.91
2.95
2.86
2.54
2.22
2.30
2.23
2.31

6
^26
^28
730
7JT
737
739
742
743
744
752
758
760
761
762

c{9)
0.03
0.03
0.10
0.14
0.01
0.09
0.13
0.01
0.22
0.26
0.12
0.08
0.06
0.04

X{9)

2.53
2.52
2.72
2.97
2.27
2.21
2.46
2.32
2.87
2.97
2.71
2.61
2.56
2.50

9
763
765
766
767
768
770
776
778
783
784
790
79l

c{9)
0.02
0.02
0.04
0.06
0.08
0.12
0.10
0.03
0.10
0.37
0.09
0.01

W)
2.43
2.43
2.50
2.56
2.60
2.68
2.54
2.60
2.72
2.92
2.41
2.29

Here, we have restricted ourselves to values of Jfm~ with 2 < m < 100 which generate
distinct cubic fields. These results sharpen those of Easton [8] in all cases and include
new effective irrationality measures, in the range considered by Chudnovsky [7], for
75 , 77 and 7TT. While the techniques we utilize are applicable in a somewhat more
general setting, we confine our attention to the special situation of cubic irrationalities
for simplicity's sake. A different and much more general approach in this case is via
linear forms in logarithms where Baker and Stewart [3] derived an explicit improve-
ment upon Liouville's Theorem for all algebraic numbers of the form j/m with m not
a cube. In the examples we deal with, however, the resulting irrationality measures
are much stronger by our method. In Section 6, we will briefly discuss applications
of these results to the solution of certain Diophantine equations, in particular, to those
corresponding to simultaneous figurate numbers.

2. Some technical preliminaries

We begin, following Rickert [16], by constructing the diagonal Pade approximants
to the function (1 + ax)x/i, for a any positive integer. These are produced via
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[5] Irrationality of algebraic numbers 333

consideration of the contour integral

= — f (
2ni Jy (z —

(5) i

where |JC| < \/a and y is a closed positively oriented contour enclosing both 0 and
a. Cauchy's theorem then implies that

/,(*) = Pl0(x) + (1 + ax)l/3pn(x) (0 < / < 1)

where (see [16, Lemma 3.3]) we have

r J\ klm-r )
(6)

with klm = k- l+Sim for 8im the Kronecker delta and 0 < /, m < 1. By substituting
A: = 1/Â  (for N > a & positive integer), we obtain a sequence of 'good' rational
approximations to (1 + a/N)l/3 and can utililize the following lemma to find an
explicit measure of irrationality.

LEMMA 2.1. Suppose 6 is real and that there exist positive real numbers c, d, C
and D (D > 1) such that for each positive integer k, we can find integers Pimk(0 <
/, m < 1) with non-zero determinant,

\Pimk\ < cC and \pm + pnk6\ <dD (0 < /, m < 1).

Then we may conclude that

(3cC(max{l, l.t
q

for all positive integers p and q.

PROOF. This is a slight modification of a special case of [16, Lemma 2.1].

To apply this, for each positive integer k, we need to bound the quantities \It{\/N)\
and \pimO-/N)\ from above and to find a rational * t such that ^kPimi^/N) is an
integer for 0 < /, m < 1. Regarding the first of these problems, we prove

LEMMA 2.2. IfO < I < 1 and N > 4a, then

|//d/AT)| < (N
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PROOF. Arguing as in [4, Lemma 3.2], we have

(7) \I,(1/N)\ =
2n" Jo (x + l + al/N)((x + l)(x + l+a/N))k'

For 1 < k < 10, we check, subject to N > 4a, that

/ 2\ -
k

I//O/A0I < lN(yN + VNlra~) j .

If k > 10, then, noting that \x1/3/(x + 1)| < v^/3 for x > 0, (7) implies that

•N/3-^4 ,t f°° ( x \ *

17,(1/^)1 < A'"2* I I dx.
6n Jo \(x + 1) (x + 1 +a/N)J

We split this last integral into

c4 / _ \ *

Jo \(x+l)(x

and estimate them separately. The first of these is less than 4(N/(*/N + ^/N + a)2)*.
The second is no greater than

r ( x \ dx<
h \(x + D2) J5

5

-kand since A; > 10, this is less than 5 . From N > 4a, we have

N_ ^ 4 1
^ """ 5 '

whence
5V3^4 ' • ^-k

- 6n

for k > 10, and the result follows.

We also have

LEMMA 2.3. 7/0 < / , m < 1 and N > 4a, then

\P,md/N)\ < 1.16 ((VN + JWTa')2/a2N
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PROOF. The function pim(x)(l + amx)l/3 is given by the integral (5) with the
contour changed so as to enclose the integer am but not a(l — m). We may therefore
write

dz

where f0 and H are defined by \z\ = VN2 + aN - N :— c0 and \z — a\ = N + a —
\/N2 + aN := c\ respectively. It follows that

ew \ (1 + coe
w/N)k+W3

° ' d9

2ni J. (z - la)(z(z - a))k

1 f ( coe
w \

In J_n \coe
10 -la) (coe'e{coe

ie - a))k (0 < / <

and the fact that \coe'e — a\ > cx > c0 implies

\Piod/N)\<(l+co/N)i/3(-

Arguing similarly and using c0 < \c\ew + a\ < ci + a yields

Co

By calculus, this is no greater than

c0

Since
(l+Co/AO/coC,=

and assuming N > 4a, we have
+ a^j /a2N

y

and the result obtains.

3. Arithmetic properties of pim(l/N)

Define, for positive integers j and k, the intervals Ijk by Ijk = [(k + \)/j, (3k
4) / (3 ; - 1)]. Also, for 0 < s < k, let
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where this latter expression is well defined since [7, Lemma 4.2] gives that 3[3j/21 (*+
r
1/3)

€ Z for 0 < r < s and k e N. If we let Gk = gcd{G(fc), G(k - 1)} then we have'

LEMMA 3.1. Suppose that j and k are positive integers with 1 < j < ^k/3. Then
if p is prime with p e ljk, it follows that p divides Gk.

PROOF. We prove that such primes divide G(k), the case with G(k - 1) being
similar. From p € Ijk, we have

k - \

and thus {{k — \)/p} > 2/3, where [x] denotes the fractional part of x. Since
1 < j < y/k/3, one may conclude that p > V5F+T and so, if 0 < r < k,

If p does not divide (2*^~1), then {(k — r)/p] < 1 — {(it — l)/p] whence, since
{(k — l)/p] > 2/3 and p does not divide k,

By [7, Lemma 4.5], using p > V3& + 1, we have

where 9 = (pq — l ) /3 for 1 < q < 2 satisfying pq = 1 mod 3. Inequality (8) then
implies that

r l f fc - 0 1 f ft - 1 1 j 2 J

\ \p\ [ P i [ p

Since this is greater than 0, we have ordp (
t+

r
1/3) > 1 as desired.

We use this result to show

LEMMA3.2. Gk > (1/5563)2*fork > 1.

PROOF. Suppose, first, that k > 220000. From Schoenfeld [19], we have that

6>(x) = £ ] < log/? < 1.000081* ( ; c>0)

https://doi.org/10.1017/S144678870000104X Published online by Cambridge University Press

https://doi.org/10.1017/S144678870000104X


[9] Irrationality of algebraic numbers 337

where the sum is over prime p. For analogous lower bounds upon 0(x), we utilize
[19, Corollary 2*]. Define L,,t = £p e / ( i log p. It follows that

LUk > 0.49584* - 1.99458,

L2lt > 0.09728* - 0.79643

and

LXk > 0.03943* - 0.49706.

We derive similar inequalities for Llk for 4 < / < 18 and, summing them, may thus
apply Lemma 3.1 to conclude that

logG* > 0.69493* - 5.58728 > *log2

so that Gk > 2k for * > 220000.
For 1 < * < 500, we compute Gk directly from the definition and note that in all

cases

(9) Gk/2
k > 1/5563

where Gk/2
k is minimal for * = 105. For each * with 500 < * < 5000, we compute

*= n
and find that

(10) Pk/2
k > 1/5563

with only 222 exceptions, the last being with * = 1581. For each of these, we
calculate Gk and check that, again, inequality (9) is satisfied.

To tackle the cases with 5000 < * < 220000, we define

•'= n n
and note that Pk+t > Pk/Qkr for 1 < / < r. This observation enables us to reduce
the roughly 215000 possibilities for * to a few hundred. For example, if we calculate
Aooooo, we find that log (Aooooo/2100000) > 4582 while log (6100000,798) < 4587 so
that (10) (and hence (9)) is satisfied for 100000 < * < 100798. Somewhat crudely,
this permits us to check every 20th value for * with 5000 < * < 9000, every 50th
* for 9000 < * < 15000, every 100th * for 15000 < * < 26000, every 200th *
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for 26000 < k < 38000, every 300th k for 38000 < k < 63000, every 500th k for
63000 < k < 134000 and every 1000th k for 134000 < k < 220000. Performing
these calculations, using Maple V, and verifying inequality (10) in all cases completes
the proof.

We note that Lemma 3.2 may be improved somewhat, since one may in fact show
that

lim G]!k =
k»OC

= 2 . 0 9 8 0 7 . . . .

4. Proof of Theorem 1.1 and Corollary 1.2

We first note that the condition

+ V# + a) >a\(a)3(11)

implies, since a and N are positive integers, that N > 4a. From (6) and the observation
that 3[3r/21(*+1/3) is an integer for 0 < r < k, if we let

Xff _ j y * a

then, setting plmk — ^kPimiMN), we have that pimk e Z for 0 < /, m < 1.
Furthermore, [16, Lemma 3.4] gives that det(pimk) is non-zero for each positive
integer k. Lemmas 2.3 and 3.2 imply, then, that

Since Lemmas 2.2 and 3.2 yield

< 5563
a2ic(a) +

-k

we may apply Lemma 2.1 to conclude that

>cq »

for positive integers p and q, where X is as in the statement of the theorem and
1

c~l = 9681(8344.5)x-'*(a) C/ff + v/A7T^J .

Utilizing N > 4a yields c~' < 4ic(a)Nltfk which completes the proof.
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We illustrate the proof of Corollary 1.2 with an effective irrationality measure for
$2. Taking AT = 125 and a = 3 (so that K{CL) = V3) in Theorem 1.1 implies that

where

It follows that

log ( f (253 + 8O/l0))
k = 1 + ) \ 44- = 2 .45758 . . . .

1 4 \ —! , , -A.(2.448 x 1014) ' q

forq > 1, so we have

(12) >

provided q > 1O1U1.
To check the cases 1 < q < 1O1U1, we note that if p and q fail to satisfy (12),

then p/q must be a convergent in the continued fraction expansion to y/2 (see [11,
Theorem 9.7]). Computing the first 3000 such convergents using Maple V, we have
that only the first 2208 have denominators < 101111. If we denote the zth convergent
to y/2 by pt/qi and the zth partial quotient by a,-, then (see [11, Theorem 9.6])

1

whence, if pi/qi does not satisfy (12), we require

(13) - 2.

Checking that the first 100 convergents satisfy (12) and noting that ^101 > 1056, from
(13) we need only show that as < 1026 for 102 < j < 2209 to reach the desired
conclusion. Since the largest value for a, in the range in question is attained by
ai99! = 12737, we conclude as stated.

We argue in a similar fashion to handle the other examples in Corollary 1.2. In
each case, to obtain the bounds cited in Corollary 1.2, we are led to consider no
more than 3100 convergents in the related continued fraction expansions and find no
partial quotients exceeding 49968 (the 813th partial quotient to -^5). In the following
table, we list the choices of a and N for Theorem 1.1 which generate the examples in
Corollary 1.2:
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9

^ 3
^ 5
^ 6

^74

^12
^13
^15
•yvf
^19
^20
^22

a,N
3,53

1,23

402657,5(140145707)3

5, 6(257)3

15, 7(23)3

9, 14(28)2

1887,11(11251)3

13,4(38)3
14, 13(37)3

1,3(2)3

1, 17(7)3

1,83

1,193

3,7(14)2

9

^26
^28
^30
^3l
^37
^39
^42
^43
^44
^52
^58
^60
^6T

a,N
1,26
1,33

1,32
15,31(7)3

1,37(3)3
1,233

1,6(2)3

1,73

9,73

3,13
3,29
1, 15
3,61

9
^62
^63
^65
^66
^67
^68
^70
^76
^78
^83
^84
^90
^9l

a,N

1,31
1,63
1,43

1,2(4)2
3,43
1,42

3, 2(4)2

35, 2(2353)3

5,78(11)3
19, 2533

2927,1482733

1, 10(2)3
1,91(2)3

5. Applicability of Theorem 1.1

If one is content with effective irrationality measures, rather than explicit, then
the best result in our situation, due to Chudnovsky [7] (see also [4, 10]), is essen-
tially Theorem 1.1 with the constant 2 appearing in the expression for X replaced by
3V3e~*^/6 (which is roughly 2 .098. . . ) . This implies new irrationality measures of
the form

, -2.75567

,-2.87124

> c2q
-2.66974

> c4q
-2.99342

where cuc2,c3 and c4 are effectively computable constants. The first three of these
correspond to the choices of a and N given in the previous table while the last follows
from taking a = 51 and N = 41(29)3. Theorem 1.1 also yields the result

(2.2 x lO25)"' q -2.99738

for integers p and q (q ^ 0), by taking a — 26 and N = 1273. We omit this from
Corollary 1.2 since it requires a rather more detailed analysis of the related continued
fraction expansion to reduce the coefficient 2.2 x 1O25 to something more pleasant.
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[13] Irrationality of algebraic numbers 341

To generate these examples, we consider convergents from the continued fraction
expansion to J/m. If we are able to find a convergent p/q satisfying, roughly,

< m"5'1 V 9 / 4

then we may apply Theorem 1.1 with

a p3 mq3

H = -^— or ——
N mq3 p3

to deduce an irrationality measure for J/m. In each of the cases dealt with in Corollary
1.2, such an approximation occurs among the first 20 convergents. For other examples,
however, we need to search somewhat further; for -^200 the 27th convergent is
required, for >/826, the 25th, etcetera. All in all, we are able to apply these techniques
to derive effective irrationality measures for 42 of the 74 values for ^/m which
generate distinct cubic fields with 2 < m < 100 and for 233 of the 788 such J/m with
2 < m < 1000. The smallest J/m for which we cannot apparently utilize Theorem
1.1 is with m = 14, where none of the first 2000 convergents yield the desired
approximation.

If we define N(x) to be the number of positive integers m < x for which Theorem
1.1 yields an effective improvement upon Liouville's Theorem for j/m, then we may
readily show that N (x) ~3> x7/12for;c > 2. Toseethis, we note that if Mis any positive
integer and a e N satisfies a < 2M3/4/3, then we may apply Theorem 1.1 to produce
non-trivial measures of irrationality for both ^(M3 + a)/M3 and A/M3/(Af3 — a).
This implies, in turn, non-trivial measures for all J/m with \M3 — m\ < 2M3/4/3, so
that we have

N(x)> J^ 2 [2M3/4/3]

whence, since

M<x

the result obtains.

4 r /

M3'4 = — + O (x3/4)

6. Applications to diophantine equations

By application of Theorem 1.1 and Corollary 1.2, we are able to show
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THEOREM 6.1. If x and y are integers, then

|*3-2v3 | >max{|x|, \y\}053,

\x3 -3y3\ > max{|je|, \y\]0M, and

\x3 -6y3\ >max{|;c|,|y|}a65

where the last inequality holds unless \x\ = 467 and \y\ = 257.

PROOF. We note that the above inequalities are trivial if min {|JC|, |v|} < 1. Other-
wise, we consider the cases

|JC - ^/my\ < l/J/my and \x — -!/rny\ > l/\/my

separately and show that, for m = 2 and m = 3, the inequalities follow directly from
Corollary 1.2 and the factorization

x3 - my3 = (x - l/m) [x2 + j/mxy +

In the case m = 6, we can utilize Theorem 1.1 and a slightly more detailed analysis
of the continued fraction expansion to \^6 to show that

1-?- >10<T235

q

provided q > 257. Checking the values 2 < q < 256 yields the stated conclusion.

We apply these inequalities to solve a trio of problems on simultaneous figurate
numbers. Let us define, for m and n integers, the sequences

_ m(m + l)(2m + 1)

and

The first of these is just the sum of the first m squares and is known as the mth square
pyramidal number, while the second is the sum of the first n triangular numbers and
is called the nth tetrahedral number. They measure the number of spheres stacked in
a pyramid with a square or triangular base, respectively. We show

THEOREM 6.2. If m, n and r are positive integers, then
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(i) ' / Qm — Tn, then m = n = 1
(ii) if Qm — r3> then m = r = 1; and

(iii) ifTn = r3, then n = r = 1.

None of these results are new; in fact, parts (ii) and (iii) of the above theorem date back
to Lucas [12] and Moret-Blanc [14] (1881) while part (i) was stated as a problem in
the American Mathematical Monthly in 1940 and solved by Finkelstein (Ray Steiner)
[9] in 1966, using a variety of number theoretical techniques. Independently, Beukers
and Top [5] in 1988 proved (i) using an inequality similar to those in Theorem
6.1. Following [5] and [9], we may change variables so that solutions in integers to
equations (i), (ii) or (iii) correspond to integral solutions to the systems of equations

(a) x3 - 2y3 e {-2, - 6 , -10, -30},
(b) X 3 - 3 > > 3 € { 1 , 3 } , or

(c) x3-6y3 e {1,2,3,6}

respectively. For example, if Qm = r3, then

2m(2m + l)(2m + 2) = 3(2r)3

whence, taking u = 2m + 1 and v — 2r, we have u3 — u = 3v3. Therefore, either
u = w3 or u = 3w3, the first of which leading to the equation x3 — 3y3 = 1 with
x = w2andy = v/w, while the second yields x3-3y3 = 3 for* = 3w2andy = v/w.
Applying Theorem 6.1 to the system of equations (a) implies that all solutions satisfy
max{|x|, \y\] < 612. Similarly, all solutions to (b) satisfy max{|;c|, \y\] < 97 while all
thoseto(c)havemax{|;t|, \y\} < 15. Checking beneath these bounds, we find that the
only integer solutions (x, y) to (a) are (0, 1), (—2, —1), (—4, —3) and (—2, 1), while
those to (b) and (c) are given by (0, -1) , (1, 0) and (3, 2), and by (0, -1 ) , (1, 0)
and (2, 1), repectively. Working back through our various changes of variables,
these imply that the integral solutions to Qm = Tn are given by (m, n) = (—2, —3),
( -1 , -2 ) , ( -1 , -1 ) , (-1,0), (0,-2) , (0,-1) , (0,0) and (1,1). Similarly, the
integral solutions to Qm = r3 are given by (m, r) = (—2, —1), (—1, 0), (0, 0) and
(1, 1) while those to Tn = r3 are («,/•) = ( -3 , -1 ) , (-2,0), (-1,0), (0,0) and
(1,1). Theorem 6.2 therefore follows immediately.

7. Concluding remarks

As previously mentioned, these results may be extended to rather wider classes of
algebraic numbers than those discussed here. We can, for instance, provide explicit
bounds for rational approximation to fourth or sixth roots of rationals in a completely
analogous fashion (that is, using only bounds from the work of Rosser and Schoenfeld
upon the common factors of the coefficients of the approximating polynomials). For
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algebraic numbers of higher degree or of degree five, however, we need to utilize
bounds upon primes in arithmetic progressions, say via recent work of Ramar^ and
Rumely [15].
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