A NOTE ON A DISCRIMINANT INEQUALITY

J.H.H. Chalk

(received July 14, 1959)
The following conjecture has been investigated recently by Mordell [1]. "Let z_{1}, \ldots, z_{n} be any set of n complex numbers. Then
(1) $\prod_{1 \leqslant r}, s \leqslant n ; r \neq s\left|z_{r}-z_{s}\right| \leqslant n^{n}\left\{n^{-1} \sum_{r=1}^{n}\left|z_{r}\right|^{2}\right\} \frac{1}{2} n(n-1)$,
the equality sign being necessary in the case when the z 's are at the vertices of a regular n-sided polygon with center at the origin." For brevity, we shall write

$$
\Delta_{n}=\prod_{1 \leqslant r<s \leqslant n}\left|z_{r}-z_{s}\right|^{2}=\prod_{1 \leqslant r, s \leqslant n ; r \neq s}\left|z_{r}-z_{s}\right|
$$

By homogeneity considerations it is clear that we may assume that $\sum_{l \leqslant r \leqslant n}\left|z_{r}\right|^{2}$ is a constant, say n. In the course of his paper, Professor Mordell verified the inequality (1), under the additional conditions

$$
\left|z_{r}\right|=1, \quad(r=1,2, \ldots, n)
$$

using the method of Lagrange multipliers. However, Dr. Erdbs informs me that this result is really due to Polya (see e.g. I. Schur, Math. Zeitschrift l (1918), 385). Since the proof is short, it seems worthwhile to outline the argument here. He considered the Vandermonde determinant

$$
|A|=\left|z_{j}^{i-1}\right|= \pm \prod_{1 \leqslant r<s \leqslant n}\left(z_{r}-z_{s}\right)
$$

and applied Hadamard's inequality to obtain

$$
|A|^{2} \leqslant\left(\sum_{1}^{2}\right)\left(\sum_{l \leqslant r \leqslant n}\left|z_{r}\right|^{2}\right) \ldots\left(\sum_{l \leqslant r \leqslant n}\left|z_{r}^{n-1}\right|^{2}\right)=n^{n}
$$

immediately.

Can. Math. Bull. vol. 3, no.1, Jan. 1960

To obtain some upper bound for Δ_{n}, we consider

$$
\begin{aligned}
& \sum_{l \leqslant r, s \leqslant n ; r \neq s}\left|z_{r}-z_{s}\right|^{2} \\
= & \sum_{r \neq s}\left(\left|z_{r}\right|^{2}+\left|z_{s}\right|^{2}\right)-\sum_{r \neq s} z_{r} \bar{z}_{s}-\sum_{r \neq s} \bar{z}_{r} z_{s} \\
= & \left.\left.2(n-1) \sum_{l \leqslant r \leqslant n}\right|_{z_{r}}\right|^{2}-2\left(\sum_{l \leqslant r \leqslant n} z_{r}\right)\left(\sum_{\left.l \leqslant s \leqslant n^{z_{s}}\right)}\right. \\
+ & \left.\left.2 \sum_{l \leqslant r \leqslant n}\right|_{z_{r}}\right|^{2} \\
= & 2 n \sum_{l \leqslant r \leqslant n}\left|z_{r}\right|^{2}-2\left|\sum_{l \leqslant r \leqslant n} z_{r}\right|^{2} .
\end{aligned}
$$

When expressed in this form, it is obvious that

$$
\sum_{l \leqslant r<s \leqslant n}\left|z_{r}-z_{s}\right|^{2} \leqslant n^{2} .
$$

Now, applying the inequality of the arithmetic and geometric means, we have
(2) $\quad \Delta_{n} \leqslant\left\{2 / n(n-1) \sum_{1 \leqslant r<s \leqslant n}\left|z_{r}-z_{s}\right|^{2}\right\}^{\frac{1}{2} n(n-1)}$

$$
\leqslant\{2 n /(n-1)\}^{\frac{1}{2} n(n-1)}
$$

which for $n=3$ gives $\Delta_{3} \leqslant 3^{3}$ with strict inequality, unless

$$
z_{1}+z_{2}+z_{3}=0,\left|z_{1}-z_{2}\right|=\left|z_{2}-z_{3}\right|=\left|z_{3}-z_{1}\right|=\sqrt{3} .
$$

Thus the conjecture is true for $n=3$. For $n=4$ or 5 , nothing is known but for $n \geqslant 6$, the following example shows that it is false.

Take $z_{n}=0$ and $z_{k}=\{n /(n-1)\} \frac{1}{2} \exp \{2 \pi i k /(n-1)\}$, $(k=1,2, \ldots, n-1)$. Then $\sum_{1 \leqslant r \leqslant n}\left|z_{r}\right|^{2}=n$ and

$$
\Delta_{n}=\left.\left|z_{1} \cdots z_{n-1}\right|^{2} \prod_{1 \leqslant r<s \leqslant n-1}\right|_{r}-\left.z_{s}\right|^{2} .
$$

By means of Sylvester's determinant, or otherwise, we see that

$$
\prod_{1 \leqslant r<s \leqslant n-1}\left|z_{r}-z_{s}\right|^{2}=(n-1)^{n-1}\{n /(n-1)\}^{\frac{1}{2}(n-1)(n-2)}
$$

and so

$$
\Delta_{n}=n^{n-1}\{1+1 /(n-1)\} \frac{1}{2}(n-1)(n-2) .
$$

Since Δ_{n} / n^{n} is an increasing function of n for $n>2$, it is easy to verify that it is >1 for $n \geqslant 6$ and <1 for $n=5$.

This raises the question of how to modify the original conjecture. A paper of Mulholland [2] on an analogous integral inequality suggests that if $\sum_{l \leqslant r \leqslant n}\left|z_{r}\right|^{2}=n$, then

$$
\left(\Delta_{n}\right)^{l / n(n-1)} \leqslant c_{n}
$$

for some constant c_{n} satisfying

$$
\overline{\operatorname{im}} c_{n}=\left(2 / \sqrt{ } e^{\frac{1}{2}}=1.10 \ldots .\right.
$$

By considering a more complicated example than the one above, in which the n points are distributed on p rays of a circle with m of the points on each ray ($n=m p$) and by varying the parameters suitably, I can show that

$$
\overline{\lim } c_{n} \geqslant 1.05 \ldots
$$

From (2) we know that $\overline{\lim } \mathrm{c}_{\mathrm{n}} \leqslant 2^{\frac{1}{2}}$ and it would be interesting to determine its exact value.

REFERENCES

1. L.J. Mordell, On a discriminant inequality, Canadian J. of Math., (in course of publication).
2. H.P. Mulholland, Inequalities between the geometric mean difference and the poiar moments of a plane distribution, J. London Math. Soc. 33 (1958), 260-270.

Theory of Numbers Institute, University of Colorado, Boulder, Colorado
and
McMaster University

