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Introduction
During the last century, abiotic stresses such as drought, salinity and extreme temperatures
have become widespread as a consequence of climate change-related phenomena, mainly
those prompted by increasingly intensive anthropogenic activities. Among the abiotic stresses,
drought represents one of the major constraints on agricultural productivity and food security
(Boyer et al. 2013), linked strongly with ongoing climate changes (Sheffield et al. 2012). During
drought events, water losses are greater than the water inputs in a particular agroecosystem
(Gilbert & Medina 2016). In semi-arid regions, drought or water deficit in the soil is common,
while crop plants in temperate regions may undergo seasonal periods of water stress (Dubey &
Pessarakli 2001). Simultaneously, agriculture is one of the top water-consuming sectors world-
wide (0.69 of water withdrawal) and agricultural intensification is expected to increase the
demand for water worldwide. According to Gilbert & Medina (2016), drought may be defined
as a decrease in water inputs in an agro/ecosystem over time that is sufficient to result in soil
water deficit, i.e. a decrease in available soil water. How drought affects plant growth and devel-
opment is dependent on the plant’s characteristics and the environment (Gilbert & Medina
2016). Drought-induced damage, as well as plant responses to water stress, depend on the
severity and duration of the water-shortage period and the plant growth stage and may be
recoverable or not (da Silva et al. 2011; Gilbert & Medina 2016). Moreover, plants that can
acquire more water and those with improved water-use efficiency are more tolerant to drought.
During the last decade, many studies have been performed to address in planta effects of this
abiotic stress in order to deepen the complex network of responses and plan preventative strat-
egies, focusing increasingly on sustainable approaches (Osakabe et al. 2014; Daryanto et al.
2017). Water deficit impacts plant growth and production adversely, affecting several morpho-
logical, biochemical and molecular traits that respond actively to limit drought-induced dam-
age and permit recovery after water restoration (Farooq et al. 2012). In particular, abiotic
stresses such as water deficit lead to dehydration responses, thus lowering water availability
for crucial cellular functions and maintenance of turgor pressure. This leads to a series of dam-
aging responses, such as the disruption of cellular ionic and osmotic homeostasis and the pro-
duction of reactive oxygen and nitrogen species (RONS) in various organelles with high
electron transport rates, causing irreversible cellular damage (Gill & Tuteja 2010). Stomatal
regulation is one of the key mechanisms that allow water saving, permitting plants to modulate
and optimize carbon dioxide (CO,) assimilation v. evaporative water loss (Tombesi et al.
© Cambridge University Press 2018 2015). Undersoil water limitation, plants promote biosynthesis/accumulation of abscisic acid
(ABA), which has a key role in stomatal closure, leading to a decrease in stomatal conductance
and minimizing transpiration losses (Yamaguchi-Shinozaki & Shinozaki 2006; Nakashima &
CAMBRID GE Yamaguchi-Shinozaki 2013; Nakashima et al. 2014; McAdam et al. 2016; Vishwakarma et al.
UNIVERSITY PRESS 2017). However, stomatal conductance regulation driven by passive hydraulic-mediated
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mechanisms has been also reported, e.g. in grapevine (Tombesi
et al. 2015). Improved knowledge on plant responses to water def-
icit, which include morphological and physiological adaptations,
is crucial to improve drought tolerance in major crops and to
develop novel water management and conservation strategies in
agriculture. Efficient water management in agriculture will help
to reduce crop yield losses and increase water use efficiency,
and to cultivate areas currently unsuitable for cultivation due to
low precipitation and/or salt accumulation. Different methodolo-
gies have been employed to enhance drought/salinity stress toler-
ance in plants and therefore to increase crop water use efficiency;
some are particularly time-consuming (e.g. conventional breed-
ing) and others are currently unacceptable in many countries
around the world (e.g. plant genetic modification) (Cattivelli
et al. 2008; Hu & Xiong 2014). As an alternative strategy, the
use of root-associated microorganisms to increase crop tolerance
and resilience to drought has been explored in recent years (Rolli
et al. 2015; Chitarra et al. 2016). Schmidt & Gaudin (2017) pro-
posed that an ideotype root system that integrates several traits to
improve water and nutrient use efficiency, ameliorating the soil
organic matter metabolism and the exudate production, would
affect rhizosphere hydraulic conductivity and water uptake posi-
tively. Root-associated microorganisms, such as arbuscular
mycorrhizal (AM) fungi, might also confer those benefits under
irrigated conditions. Arbuscular mycorrhizal fungi colonize
plant roots and help their host plants to reach water and nutrients,
while in turn receiving carbon compounds, and are considered to
be essential elements for plant nutrition as their hyphae can
extend for many metres in the ground, helping plants to acquire
mineral nutrients present in the soil (Bucher et al. 2014). On the
other hand, chemical priming is a rapidly emerging field in plant
stress physiology and crop stress management (Savvides et al.
2016). Plants treated with certain natural or synthetic compounds
(i.e. chemical agents) prior to stress events show enhanced toler-
ance when exposed to sub-optimal abiotic conditions (e.g.
drought, heat, salinity, heavy metals). Stress impacts on plant
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growth and yield in primed plants are reduced remarkably in
comparison with non-primed plants. In the current review,
some aspects related to the application of both strategies (bio-
logical and chemical priming) will be reported (Fig. 1).

How arbuscular mycorrhizal fungi can improve plant
tolerance to drought

It has been predicted that in future, plants will be exposed to more
extreme abiotic stresses, such as drought events, and numerous
studies have been carried out to develop sustainable techniques
in agriculture (Chatzidaki & Ventura 2010). Plant-associated
microbiota can increase plant tolerance to abiotic stresses such
as flooding, drought, salinity, extreme temperatures and heavy
metal contamination (Miiller et al. 2016). Thanks to the ability
of establishing mutualistic symbioses with the roots of most
crops, AM fungi can have an important role as bio-fertilizing
microorganisms (Berruti et al. 2015). Furthermore, AM fungi
have been reported to improve plant tolerance to important abi-
otic environmental conditions such as drought, salt stress and
cold (Porcel et al. 2012; Rapparini & Pefiuelas 2014; Lenoir
et al. 2016; Pedranzani et al. 2016; Balestrini et al. 2017). The
development of plants with high productivity and survival rate
under drought conditions is the main goal of crop breeding pro-
grammes (Osakabe et al. 2014). Water use efficiency (WUE),
which can be calculated as the amount of CO, taken up by photo-
synthesis (Ay) divided by the amount of water transpired (E),
represents a key parameter of plant performance under water
stress and is an important selection trait (Osakabe et al. 2014).
In this context, AM fungal colonization has shown noteworthy
results in increasing tolerance to water stress (Augé et al. 2015).
The impact of AM symbiosis on plant performance in conditions
of water limitation has been studied extensively (Rapparini &
Pefiuelas 2014; Lenoir et al. 2016; Balestrini et al. 2017) and
improved drought tolerance by AM fungal colonization has
been reported for different plants, e.g. citrus, lettuce, maize,
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Fig. 1. Biochemical, molecular and phenotypic changes induced by arbuscular mycorrhizal (AM) symbiosis and chemical priming under water deficit conditions.
Letters in black are for common defence mechanisms, in blue just for chemical priming and red for AM fungi (based on existing literature). For the AM symbiosis,
responses also depend on the plant-AM fungus combinations (plant species/genotype-AM fungal species/isolate).

https://doi.org/10.1017/50021859618000126 Published online by Cambridge University Press


https://doi.org/10.1017/S0021859618000126

682

olive, pistachio, tomato, watermelon, wheat, Knautia arvensis and
Robinia pseudoacacia (Abbaspour et al. 2012; Doubkova et al.
2013; Wu et al. 2013; Zhou et al. 2015; Calvo-Polanco et al.
2016; Mo et al. 2016; He et al. 2017). The benefits of AM fungi
have been observed across multiple scales, from soil structure to
plant eco-physiological (e.g. hydraulic traits), molecular (e.g.
stress marker genes) and biochemical responses (e.g. hormones
and defence-related metabolites). A promotion of stomatal con-
ductance to water vapour (g;) has been reported in different
plant/AM fungi combinations independently from the soil mois-
ture conditions, and the influence of AM symbiosis is more pro-
nounced under drought (Augé et al. 2015). Recently, the positive
effect of two AM fungi (Funneliformis mosseae and Rhizophagus
intraradices) in tomato tolerance to water deficit has been
reported. Interestingly, differences between the two fungal species
have been observed (Chitarra et al. 2016), in agreement with
observations that stress alleviation by AM fungal colonization
may be environment- and symbiont-specific (Augé 2001, 2004;
Augé et al. 2015; Eulenstein et al. 2017). Arbuscular mycorrhizal
symbiosis affected tomato eco-physiology parameters under
severe water stress conditions (i.e. leaf water potential of about
—1.3 MPa) with a positive impact on WUE values (Chitarra
et al. 2016), in accordance with the net photosynthetic rate
(An). Under water deficit, an improved WUE (calculated as
AN/E) in AM-colonized plants has been reported in Populus x
canadensis Neva’ plants colonized by R. irregularis (Liu et al.
2016) as well as in lettuce (Ruiz-Lozano et al. 1995). However,
several papers have also reported a positive impact of AM symbi-
osis on WUE calculated as the ratio between biomass and water
consumed (reviewed in Aroca et al. 2011). Improved efficiency
in photosystem II (PSII) promoted by AM symbiosis was also
observed in maize and tomato water-stressed plants (Barzana
et al. 2012; Ruiz-Lozano et al. 2016), as well as an increased
chlorophyll content in basil (Ocimum gratissimum; Hazzoumi
et al. 2015). The levels of ABA, which is a hormone involved in
the regulation of plant growth and development as well as in
responses to abiotic stresses, are also affected by AM symbiosis.
Under a severe water stress treatment, AM-colonized tomato
plants showed a significantly lower ABA content (measured
both in roots and in leaves at the end of the experimental period)
with respect to non-colonized plants, suggesting that the latter
probably faced more intense water stress than the colonized
ones (Chitarra et al. 2016). This is in agreement with data
reported by Li et al. (2016) in Zea mays inoculated with R. intrar-
adices: these authors demonstrated that AM fungal colonization
can decrease root ABA content mainly by down-regulating alde-
hyde oxidase (AO) expression under water deficit (Li et al. 2016,
2017). Interestingly, tomato root colonization resulted in a signifi-
cant increase in stomatal density measured in leaves from irri-
gated plants, mainly for R. intraradices-colonized plants
(Chitarra et al. 2016). Since an increased stomatal density may
enhance plant CO, absorption capacity, these data are in accord-
ance with the fact that AM-colonized plants showed significantly
greater Ay, which is correlated directly with WUE values, in com-
parison with non-colonized ones not only upon drought but also
under well-watered conditions (Chitarra et al. 2016). Ruiz-Lozano
et al. (2016) also demonstrated a correlation between AM root
colonization, strigolactone (SL) levels and drought severity. It is
worth noting that water-related stresses influence SL production
negatively, while the presence of AM fungi seems to have the
opposite effect (Aroca et al. 2013; Ldopez-Rdez 2016; Ruiz-
Lozano et al. 2016). It has been suggested that, due to the role
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of SLs in AM symbiosis establishment (Lopez-Raez 2016), plants
increase SL production under stressed conditions to promote
symbiosis establishment, thus improving responses to stress
(Ruiz-Lozano et al. 2016). Furthermore, trifoliate orange plants
colonized by Diverispora versiformis showed improved root
morphology adaptation in response to drought stress, probably
correlated with AM-induced changes in root indole-3-acetic
acid (IAA), methyl jasmonate (MeJA), calmodulin and nitric
oxide levels, enhancing tolerance to water deprivation (Zou
et al. 2017).

Arbuscular mycorrhizal symbiosis can also affect the content
of molecules involved in osmoregulation and the activity of anti-
oxidant enzymes in several plant/AM fungus interactions sub-
jected to water-related stresses (Liu et al. 2016; Mo et al. 2016;
Huang et al. 2017; Wu et al. 2017), although results can be differ-
ent probably in relation to the species involved in the symbiosis as
well as the stress severity and duration. Additionally, the presence
of the AM fungus can lead to a significant reduction in ROS (e.g.
hydrogen peroxide (H,0O,)) accumulation (Chitarra et al. 2016;
Liu et al. 2016), which often increase under drought. Using a
split-root system to obtain maize AM-colonized plants with either
the whole of the root system colonized or only half of it and to
induce drought affecting the whole plant or only half of the
root system, Bdrzana et al. (2015) demonstrated an impact of
AM colonization on the accumulation of compounds with a
role in osmoregulation and aquaporins (AQPs), as well as on
the antioxidant apparatus. The authors suggested that the positive
impact of AM symbiosis is not only due to decreased oxidative
stress in the host plants but also to a localized restriction of
such oxidative stress (Barzana et al. 2015). Nonetheless, although
different mechanisms might be involved in water stress alleviation
in AM plants (Ruiz-Lozano 2003; Ruiz-Lozano et al. 2006;
Rapparini & Pefiuelas 2014; Ruiz-Lozano & Aroca 2017), several
aspects of the enhanced drought tolerance in plants inoculated by
AM fungi still remain to be fully clarified.

Water transport and regulation of plant and fungal
aquaporin genes in arbuscular mycorrhizal-colonized roots

The thin AM fungal hyphae can explore soil pores inaccessible to
root hairs, thus reaching water sources not available to non-AM
plants. Furthermore, hyphal water transport to the root under
drought conditions has been demonstrated previously (Khalvati
et al. 2005; Ruth et al. 2011), as well as the fact that AM-colonized
plants are able to take up more water from the soil than non-
colonized ones (Marulanda et al. 2003). Ruiz-Lozano & Azcon
(1995) reported that AM fungal hyphae could take up water,
but there were considerable variations in the behaviour of two dif-
ferent AM fungi as well as in the mechanisms involved in their
impact on plant-water relations. For several years, numerous stud-
ies focused on highlighting the impact of AM symbiosis on root
hydraulic conductivity (L), which provide indications about the
plant’s capacity to take up water from the soil, suggesting that
the decrease observed under drought may be partially reduced
by AM symbiosis (Barzana et al. 2012; El-Mesbahi et al. 2012).
Interestingly, Sanchez-Romera et al. (2016) suggested that,
under mild water stress, AM symbiosis prevents the inhibition
of root hydraulic conductivity (L) in bean plants, and that this
effect could be due to a reduction in the salicylic acid (SA) level
in roots caused by drought. Additionally, the increase in L in
AM-colonized bean plants under drought conditions was accom-
panied by an increase in the expression of a plant (ie. plasma
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membrane intrinsic proteins, PIPs) and two fungal aquaporin
(AQP) genes as well as an increase in the amount of phosphory-
lated proteins (PIP2Ph) in AM-colonized plants (Sinchez-
Romera et al. 2016). The authors suggested that phosphorylation
of PIP2 proteins can regulate L values with respect to environ-
mental conditions. Aquaporins are membrane-intrinsic proteins
that are involved in the control and regulation of passive water
movement in different physiological conditions. In plants, AQPs
belong to a large protein family with five major sub-groups
divided on the base of their sequence similarity (Maurel et al.
2015). Plant AQPs are present in various tissues and their func-
tions are central for plant growth and responses to abiotic stresses,
playing determinant roles in hydraulic regulation in roots and
leaves as well as in the plant response to several stimuli including
drought and flooding (Maurel et al. 2015). An increased gene
expression of AQP transcripts is also present in AM-colonized
roots under non-stressed conditions (Uehlein et al. 2007;
Giovannetti et al. 2012). For example, gene expression analysis
has revealed that two putative Lotus japonicus aquaporin
genes, namely LjNIPl and LjXIP1, are both AM-responsive.
Additionally, a good correlation between the expression of
LjNIP1 and LjPT4, a phosphate transporter considered a marker
gene of symbiosis functionality, has been reported (Giovannetti
et al. 2012) and LjNIPI transcripts have been localized exclusively
in arbuscule-containing cells as observed using laser microdissec-
tion (Giovannetti et al. 2012), suggesting that LjNIPI could be
considered a novel molecular marker of mycorrhizal symbiosis.
As demonstrated by functional complementation experiments,
LjNIP1 seems to be involved in water, but apparently not ammo-
nia, transport. Expression of plant AQP in mycorrhizal roots
under drought conditions has also been assessed in several
plant/AM fungi combinations (Porcel et al. 2006; Aroca et al.
2007; Ruiz-Lozano et al. 2009; Barzana et al. 2014; Chitarra
et al. 2016; He et al. 2016). As reported recently by Ruiz-
Lozano & Aroca (2017), data originating from several studies
indicate that AM symbiosis has an impact on host plant AQPs
and alters both plant-water relationships and plant physiology
in order to cope better with stressful environmental conditions
such as drought. However, as also reported from other functional
aspects related to AM symbiosis, the regulation of AQPs seems to
be dependent on the plant and fungal species involved in the sym-
biosis (Ruiz-Lozano & Aroca 2017). Bérzana et al. (2014) ana-
lysed the expression of the whole set of maize aquaporin genes
in AM-colonized roots under several growing and water-stressed
conditions: they demonstrated that AM symbiosis can regulate a
large number of AQP genes in the host plants in several
sub-families and that the regulation of these genes is dependent
on water status and the severity of the imposed stress.
Furthermore, some of them have been characterized functionally
to transport water and other molecules with a physiological
importance in plant performance, suggesting that the improved
AM-colonized plant performance under drought might be related
not only to the movement of water but also to the mobilization of
compounds with a role in plant performance (Barzana et al.
2014). In tomato, three AQP genes belonging to three different
sub-families (NIPs, NOD26-like intrinsic proteins; PIPs, plasma
membrane intrinsic proteins; TIPs, tonoplast intrinsic proteins)
have been reported to be expressed mainly or exclusively in
roots (Reuscher et al. 2013). All the selected genes showed an
increasing trend of expression in roots from AM-colonized plants
under irrigated conditions (Chitarra et al. 2016), while water
stress treatment affected the transcriptional pattern of these
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aquaporin genes differently. LeNIP3;1 remained to be upregulated
in AM-colonized plants, while LeTIP2.3 and LePIP1.1 were
expressed less under severe water stress, in accordance with
Barzana et al. (2014) who showed different regulation of AQP
genes depending on the water status. Arbuscular mycorrhizal fun-
gal AQPs can also have a role in helping AM fungi to resist
drought stress as well as in the plant’s tolerance to drought
(Aroca et al. 2009; Li et al. 2013a, b). After identification of the
first AQP in an AM fungus (Aroca et al. 2009), Li et al
(2013a) identified and characterized two additional genes in
R. irregularis (RiIAQPFI and RiAQPF2). A potential water trans-
port via AM fungus to the host plant has been proposed looking
at the gene expression profiles for the two functionally character-
ized R. irregularis AQP genes (Li et al. 2013a, b). These fungal
genes were both found to be activated in maize arbuscule-
containing cells under drought. In addition, expression analysis
of the two R. intraradices AQP genes RiAQPFI and RiAQPF2
in tomato plants subjected to severe water stress conditions
showed a significant upregulation of RiAQPF2 under water stress
(Chitarra et al. 2016), thus supporting the theory of a direct AM
fungus involvement in plant tolerance to drought. The discrep-
ancy between the two experiments might be related to the fact
that water stress was induced using polyethylene glycol (PEG)
to simulate water deficit conditions and through a suspension
of water supply, respectively. However, further studies aimed at
functional characterization of the several AQPs regulated by
AM symbiosis, both at local and systemic level, will be required
to highlight the role of these proteins in drought tolerance by
AM symbiosis. The characterization of fungal AQPs from other
AM fungi could also be useful to identify fungal species/isolates
more efficient to improve drought tolerance in host plants.

Improvement of plant tolerance to drought with the use of
chemical priming agents

Chemical priming with the use of natural or synthetic compounds
offers a cost-effective (i.e. low-cost chemical compounds used at
low concentrations) methodology for the amelioration of abiotic
stress-induced damage, suggesting a low cost-benefit ratio if
applied in crop stress management (Antoniou et al. 2016). The
increasing attention this approach has been receiving can be
attested by the fact that >130 research articles have been published
since 2012 where chemical priming approaches were followed
towards the mitigation of drought stress in plant studies (source:
http://www.scopus.com).

Chemical priming is characterized by its broad nature in terms
of compounds, methods of application, tissue in which it is
applied and so on (Savvides et al. 2016). In regard to the type
of compounds that demonstrate priming activity, many natural
molecules have the potential to act as a priming agent against a
range of different abiotic stresses including amino acids (e.g. pro-
line, Islam et al. 2009), hormones (e.g. salicylic acid, Li et al
2014), reactive oxygen-nitrogen—sulphur species (RONSS,
Tanou et al. 20124, b; Christou et al. 2013), polyamines (Tanou
et al. 2014), melatonin (Antoniou et al. 2017), volatile organic
compounds (VOCs; Cho et al. 2008) and even water (i.e. hydro-
priming; Casenave & Toselli 2007). Interestingly, synthetic chem-
istry can also be employed to produce powerful priming agents,
with examples including the fungicidal compounds strobilurins
(Filippou et al. 2016), as well as NOSH-aspirin (NBS-1120), a
novel nitric oxide (NO)- and hydrogen sulphide (H,S)-releasing
hybrid, which was formulated initially as an anti-cancer drug
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but also displays protective effects against drought stress in plants
(Antoniou et al. 2014; Kashfi & Fotopoulos 2015).

Most of these compounds are characterized by a commonly
found complexity of their modus operandi, frequently modifying
multiple defence-related pathways simultaneously. Several recent
reviews have appeared in light of the constantly increasing interest
in chemical priming against abiotic stress conditions including
drought, which provide a state-of-the-art overview of the molecu-
lar adjustments and tolerance mechanisms that are altered follow-
ing priming phenomena (Perez & Brown 2014; Balmer et al. 2015;
Paparella et al. 2015; Antoniou et al. 2016; Merewitz 2016;
Savvides et al. 2016; Wojtyla et al. 2016). Enhancing photosyn-
thetic performance is an important parameter for plant survival
under adverse environmental conditions, such as drought and sal-
inity. Many studies have demonstrated that primed plants
conserved photosynthetic performance at higher levels than
non-treated plants under stressful conditions (Chen et al. 2011;
Christou et al. 2013, 2014; Filippou et al. 2016; Antoniou et al.
2017). This is manifested by enhancing chlorophyll content
(Christou et al. 2014), regulating proteins and genes encoding
enzymes implicated in photosynthesis processes and chloroplast
development (Chen et al. 2011; Wei et al. 2015), as well as affect-
ing processes related to stomatal movements (Garcia-Mata &
Lamattina 2001; Fan & Liu 2012).

In any case, close examination of the existing literature reveals
certain shared targets of chemical priming agents towards
acquired tolerance to water deficit. First, upregulation of the anti-
oxidant apparatus (which includes both enzymatic and non-
enzymatic antioxidants) and resulting ROS detoxification. For
example, Christou et al. (2014) showed that H,S-primed straw-
berry plants under non-ionic hyperosmotic stress were more
tolerant compared with non-primed, stressed samples. This pro-
tection was manifested via lower levels of synthesis of H,0, in
leaves and the maintenance of high ascorbate and glutathione
redox states, while differential expression levels of key ascorbate
and glutathione biosynthesis (GCS, GDH, GS) transcripts were
also observed. Furthermore, as a consequence of chemical treat-
ment, increased biosynthesis of osmoprotective molecules such
as soluble carbohydrates and proline has been observed. Shi
et al. (2015) provided metabolomic evidence that pre-treatment
of bermudagrass with exogenous melatonin prior to drought
stress imposition lead to a significant increase in the concentra-
tion of proline as well as a number of sugars and sugar alcohols,
correlating with increased overall performance under stress. It has
also been suggested that post-translational protein modifications
and nitrosative homeostasis may be regulated by chemical prim-
ing molecules. Ziogas et al. (2015) demonstrated that PEG-treated
sour orange plants (thus simulating drought stress in hydroponic
culture) had lower damage levels following priming with NO and
H,S through Tyr-nitration and S-nitrosylation of a number of
proteins, including well-known and novel targets. A recent report
by Antoniou et al. (2017) also revealed that priming of alfalfa
plants with melatonin prior to severe drought stress leads to sig-
nificant protection through the suppression of reactive nitrogen
species (RNS) content by regulating reactive nitrogen species
metabolic enzymes (nitrate reductase, NR; NADH dehydrogen-
ase) at the enzymatic and/or transcript level.

On a molecular level, application of priming agents prior to
stress exposure results in many transcriptional modifications
which can be specific, or not, to the agent used. Several of the prim-
ing agents are characterized as signalling molecules, such as RONSS
(Molassiotis & Fotopoulos 2011; Hancock & Whiteman 2016).
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This feature results from their ability to regulate the expression of
essential genes, such as those implicated in antioxidant machinery
(Christou et al. 2014; Fotopoulos et al. 2014; Antoniou et al. 2017),
RONS biosynthesis and scavenging (Christou et al. 2013; Ziogas
et al. 2015), cell homeostasis (Christou et al. 2014; Lai et al
2014) and osmoprotection (Ishibashi et al. 2011), as well as inhib-
ition of proteolysis (Filippou et al. 2016), towards enhancement of
plant tolerance against stresses. Soybean plants treated with H,O,
showed higher expression of genes implicated in oligosaccharide
biosynthesis which are known osmoprotective molecules, such as
GmMIPS2 (i.e. myo-inositol synthase) and GmGolS (i.e. galactinol
synthase) under drought stress (Ishibashi et al. 2011). Another
recent study highlights the potential use of the agrochemical fungi-
cide kresoxim-methyl, which can act as a priming agent by regulat-
ing the expression of genes implicated in protein hydrolysis and
enhance plant tolerance against drought and salinity. More infor-
mation about gene regulation after RONSS application can be
found in a recently published review by Antoniou et al. (2016).

Water transport and regulation of plant aquaporin and
dehydrin genes in chemical agent-primed tissues

Several reports have linked protection of plants against water def-
icit conditions with chemical priming via the regulation of AQP
and dehydrin (DHN) expression levels. Together with AQPs
(see previously), DHNs are key players in the survival of cells
under water deficit conditions in order to counteract hyperosmo-
tic stress and maintain turgor pressure; they are thought to be
involved in the stabilization of both macromolecules and mem-
branes (Wang ef al. 2003). Pandey et al. (2016) carried out a com-
prehensive study where treatment of rice plants with Ocimum
sanctum leaf extracts resulted in improved tolerance to drought
stress, correlating this improved tolerance with suppressed expres-
sion of AQP genes and induced expression of DHN genes. This
supported previously observed positive correlations of DHN
expression and negative correlations of AQPs with drought toler-
ance, the latter generally supported by several reports employing
genetic modification approaches (Pandey et al. 2016). Similarly,
spermine pre-treatment of white clover prior to drought stress
imposition resulted in the alleviation of negative effects caused
by the stressor, linked with DHN accumulation and the transcrip-
tion of genes encoding DHNs (Li et al. 2015). Priming of
drought-stressed wheat plants with 24-epibrassinolide also
resulted in improved tolerance compared with non-primed,
stressed plants correlating with increased accumulation of DHN
protein levels (Shakirova et al. 2016). In addition, exogenous
application of selenium and silicon in drought-stressed rice plants
has been shown to lead to enhanced growth, while gene expres-
sion levels of a DHN were significantly upregulated in primed,
stressed plants (Khattab et al. 2014). Finally, a report by Chen
et al. (2012) provided solid evidence that spinach seed osmoprim-
ing results in improved tolerance to desiccation by altering DHN
metabolism as evidenced by increased protein and transcript
levels.

Interestingly, the positive correlation of DHN involvement in
the regulation of water transport and the general response of
primed plants under water deficit conditions is observed uni-
formly, whereas AQPs provide contradictory results in some
cases. Chen et al. (2016) showed that H,S-mediated drought tol-
erance in spinach seedlings was linked with increased expression
levels of SoPIP1;2, while Shi et al. (2016) demonstrated that
enhanced water stress tolerance in tomato plants following silicon
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application was not linked with the transcriptional regulation of
plasma membrane aquaporin genes, as mRNA levels were not
obviously changed by Si under water stress. In contrast, Chen
et al. (2013) presented findings where aquaporin transcript levels
exhibited higher expression in osmoprimed spinach seeds that
also had greater drought tolerance. It is possible that AQP-related
responses are isoform-specific, as these are usually members of
multigene families and evidence suggests that regulation is vari-
able. For example, Sdnchez-Romera et al. (2016) carried out a
MeJA pre-treatment in Phaseolus vulgaris plants prior to drought
stress conditions, and comprehensive reverse transcription quan-
titative polymerase chain reaction (RT-qPCR) analysis revealed
that the expression of certain PIP genes was not regulated,
PyPIP2;2 was suppressed in M]J-treated, stressed plants compared
with non-primed, stress plants, while PvPIPI;3 was induced.

Conclusions

Priming plants against abiotic stresses using biological (i.e. AM
fungi) and chemical (natural or synthetic) agents is a promising
sustainable method in crop stress management. Although several
recent reports have highlighted some of the physiological and
molecular mechanisms involved in the enhanced tolerance/resist-
ance, additional efforts are required mainly with the aim of opti-
mizing these strategies and verifying the effects in field trials
following real production management procedures. Moreover,
an important point is that the impact of AM symbiosis on
plant tolerance may depend on the plant species/genotype consid-
ered (i.e. genotypes with different drought tolerance levels) as well
as on the AM fungal species/isolate. The identification of AM
fungal species/isolates physiologically and genetically adapted to
the stress conditions in a specific environment might also improve
the use of these microorganisms. Additionally, the possibility of
using root-associated microorganisms in combination with a
chemical agent could be proposed and evaluated against an indi-
vidual as well as combined abiotic stress factors, and further ana-
lyses should be devoted to verifying the impact of both strategies
on the natural environment, e.g. on native microbial communities
(in soil and plant). Further studies, combining both methods, are
needed to verify that the two strategies can be complementary,
thus rendering the application potential of this combined
approach as potentially very promising. Notably, potential prepar-
ation and use of novel formulations containing both AM fungi
and chemical priming molecules should examine the effect of
the latter on the AM fungi in order to verify a synergistic/additive
rather than a competitive interaction. Finally, the increased poten-
tial of priming at the seed stage should be highlighted and
explored further, in line with well-recorded commercial interest,
as the application of biological and/or chemical priming at this
stage appears to be desirable considering reduced application
costs and prolonged potential protection through epigenetic mod-
ifications (Vannier et al. 2015).
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