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1. Introduction. In a recent paper [1] we showed that there is a (1, ^-correspondence

between the homomorphisms of an inverse semigroup S and its normal subsemigroups. The
normal subsemigroup of S corresponding to and determining the homomorphism p of S is the
inverse image under n of the set of idempotents of <S/x, and is called the kernel of the homo-
morphism /x. The inverse image of each idempotent of Sfj. is itself an inverse semigroup [1],
and each such inverse semigroup is said to be a component of the normal subsemigroup
determined by /*.

A semigroup S is said to be a band of semigroups of type T (A. H. Clifford [2]), if S is the
class sum of a set {Sa ; ae J} of mutually disjoint subsemigroups iSa, each of type T, such that
for any a, fleJ, there is a yeJ for which S^Sp Q Sy. If we write aj8 = y, then J becomes a semi-
group of idempotents. If J is a commutative semigroup, that is, if J is a semilattice, then S is
called a semilattice of semigroups of type T. This is equivalent to the condition that for any
a, fleJ, SaSp and SeSa are both contained in the same Sy.

If S is an inverse semigroup, and fi is a homomorphism of S, then Sfj, is an inverse semi-
group ([1], Theorem 1). Since the idempotents of S/x therefore form a semilattice, it is clear
that any normal inverse semigroup is a semilattice of inverse semigroups. Conversely it is
also clear that an inverse semigroup N which is the union of the disjoint inverse semigroups
Na, can be a normal inverse subsemigroup, with the JVa as its components, of some inverse
semigroup S, if the Na form a semilattice. It is sufficient to take S=N. Thus an inverse
semigroup AT which is the union of the disjoint inverse semigroups Na can be the kernel of some
homomorphism of an inverse semigroup, with the given Na as its components, if and only if N
is a semilattice of inverse semigroups, the elements of the semilattice being the Na. We show
(Theorem 1) that if E is the set of idempotents of N, and Ea is the set of idempotents of Na,
then this necessary and sufficient condition may be replaced by the weaker condition that E
is a semilattice with elements Ea. A special case of Theorem 1 provides an alternative proof
of a result of Clifford [3], also proved by A. E. Liber [4], that semigroups with relative in-
verses in which the idempotents commute are semilattices of groups.

We then show (Theorem 2) that any semigroup which is a semilattice of inverse semi-
groups is necessarily an inverse semigroup. This generalises and also provides an alternative
proof of the result of R. Croisot that a semilattice of groups is an inverse semigroup (Croisot
[5], p. 375, proved independently by Clifford [2], Theorem 8, and also proved by W. D. Munn
and R. Penrose [6]).

Finally we investigate the structure of normal inverse semigroups, that is, semilattices
•of inverse semigroups, and show that the structure of such a semigroup S is determined to
within isomorphism by the semilattice, the elements of the semilattice, and certain right
translations of S. The set of all such semilattices with associated right translations which
•determine S forms a set of complete invariants for S (Theorem 3). A set of complete invariants
has already been found by Clifford [3] for a semilattice of groups. Our conditions provide
another set of complete invariants for this special case, more complicated however than those
of Clifford.

CM.A.
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2 G. B. PRESTON

2. Normal inverse semigroups. An inverse semigroup is a semigroup S in which for
any a e S the equations axa = a and xax = x have a unique common solution x e 8. This unique
solution is denoted by cr1. It then follows if we put aa~l =e and a-1a =/, that

e2 = e, /•=/>
ea = a= af,

fa-1 = a~1=a-1e.

a"1 is the inverse of a, e is the left unit of a, / i s the right unit of a. e and / are unique with the
above properties in relation to a. The inverse of a-1 is a, its left unit is / , its right unit is e.
For any a, beS, (ab)~1 = b-1a~1. Any two idempotents of S commute.

A discussion of alternative definitions of inverse semigroups is given by Munn and
Penrose in [6]. The definition above was first given by Liber [4]. For other definitions and a
derivation of the above properties see [1] and V. V. Vagner's paper [7].

THEOREM 1. Let N be an inverse semigroup which is the union of the disjoint inverse
semigroups N{Eai)for aeJ. Ea denotes the set of idempotents of N(Ea). Let E be the set of idem-
potents of N. Then N is a semilattice of inverse semigroups, with the N (Ea) as the elements of the
semilattice, if and only if E is a semilattice of semilattices, the Ea being the elements of this semi-
lattice.

Proof. That the condition is necessary follows from the fact the product of two idem-
potents of an inverse semigroup is an idempotent.

To show that it is sufficient, let a, /3 be any two elements of J. Then there is a y e J such
that

EaEp (= EpEa) £ Ey.

Let neN(Ea) and meN(Ep) and suppose that nmm~1eN(Ed). Then

nmmr^nmmr1)'1 = nmmrhnmrhv1 = nrnmrhv1 eEs

and
{nmmr1)~1nmm~1 —mmr1. n~hi. mm*1 =mm~1w

But
mm-1. n-

and so, since the Ea are disjoint sets, S = y.
Now suppose that nmeN(Ee). Then

Mm (mm)"1 =

We have already shown that nmm~1n~1eEs=Ey. Hence e = y and for any neN(Ex) and
meN(Ep), nmeN(EY). Since JEaEp =EpEa, we also have mneN(E?). This completes the proof
of the theorem.

COROLLARY 1. An inverse semigroup is a band of inverse semigroups if and only if it is a
semilattice of inverse semigroups. In particular, an inverse semigroup is a band of groups if and
only if it is a semilattice of groups.

COROLLARY 2. A semigroup admitting relative inverses in which the idempotents commute
is a semilattice of groups.

Proof. This result of Clifford follows immediately from the fact that a semigroup ad-
mitting relative inverses is the class sum of disjoint groups [3].

An implication of this result, not noted at the time, is that one of the defining conditions
of normal subsemigroups which are unions of groups given in ([1], p. 400) can be omitted. In
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fact, condition (3) in [1] is necessarily satisfied, and, using the notation of [1], N = \JNcia &
normal subsemigroup of the inverse semigroup S if and only if,f for any at 8 and any idem-
potent fe S,

aNf ar1 £ Ng, where g = afar1.

THEOREM 2. Any semigroup) which is a semilattice of inverse semigroups is itself an inverse
semigroup.

Proof. Let N be a semigroup which is a semilattice of the inverse semigroups N(Ea),
where aeJ and Ea is the set of idempotents of N(Ea).

Let aeN and let x be any common solution of the equations axa = a and xax =x. We know
that a solution always exists, for if aeN(Ea), then there is a unique xeN(Ea) satisfying these,
equations. Suppose there is an xeN(Ep) satisfying these equations. Then, since N is a semi-
lattice, J is commutative and a/J = jSa. Hence

axa eN {EJN {EP)N {Ea) C N {E^),
and similarly xax e N(Eap). But axa =ae N(EJ and xax = x e N(Ee). Thus since the N(Ea)
are a set of disjoint semigroups, a = aj8 = /3. Hence x e N (Ea) and so is unique ; so that N is an
inverse semigroup.

COROLLARY 1. A semigroup can be the kernel of some homomorphism of an inverse semi-
group if and only if it is a semilattice of inverse semigroups.

COROLLARY 2. A semigroup which is a semilattice of groups is an inverse semigroup.

3. Structure of semilattices of inverse semigroups. Let N be the class sum of the dis-
joint inverse semigroups N (.#„), where ae J, and J is a commutative semigroup of idempotents,
that is, J is a semilattice. Each Ex is the set of idempotents of the corresponding NiEJ. In
what follows, for any ae J, na, ma will denote arbitrary elements of N(Ea) and ea, /„, ga will
denote idempotents, arbitrary except when stated to the contrary, belonging to Ea.

A right translation of a semigroup S is any mapping p of <S into S such that for all
s,teS, (st)p = s (tp). A left translation is a mapping A of S into S such that for all s, te S, A (st) = (Xs)t.
Clifford ([8], p. 169) calls the left translation A and the right translation p linked in S if, for
all seS,

(Xs)p = X(sP) (1)
More generally, for any set S, we shall say that any two mappings A, p of S into S, are linked
in S if equation (1) holds for all seS.

We now introduce certain mappings of N into itself, which are linked in the above sense.
In terms of these mappings we define a product in N, and show that N is a semigroup with
respect to this product. It then turns out that the mappings we introduced are left and right
translations of this semigroup, and that mappings linked in the set N are translations linked in
Clifford's sense in the semigroup N.

For all ae J and each eaeEa, let $ (ej denote a mapping of N into itself which maps each
N(Ef,) into N(Eaft) :

np<p(ex)=n^ (2)
Define in terms of the mappings <f>, the mappings tp of N into itself by

-A(eJ«s = K-V(O)-1 (3)
It follows immediately that ifi(ex) also maps each N(Ep) into N(EaP).

t In fact this condition may be further simplified to aNa^QN for all o t S.
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4 G. B. PRESTON

Now define a product o in the set N by

where ep = n^nf1 and /„ = n^n,. The two elements na<£ (e )̂ and <fi [fa)n$ on the right hand side
of (4) both belong to N(Eap) and are considered to be multiplied as in N(E^).

Suppose that the mappings <f> have the following properties :

P I . na<f>(ea)=naex\

P2. eB0(ep)-e^(e.);
P3 . each pair of mappings i[i(ea),<f> (e3) are linked in N ;
P4. <j> (e.# (e3) = j> («.,), where eafi = (ea0 («„)) (eo0 (e^))"1;
P5. (nama)<f> (ee) = (na<f> (/aj8)) (ma<£ (ep)), wAere faP = (ma<£ (e )̂) (?na<£ (e^))-1.

Then, with respect to the operation o, N becomes an inverse semigroup which is a semi-
lattice of inverse semigroups, the elements of the semilattice being the N (2?a). It is immediately
clear from the property PI and the definition of the product o, that within each N(Ea) the
operation o coincides with the multiplication already given in N(Ea). Hence, by Theorem 2,
we merely have to show that the binary operation o is associative. This follows from the
following fourteen lemmas.

. Before proceeding we comment on the meaning of the five properties P l -5 of the mappings
<f>. PI identifies each <j> (ea), restricted to N(Ea), with a definite right translation of N(Ea) into
itself. It is easily seen that this property is consistent with properties P2-5. P2 ensures that
ea o ep is an idempotent and that ea o ê  =e,3 o ea. P3 implies a weak form of the associative
law, ex o (wp o ey) =(ea o n^) o ey. P4 entails that the successive application of two of the
mappings </> gives a third mapping $. Po turns out to be equivalent to the condition (in the
semigroup N) that each <f>(eB) is a right translation of each N(EJ within the semigroup
N(E.)UN(Ealt).

LEMMA 1. (wa o %)~x = nfx o n^-1.

Proof. This lemma follows immediately from the definition of the operation o and the
properties of inverses in N(E^).

LEMMA 2. e a oc j = ej>(e^) = e^f>(eJ = </r(eje3 = </-(ep)ea = ê  o exeE^.
Proof. By P3, </-(eJ and <f>(ea) are linked. Thus

so that, using the definition (3) of ^(ej, we have
(e^ (eJ)"V (e J = ((e^(eJ)-V (e J)"1.

An element oiN(Eae) equal to its inverse must be idempotent, and so (e(3^(ea))-
1^(ea) is idem-

potent.
By PI

0 (eje. = (ej> (ej)-1 = e~x = ea,
so that again appljdng P3 to ^{ej and 0(ee) we have

e^(ep) = (0(eJea)0(ep)=0(eJ(ea0(e3)) = ((e^(ep))-V(eJ)-1,
an idempotent, since by P2 ej>[e?) =e^(ea) .

The definition of the operation o together with condition P2 now gives
e .oe , = (ea<f> (ep)) (0 (ejefl) = (ea<f>(ep)) (e^ (ej)"1 = (ej> (ep)) {ea<j> (e^))"1 = ej (e3).

The remaining equalities asserted in the lemma follow from condition P2 and the definition
of the mappings 0.
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LEMMA 3. (ea o eg) oey = e,o (eg o ey).

Proof. An application of condition P3 gives

(<A (e«)e,,W (ey) = 0 (e«) M (e«))>
from which, using the results of Lemma 2, Lemma 3 immediately follows.

LEMMA 4. <j>{ex)<j>(ee)^^(eaoep).

Proof. This follows directly from Lemma 2 and P4.
LEMMA 5. na o e^=

Proo/. Le t / , = »a-
1»,1. From Lemma 4 and PI we have
nJ> fa) = (««/«)0 (ep) = »„<£ (/«)<£ fa) = »«^ (/a "««

On the other hand, since nx(/>fa)eN(Ellp), PI implies that

71.063 = (n«<t> fa)) (/« ° e3) = nd> fa)<f> (/« ° ef>)>

so that, by Lemmas 2, 3 and 4, we have

Hence «.„ o e$=nj>fa) ; and the other equation asserted in the lemma now follows from
Lemma 1.

LEMMA 6. na o (ê  o ey) = (na o ep) o ev ;

(eccoe^)onY = exo(e^onY).

Proof. The first equation here is merely condition P4 restated by means of Lemmas 4 and
5. The second equation then follows by an application of Lemma 1.

LEMMA 7. Let /„ =?ia~
1«a and e^=n^nfx. Then

(nx o e,,) (/„ o n&) = (»a o ê ) o % = wa o (/„ o we) =nxorip.

Proof. Lemma 5 implies that

» . o » r K<t> fa)) (<A (/J»p) = (na o e3) (/, o n?).
Hence, applying this result to (na o ê ) o %, we have

(w,, o e$) on? = ((na o ep) o ep) (((es o n^1) (nx o ep)) o n0).

Since (wa o e g ) ^ o e3) =wa o ee, by Lemma 6, and multiplication is associative in N(E^), by
another application of Lemma 6 we have

((ep o JI .-1) {na o e,,)) o n , = ((ep o n^1) {nx o e )̂) ((/„ o efl) o rap).

Hence, again using the associativity of multiplication in N(El[p), Lemma 6 implies that

(»„ o ep) o « . r (na o ê ) (/, o tip).

The other equation to be proved follows similarly.

LEMMA 8. Let gx=mtl~
1ma,and e3=npti^~1. Then

(namx) o w3 = (»,mj o (gr. o tip),
and na o (rigwig) = (w, o ê ) o (ng»ig).

Proof. By Lemmas 6 and 7,

(wama) o (ga o Wg) = (wama) o {(m^hi^ti^m,) o (gB o np)) = (wama) o ( ( m . - X - ^ m J o tip), .
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and this, again by Lemma 7, equals (raaro,) o Wg.
The other equation follows similarly.
LEMMA 9. Let ga =mtt-hn<x and eg = Wg«g~x. Then

(njnx) o Wg = ((nama) o eg) (ga o Wg),

and nx o (mgWig) = (na o e3) (/a o (wgmg)).

Proof. By applying Lemmas 8 and 6 alternately, we have

(njna) o?ij = (TOamJ o (gra o np)

= (wamj o ((e3 o gra) (& o n?))
= ((»ama) o (efl o ga)) ((eg o grj {ga o n^))
= ((MaTOa)oe3)(sr(Xo^).

The other equation follows similarly.

LEMMA 10. {na o e )̂ o nY =nx o (e3 o ny).

Proof. Since (w0 o ê ) = (wa o ê ) {Ja o ep), where/, = na~
1ncl, an application of Lemma 8 gives

(wa o ê ) o ny = (wa o e3) o ((/a o e3) o nv).

Put ey=wyny~
1. Then, since idempotents are combined associatively by Lemma 3, and since

(fa o ê ) o ny = (/„ o ê  o ey) ((/„ o eg o ey) o my),

again by Lemma 8, we have

(na o e0) o wy = ((raa o ep) o (/„ o e f o ey)) ((/a o ê  o ey) o ny)
= (»« ° (A o ^ o ey)) ((/a o eg o ey) o ny),

by Lemma 6.
A similar argument shows that this latter expression also equals na o (eg o ny); from which

the result required follows.

LEMMA 11. {ea o Wg) o e y = e x o (ne o ey).

Proof. This is merely a restatement of condition P3, making use of the result of Lemma 5.

LEMMA 12. (wawij o ee =nx o (m, o eg);
ea o (wgTOg) = {ea o Wg) o m3.

Proof. Let ro,o eg=wa)3) and /ag=wagWag~1. Then, by condition P5, using our previous
lemmas,! w e n a v e

(mama) o eg = (»„ o /ag) (ma o eg).

But, by Lemma 10,
(»« °/«p) K o e^ =wa o (/.g o (m. o eg)) =wa o (ma o eg).

Hence
{nama) o eg=na o (ma o eg);

and the other equation follows similarly, or from Lemma 1.

LEMMA 13. Let ea=waw0[-
1. Then

na o (n~l o eg) = (eg o wj o n^1 = (eg o na) (n,-1 o eg) = ea o eg.

Proof. Lemma 12 gives immediately that

ex o eg = (nji,,-1) oe?=nao (n^1 o eg),

t P5 is used only for the proof of Lemma 12. It is easy to see that we need only assume that P5 holds
, that is, for aj3=)3.
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and ep o ea = ep o (ra^-1) =(ef)onix)o n,-1.
. Consider now

((eg o raj o n.-1) o e r ((ep o raj (/„„ o n^)) o ep,

where fa& = (ra^-1 o e j (ê  o » J . Because ê  o raa and / ^ o ra,,-1 both belong to N{Eafl), we may
apply Lemma 12 to obtain f

((efi o raj (/ai9 o ra,"1)) oe , = (e3 o raj ((/.„ o ra,,-1) o e j .
But, byjLemma 11,

(As ° ^a"1) o ê  =/a 3 o (ra.-1 o e j = ra.-1 o cp,
from'the definition of /aJ3.

Hence, finally, we have

ca o ê  = ((e3 o raj o ra^"1) o e3 = (e3 o raj (ra,,"1 o e j ,

which completes the proof of the lemma.

LEMMA 14. (na o raj o ray = raa o (râ  o raj.

Proof. Let fa=na~
1na! e3 =ra/3ra^~1 and ey=rayra>r1. Since raa o ra^ = (raa o e j (/„ o raj, an

apphcation of Lemma 9 gives

(na o raj o ray = ((raa o raj o ey) (((ra^-1 o / J (/„ o raj) o raj.

Consider now (raa o raj o ey. By Lemma 12, we have

(raa o raj o ey = (raa o e j o ((/a o wj o ey)

= ( K o e j o (((/„ o raj o ey)(ey o (ra^1 o/J))) ((/„ o raj o e j .

By Lemmas 11 and 13, however,

((/« o raj o e j (ey o (n^1 o / J ) = (/„ o (ra,, o ey)) ((ey o ra^"1) o / J
/ ( ( ) ( 1

Hence (raa o e j o (((/„ o raj o ey)(ey o (ra^1 o/J)) = (raa o e j o (/a o ((râ  o ey) (ey o ra^"1)))

= (n<x °/<«) ° (e/3 ° ((Wj9 ° ey) (ey O ^/s"1))))

by Lemmas 6, 3 and 2.
But na ofa=na and, by Lemmas 12 and 11,

e/3 ° ((n0 ° ey) (ey ° W/3-1)) = (W/3 ° ey) (ey ° W^~1)'

Combining these results gives

(raa o raj o ey = (na o ((râ  o e j (ey o ra^"1))) ((/a o raj o e j .

Hence we have that

(na o raj o nY = (n^Y((fa o raj o ey))ma/3y,

where raa(3y=raa o ((ra3 o e j (ey o ra3
-1))

and raa/Jy = ((ra^-1 o / J (/a o raj) o ray.

A similar argument now shows that

na o (rap o ny) =nal)Y((fa o (nfi o ey))ma3y).

The lemma now follows from the associative law in N(EaPy) and from Lemma 11.
This completes the proof that N is a semigroup which is a semUattice of the inverse

semigroups N(Ea).
f This result may be obtained without using Lemma 12 or condition F5.
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Conversely, let JV be any semigroup which is a semilattice of disjoint inverse semigroups
N(Ea). Then, since by Theorem 2, JV is an inverse semigroup, if we define the mapping <j>(ea)
by the equation

nfi<f>{ea)=neea

and the mapping tfi (ej by the equation

<f>{ea) and i/i(ea) map each N(Ep) into N(E^). It is then easy to see that properties P l -5 are
valid for these mappings <f>, and that the operation o denned by (4) coincides with the multi-
plication already given in JV.

Finally, consider two isomorphic semigroups IV, N' which are both semilattices of inverse
semigroups. The semilattice J of N and its elements N(EX) determine a set of isomorphic
inverse subsemigroups N(E^) of IV' which form a semilattice J isomorphic to J. Further, the
right translations <f> (ej of N determine right translations ^ (ej) of JV' such that, in the iso-
morphic mapping between N and IV', when n$<—>ng, then

^ ) (5)

Conversely, the semilattice J' formed by the inverse subsemigroups N' (E'x') of IV' and the
right translations </>'(e^) of JV' determine an isomorphic semilattice of isomorphic subsemi-
groups of JV and right translations of N such that the equation corresponding to (5) is satisfied.
It follows therefore that the set of all sets consisting of (i) a semilattice J determined by IV,
(ii) the inverse semigroups N(Ea) which are the elements of J and (iii) the set of right trans-
lations (j> (ej satisfying relations (2) and (3) and properties P l -5 , is a set of invariants under
isomorphism of the semigroup JV. On the other hand it is clear that if two semigroups JV, JV'
have the same set of invariants in the above sense, then JV is isomorphic to JV'. In fact, any
semilattice J with associated inverse semigroups N (Ea) and mappings <f> (ea) determines N to
within isomorphism. Thus our set of invariants provides a complete set of invariants for JV.

We note that if JV is isomorphic to JV' and J is isomorphic to J', then the corresponding
N(Ea) and N'(Ej) determined by the isomorphism between J and J' are not necessarily
isomorphic. For let JV be a semigroup consisting of the three commuting idempotents e, / , g,
and such that ef=e,eg = e,fg =f. Then JV is a semilattice with elements Na = (e,/) and JV̂  = (g),
where aj8 = a. I t is also a semilattice consisting of JVa- = (e), and Np = (f, g), where a'/S' =a' .
Then *«—>a!, /?•«—>jS' is an isomorphism of J = (a, j8) onto J' = (a', /}'). But JVB and JVa- are not
isomorphic.

When JV and JV' are restricted to being semilattices of groups the situation is simpler. I t
is then clear that if JV is isomorphic to N', then J is necessarily isomorphic to J' and the groups
which correspond under this isomorphism are also isomorphic in pairs. The complete set of
invariants consists therefore in this case of merely one semilattice J, the set of groups which are
the elements of J and the set of right translations <f>.

We summarise the results of this section in the following theorem.
THEOREM 3. Let JV be the class sum of the disjoint inverse semigroups N(EX), where E^ is

the set of idempotents of N(Ea) and a belongs to the semilattice J. Define mappings <j> of JV into
itself by equation (2) and suppose that the mappings <f> have properties P l -5 .

Then if we define a product o in the class N by means of equation (4), JV becomes a semigroup
which is a semilattice of the inverse semigroups N(EX). JV is necessarily an inverse semigroup.

https://doi.org/10.1017/S2040618500033360 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500033360


THE STRUCTURE OF NORMAL INVERSE SEMIGROUPS 9

The semilattice J, the inverse semigroups N(EX) and the mappings <f> determine N to within
isomorphism.

Conversely, any semilattice of inverse semigroups has a structure determined in the above
manner.

The set of all sets of semilattices J of inverse semigroups N(Ea) and the corresponding
mappings <j> associated as above with N forms a set of complete invariants for N.
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The closed graph theorem is one of the deeper results in the theory of Banach spaces and
one of the richest in its applications to functional analysis. This note contains an extension
of the theorem to certain classes of topological vector spaces. For the most part, we use the
terminology and notation of N. Bourbaki [1], contracting " locally convex topological vector
space over the real or complex field " to " convex space "; here we confine ourselves to convex
spaces.

Suppose that E is a separated (i.e. Hausdorff) convex space and that its dual E' has the
weak topology a (E't E). Then E is called fully complete if a vector subspace M' of E' is closed
whenever M'r\ U° is closed for every neighbourhood U of the origin in E. A fully complete
space is complete ; a closed vector subspace of a fully complete space is fully complete and so
also is a quotient by a closed vector subspace (H. S. Collins [2]). Any Frechet space is fully
complete (J. Dieudonne and L. Schwartz [3], Theoreme 5, Corollaire). There are other fully
complete spaces ; for example the algebraic dual E* of any vector space E is fully complete
under the topology a(E*, E) (Collins, [2], Corollary 17.2). It is not difficult to show that the
dual E' of a Frechet space E is fully complete under any topology between the topology of
compact convergence and the Mackey topology T (E', E); in particular the strong dual of a
reflexive Fre'chet space is fully complete.

https://doi.org/10.1017/S2040618500033360 Published online by Cambridge University Press

https://doi.org/10.1017/S2040618500033360

