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1. Introduction. Sylvester [7] proposed the following 
question in 189 3- If a-finite set of points in a plane is such 
that on the line determined by any two points of the set there 
is always a third point of the set, is the set col l inear ? 
Equivalently, given ^ f i n i t e planar set of non-col l inear points, 
does there exist a line containing exactly two of the points? 

In teres t in the question was revived by Erdos [3] and 
o thers in 1933 and was answered in the affirmative by Galiai 
(Grunwald) [4], Steinberg [4], Steenrod [4], A. Robinson [o], 
Motzkin [6], L. M. Kelly [5] and others in the 1930' s and 
1940' s. 

Motzkin showed that the analogous s tatement in three 
space is invalid. That i s , the statement, "Given a finite set 
of non-coplanar points in a 3-space, there is a plane spanned 
by three points of the set which contains only these three points 
of the set , " is false. Motzkin noted this in [6, p. 452] by 
observing that a set of six points in 3-space, 3 on each of two 
skew l ines , is a counterexample. 

Motzkin did conjecture a generalization of Sylvester ' s 
Theorem to R , an n-dimensional r ea l affine space: 
Un(n>l): Given a finite subset K _of Rn which is not contained 
in any hyper plane, then there is a hyper plane H spanned by 
points of K such that al l but one of the points of H 0 K are in 
one (n-2)-flat. (The empty set will be considered a flat of 
dimension - 1 . ) 

Par t ia l ly supported by NSF Grant 24345. 

Canad. Math. Bull. vol. 9, no. 1, i960 

1 

https://doi.org/10.4153/CMB-1966-001-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-001-6


Motzkin proved U . In this paper U is proved for 
3 n 

1 < n < 5 and a new proof is given for n = 3 . 

The validity of U implies V : 7 n n+1 
V (n > 2): If K is a finite subset of Rn lying in no hyperplane, 

n — — 
then through each p€ K there a re an (n-2)-flat F and a line L, 
each determined by points of K and spanning a hyperplane P 
such that K 0 P C L U F. 

The s ta tements U and V a re d iscussed in section 3. 
n n 

In section 2 another general izat ion of Sylvester ' s Theorem 
is proved for spaces of a r b i t r a r y finite dimension: 
W (n > 2): Let K be a finite subset of Rn such that 

(a) every subset of K having at most n points is affinely 
independent, (b) any hyperplane spanned by points of K 
contains at least n + 1 points of K. Then K is contained 

* j —-

in a hyperplane. u 

A set of points p , p , . . . , p is affine ly independent if 
o 1 k 

and only if p - p , p - p , . . . , p - p is a l inearly independent 
1 o 2 o k o 

set. Since a set of 2 distinct points is affinely independent, 
W general izes Sylvester ' s Theorem. The statement W 

n n 
is also an extension of Dirac ' s 3-dimensional vers ion [2, p. 227] 
of Sylvester ' s Theorem. 

2. The proof of W . For the case n = 2, W is n 2 
Sylvester ' s Theorem. Assume W is t rue and let p be a 

n-1 o 
point of K. Since K is a finite set of points, choose a hyper
plane H not containing p such that every line through p 

o o 
2 

Following the notation and terminology in [5], Wn could be 
stated in language motivated by Kelly and Moser ' s definition 
of Mordinary line11. 

The definition is independent of the order in which points a r e 
enumerated. 
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and any other point of K in t e r sec t s H. For each p ± p 
o 

in K, let p ' denote the point of in tersect ion with H of the 
line through p and p, and let K! denote the collection of 

o 
points p' for p in K. By the assumption of affine 
independence this projection de te rmines a i - i cor respondence 
between points of K ~* { p } and K' . The proof will be com-

o 
pleted by showing that K' sat isfies the hypotheses of W 

That i s , (a' ) every subset of K1 having at most (n- i ) points 
is affinely independent, and (b' ) on the (n-2)-dimensionai flat 
in H determined by any (n-1) points of K? t he re is an 
n- th point of K' . 

To prove (a' ), suppose there is a subset of pf , p' , . . . , p' 
1 2 m 

consist ing of m < n-1 points of K' which a r e affinely dependent. 
For each j = l , 2 , . . . , m , let p. be a point in K which projects 

from p onto p!. Then it is readi ly verif ied that the set 

p , p . , - • • , p is an affinely dependent subset of K having at 
o 1 m 

mos t n points, contradicting (a) of W . 
n 

To prove (br ), let J be an (n-2)-dimensional-f la t 
de termined by (n-1) points q1 , q' , . . . , q' of K' and let 

1 2 n-1 
q , q , . . . ,q be the corresponding p r e - i m a g e s in K. Then 

1 2 n-1 
by (b) applied to p ,q , . . . , q there is an (n+l ) -s t point 

o 1 n-1 
r of K on the hyperplane spanned by these points and since rT 

is dis t inct from each of q' , q' , . . . , qf , it follows that r ' 
1 2 n-1 

is the des i red n- th point of Kf in J. 
Thus , by the inductive hypothesis , ai l the points of Kf 

lie in an (n-2)-flat F in H. Hence K lies in the hyperplane 
spanned by F and p . Statement W is proved. 

o n 

A finite set B in R is an affine ba s i s of R if and 
only if B is affinely independent and affinely spans Rn . 
(B affinely spans R if and only if every element of Rn i s 
a l inear combination of e lements in B where the sum of the 
coefficients is equal to one. ) 
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Then an a lgebraic formulation of W is : 
* n 

Let K be a nonempty finite set in R (n > 2) such that 
(A) Every subset of at most n points of K is affinely 
independent and (B) K is not contained in a hyperplane. 
Then, there exists a subset A of K with n points such that 
for every x € K ^ A, A U { x} is an affine bas i s for Rn . 

3. Motzkin1 s Conjecture. The general izat ion of 
Sylvester ' s Theorem to dimensions g rea te r than 2 conjectured 
by Th. Motzkin [6] and proved by Motzkin in spaces of 
dimension 3 is proved here to be valid up to and including 
5 dimensions. A new proof is presented for Motzkin' s 
conjecture for spaces of dimension 3. 

The proof of the generalization will follow by induction 
on the dimension n. In order to make clear the difficulties 
encountered when the dimension is greater than 5, the argument 
will be presented for arbitrary dimension to the place where 
our argument requires that the dimension be l e s s than 6. The 
question of the validity of Motzkin' s conjecture in spaces of 
dimension more than 5 is still open. 

Definition. Let K be a subset of R , an n-dimensional 
affine space over the real number field. A j-dimensional flat 
M spanned by points of K is called a (K, j)-motzkin if and only 
if there is a (j- l)-f lat G C M and a point p € K H M so that p 
is the only point of K H M not in G. In this situation M will 
be denoted by p:G. If j = n - l , M will be called a K-motzkin. 

With this terminology, Motzkin' s conjecture for a space 
of dimension n, becomes: 
U (nM): If K is a finite subset of R contained in no hyper

plane, then there is a K-motzkin in R . (The empty set will 

be considered to be a flat of dimension - 1 . ) 

THEOREM 3 . 1 . Statement U is true for 1 < n < 5. 
n — — 

For A and B subsets of R , the flat spanned by A 
and B will be denoted by AB. The singleton { a } will be 
denoted without brackets, a. 
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The following lemma is c lear . It is bas ic in the proof of 
Theorem 3. i and in Steinberg ' s [4] and Motzkinf s [6, p. 452] 
elegant proof of Sylvester ' s Theorem. 

LEMMA 3. 2. Let x, af , bf , c' be 4 dist inct points on 
a line Hf such that af separa tes x and bf but cf does not. 
Let p be a point off H' and r ' be a point on the line pb' 
such that r r ^ p, r1 i b ' . Then ei ther r f a ' or r ' c' 
i n t e r sec t s the open segment (p,x.). 

Let K be a set of points of R satisfying the hypotheses 
of U . Choose a point p € K- An easy a rgument shows that 

n 
there is a line X through p so that X in te r sec t s every 
hyperpiane spanned by points of K each in a single point. 

By the finiteness of K there is a hyperpiane H spanned 
by points of K which in t e r sec t s X in x ^ p so that no hyper
piane spanned by points of K in te r sec t s the open segment 
(p, x). Choose a line H' in H and through the point x so 
that plane XHf in te r sec t s every (n-2)-flat spanned by points 
of (K H H) each in a single point. It can be proved that Hf 

exis t s . 

LEMMA 3. 3. Consider p, H, Hf , X and x a s before . 
Assume there is no K-motzkin in Rn . Then, (a) there is an 
(n-3)-flat H in H spanned by points of K and there a re 

n- 3 
3 points a, b, and c of K ft H not in H so that 

n- 3 
a' =H' f l a H . b* =H ! f) bH , , C = Hf f] cH , a r e 

n -3 n -3 n -3 
situated as in Lemma 3. 2 with respec t to x- Also , (b) there 
is an r € K H pbH , r # p, r £ bH , (c) all the r ' s a s in 

n-3 n-3 
(b) a re in pH . and (d) bH „ is not of the form b:H 

n -3 n-3 n-3 

Proof of 3. 3. (a) Assume there is no (n-3)-flat H 
n-3 

with associated points a, b , and c so that aH , bH 
n-3 n -3 

and cH ^ a r e distinct. There mus t be at l eas t 2 dist inct 
n -3 

flats, e. g. , aH i bH , for otherwise H would have 5 n -3 n -3 
dimension n - 2 , a contradiction. Thus, since H is not a 
K-motzkin, the re must b e a c e K H a H ^ o r c c K O bH . 

n - 3 n -3 
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say c € aH . and c ^ a, c i H . Let B = { k , . . . , k \ 
n-3 n -3 o n-3 

be an affine bas i s of H . B C K. Let k € B be such that 
n -3 o 

c depends on a and k , i . e . , 
o 

n-3 n -3 
c = Xa + S X k , where X + 2 X = 1 

. i i . ~ i 
i=0 i=0 

and X i 0 , X ^ 0 . 
o 

Consider H . the affine hull of { b , k , . . . , k } 
— j i - 3 _ 1 n -3 

Then, aH , k H , cH a r e distinct. Since 
n -3 o n - 3 n -3 

k H =bH . i t follows that cH * k H , and 
o n -3 J1*"3 n -3 o n -3 

aH „ ?* k H . If cH =aH . then 
n - 3 o n -3 n -3 n -3 

n -3 
(a) c = Xa + Xf b + 2 X k , 

. ^ i i i = 0 
n - 3 

where X + X! + 2 X = 1 , 
i = 0 * 

and X = 0 . 
o 

Also, since c € aH ^ , 
n -3 

n -3 n -3 
2 u.k. , where u. + 2 

i = o 1 X i=o 
(P) c = jxa + S (i.k. , where \i + 2 u. = 1 

1 1 . _ i 

Subtracting ((3) from (a), 

n - 3 
(•y) 0 = (V-H-)a + X. • b + 2 (\.- |x.)k. 

i=0 X X X 

Since c depends on k , from (a) it follows that X' i 0. 
o 

6 

https://doi.org/10.4153/CMB-1966-001-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1966-001-6


Solving for b in (v), it follows that b € aH , a contradiction. 
n- 3 

(b) If there is no r € pbH , r j i b H . , r i p, then 
n-3 n -3 

p:bH is a K-motzkin. 
n-3 

(c) If r € pbH . r ^ p, rj^ bH . r £ pH , consider 
n- 3 n-3 n- 3 

r ' = r H 0 XHf . The point r ' is on the line pb1 and r ' i p, 
n- 3 

r ' i b1 . Thus, by Lemma 3. 2, either r ' a' or rf c? in ter 
sects the open segment (p,x). Hence, ei ther the hyperpiane 
arH or crH in te r sec t s (p,x) , contradicting the choice 

n-3 n -3 
of H. 

Statement (d) follows directly from (c) since if 
bH =b:H , then bpH = b:pH , a K-motzkin. 

n -3 n -3 n-3 n-3 
n 

LEMMA 3. 4. Assume that there is no K-motzkin in R. 
and U is valid, k < n. Let a, b , c, H be a s in 

k n -3 

Lemma 3. 3. Let U U V C K be an affine bas i s of H ^ so 

that U and V are disjoint and 

(*) if r € K 0 pbH . r # p, and r JE bH , then r € pV . 
n -3 n -3 

If H . a, b, c, U and V are such that V has minimal 
n -3 

cardinali ty with respec t to property (*) and if U U V is 
nonempty, then (a) both U and V a re nonempty and 
(b) if ¥ € K fl H and 11 £ H . then I 6 abU. 

n-3 
Proof. (a) Observe that V i 0, for otherwise 

pbH = p:bH , a K-motzkin. By assumption, K H H 
n-3 n -3 

satisfies U in H. Thus, there is a (K H H, (n- 2))-motzkin 
n-1 

T :H (0) in H. Since, by assumption, H is not a K-motzkin, 
n- 3 

by Lemma 3. 3, it may be assumed that there a r e th ree points 
a , b , c € K H H with a or c = r , so that 

o o o o o 
a' =H' n a H (0) , bf = HT H b H (0), C =H 0 c H (0) 

o o n - 3 o o n - 3 o o n - 3 
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a re distinct points situated as in Lemma 3.2. For if 
a' , bf , c? were not dist inct , then, for sonne d € K 0 H, 

o o o 
H = T : d H (0) is a K-motzkin and, by 3. 3(d), b i r . Let 

n- 3 o 
k , k , . . . , k be an affine bas i s for H _(0). Then 

o 1 n-3 n -3 
b , k , . . . , k is an affine bas is of b H o(0). By 

o o n-3 o n-3 
Lemma 3. 3(d), there is a b € K fl b H (0), b / H , (0) , 

o o n -3 o n -3 
n -3 0 n -3 

n -3 
b i b - Thus, b = Xb + S X k , where 

o o o o . _ i i 
l =0 

n -3 
X + 2 X = 1 , X ^ 0, and some X ^ 0, say X 

. ^ i x ° 
i=0 

Consider the (n-3)-fIats H ,(1) = b k . . . k , and 
n-3 o 1 n -3 

H (1) = b k . . . k „. Then ei ther a H (1), k H (1), 
n -3 o 1 n-3 o n -3 o n -3 

c H (1) a r e distinct (n-2)-flats in H or a H ^(1), 
o n-3 o n -3 

k H „(1), c H (1) a r e distinct. For a s sume not. (It may 
o n-3 o n-3 

be assumed without r e s t r i c t ion that a = T . ) Then, 
o 

n -3 n - 3 
(1) c = UT + uf b + 2 u k , where u- + u1 + E ii =1 

o o i l l 
i = l i = l 

and 
n-3 n - 3 

(2) c = ]1T + I^ b + 2 "jlk , where "fl + ~jT + 2 II = 1 
o o i l l 

i = l i = l 
Subtracting (2) from (1), 

n -3 
(3) 0 = (fi - JI)T + u! b - PL' b + 2 (^. - ]I.)k. . 

o o . t l l i 
i = l 

Since T £ b H o(0), JJL = JI. Fur the r , from (1) and (2), since 
o n- 3 

T :H (0) is (K, (n-2))-motzkin, u1 and JLl a r e not zero , 
n- 3 

Thus, solving (3) for b , we have b € b k . . . k , which 
o o o 1 n - 3 

contradicts X ^ 0 . 
o 
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T h u s , it m a y be a s s u m e d tha t the Line Hr i n t e r s e c t s 
a H (1), k H (1), c H (1) in 3 d i s t i n c t po in t s 

0 n - 3 o n - 3 o n - 3 
af , b f , c ' w h e r e a , b , c a r e a , k , c r e n a m e d so 

i l l 1 1 1 o o o 
t h a t af i s in the open i n t e r v a l ( x , b ' ) but c ' i s not . 

1 1 1 
By L e m m a 3. 3, e v e r y r € K 0 pb H ->(*)> 

1 1 n- 3 
r i p , r /É b H Ai) i s in pH (1) and t h e r e is such an r . 

1 1 1 n - 3 n - 3 1 
But , if r € pH (1), t hen , r € pb H , ( 0 ) , and , a g a i n bv 

1 n - 3 1 o n - 3 
L e m m a 3 . 3 , r € pH - (0) . T h u s , e v e r y r i s in 

1 n - 3 1 
pH (0) H pH ( l ) = p k . . . k . H e n c e , U is n o n e m p t y . 

n - 3 n - 3 1 n - 3 

(b) L e t U = { b , b , b .} and V = { k. , k. _ , . . . , k , } 
o 1 j j+1 j+2 n - 3 

It m a y be a s s u m e d f r o m 3. 3 (d) t h a t t h e r e i s a b e Kf l bH 
n - 3 

j n - 3 n - 3 
b = \ b + 2 \ . b + 2 \ k , w h e r e X + 2 X = 1 , \ i 0 

i = 0 1=3+1 i = 0 

and s o m e X. ^ Q. It w i l l be shown t h a t alL such b ' s a r e in blJ. 
l 

Suppose t h a t X. 4 0 . 
j+1 

L e t G = b . . . b . b k . - k „ and 
n - 3 o j j+Z n - 3 

G = b . . . b .bk . . . . k . T h e n , e i t h e r the f l a t s 
n - 3 o j j+Z n - 3 

a G . k G , cG a r e d i s t i n c t o r aG , k G , 
n - 3 j+1 n - 3 n - 3 n - 3 j + i n - 3 

cG a r e d i s t i n c t . F o r if n o t , aG = cG and 
n - 3 n - 3 n - 3 

a G ^ = c G , so c i s r e p r e s e n t e d by the fol lowing affine 
n - 3 n - 3 

c o m b i n a t i o n s , 

j n - 3 
(1) c = u a + 2 jx.b + j x r b + 2 u k , and 

. i i . ^ i i 
i = 0 i=j+Z 

j _ _ n - 3 
(2) c = u a + 2 {I.b. + jx f b+ 2 Jl.k. -

i = 0 * x i=j+Z l l 
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Subtracting (2) from (1), 

J 
(3) 0 = (p. - jl)a + 2 (n - ]i )b + ft1 b - jT b 

. i i i 
i=0 

n -3 
+ S (|JL. - jl.)k. . 

i = j + 2 

Thus, 11=11, since aj^bH • If jT^O, solving (3) 
n -3 

for b, b € b . . . b bk . . . k , contradicting that X a i 0. 
o j j+2 n -3 j+1 

Thus, it may be assumed that JJL1 = 0 and "jlf = 0. F r o m 
j _ n -3 

(2), c = |j.a + 2 ji.b. + 2 jl.k. . This impl ies that 
i=0 * Y i=j+2 1 x 

cH ^ =aH „, a contradiction. 
n -3 n -3 

Hence, 3 distinct (n-2)-flats exist and will be denoted by 
a G „, b G . c G ^ where a' = Hf 0 a G „, s epa ra t e s 

1 n -3 1 n -3 1 n -3 1 1 n -3 
x and V = H1 fl b G . but c' =H' fl c G „ does not. 

1 1 n -3 1 1 n -3 

Since it is assumed that the re is no K-motzkin, by 3- 3 
there is an r € K 0 pb G , r ^ p, r /É b G , and 

1 1 n - 3 1 1 1 n -3 
all such r f s a re in pG CZ pbH . Thus, by 3. 3, al l 

1 n -3 n -3 
such r ' s a r e in pH and by (*) a re in pV. Hence al l 

1 n -3 
of the r ' s a r e in pV fl pG = pk . . . k . This 

1 n -3 j+2 n-3 
contradicts the minimali ty of V. Thus b € bU. 

Now assume there is an I € K 0 H, a £ bH , 11 f a, 
n- 3 

which, with respec t to the affine bas i s { a , b } U U U V for H, 
depends on an element in V, say k . Thus, 

j n -3 n -3 
a L = v a + v ' b + 2 v b + S v k where v+ v f + S v = 1, v ^ 0, 

i=0 l * i=j+l H i=0 * 
V-±4 t 0 • 

J+1 
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As above let G „ = b . . . b.bk. _. . . k . Then, the 
n-3 o j j+Z n-3 

flats aG ^, k. G . à"G „ are distinct. For otherwise, 
n-3 j+1 n-3 n-3 

aG = âG and hence a" is represented as the affine 
n-3 n-3 

j n-3 
combination a = jia + fi1 b + I u b 4- S u k , which 

i = 0 i = j + 2 

contradicts the dependency of a on k. Repeating the 

argument as above, it may be assumed that there is an r in 

K 0 pG . with r # p , r ^ b G „ and all such r ' s are 
n-3 1 i i n-3 1 . 

in pV 0 pG = pk . . . k , contradicting the minimality of V. 
n-3 j+Z n-3 

Thus, every a*e K fi H, a £ bH , is in ab . . . b b = abU 
n-3 o j 

and part (b) of 3.4 is proved. 

The proof of Theorem 3. 1 will now be presented. The 
notation of Lemma 3. 4 is used. 

For n = 1, U is trivially true. For n =2, U is 
n n 

Sylvester1 s Theorem. For n =3, H is 0-dimensional, 
n- 3 

so in Lemma 3. 4 either U is empty or V is empty- Hence, 
either H=b:aH „ or pbH =b:pH . 

n-3 r n-3 r n-3 

Case: n = 4. For n = 4 , H ^ is 1-dimensional. Assuming 
n-3 ^ 

there is no K-motzkin in R , by Lemma 3.4(a), U and V 
must each have exactly one element, say U = { u } and 

o 
V = {v } . It will be shown that abu v = v :abu , a K-motzkin, 

1 o l i o 
or that bpH „ =b:pH . a K-motzkin. If abu v does not 

n-3 n-3 o 1 
have the form v :abu then there is a w € K 0 abu v which, 

1 o o 1 
with respect to {a,b} U U U V, is affinely dependent on v 

and abu . By Lemma 3.4(b), w is in H so w depends 
o n-3 

only on v and u Letting U = {w} , U U V is an affine 
1 o o o 

basis for H which satisfies (*) of Lemma 3.4 and more-
n-3 

over V is minimal with respect to property (*).• Thus, all 
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the a' s as in Lemma 3.4(b) a r e in abu 0 abw =ab . So, 
o 

bH has the form b:H . and it follows that 
n -3 n-3 

bpH =b:pH _, a K-motzkin. 
n-3 n -3 

Case: n = 5. For n = 5 , H is Z-dimensional . Assuming 
n . 3 

that there is no K-motzkin in R^, by Lemma 3. 4(a), V has 
one or two e lements . 

Suppose that V has two e lements v and v and that 

U = { u } . If there is a w € K 0 H which, with r e spec t to 
o 

{ a , b } U U U V, is affineiy dependent on both V and abU, 
then by Lemma 3. 4(b), w is in H , so w depends only on 

n -3 
V and U. Letting U = {w} , then, a s in the case n =4 , 

o 
bpH =b:pH , a K-motzkin. 

n -3 n - 3 
So assume every w in K 0 H is affineiy dependent with 

respec t to { a , b } U U U V on only one of V or abU. If the 
flat aff V spanned by V is a (K, l ) -motzk in , then aff V = v :v , 

1 Z 
so H = v :v^ abu , a K-motzkin. If aff V is not a (K, l ) -motzk in , 

1 2 o 
then there is a w in K which is affineiy dependent on v and 

1 
v , so wrabu , v :abu , and v *abu a r e dist inct (K, n-Z)-

Z o 1 o Z o 
motzkins in H, contradicting Lemma 3. 3(d) unless the re is a 
K-motzkin. 

There r emains only the case where V has one e lement 
v_ and U has two, u and u . If the re is no w in K O H 

Z o 1 
which, with respec t to { a , b } U U U V, is affineiy dependent 
on both V and abU then H = v :abU, a K-motzkin. So 

suppose there is such a w in K 0 H. Then by Lemma 3.4(c) 
w e abU or w € H . If there is no w in H then 

n-3 n -3 
H =v :abU, a K-motzkin. If there is a w in H , w is an 

Z n - 3 
affine combination of v^ and at leas t one of u and u . 

Z o 1 
If w is affineiy dependent on both u and u , let U = { w , u } 

o 1 o 1 

1Z 
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and U = { u , w} . Then U U V (i = 0 , 1 ) is an affine b a s i s 
I o i 

for H ^ which s a t i s f i e s (*) of 3 .4 and a l s o V is m i n i m a l 
n - 3 

wi th r e s p e c t to p r o p e r t y (*). Kence by 3 . 4 , a l l the i ! s a s 
in 3 .4(b) a r e in abU fi abU 0 abU = a b . T h u s , obK ^ =b: i :H 

o 1 * n - 3 * n - J 
a K - m o t z k i n . So a s s u m e tha t e a c h w in K 0 H „ is aff ineiv 

n - J 
d e p e n d e n t only on u . T h u s , v *abu , w:abu , and u :abu 

1 2 o o 1 o 
a r e d i s t i n c t (K, n - 2 ) - m o t z k i n s in H, c o n t r a d i c t i n g L e m m a 3. 3(d) 
u n l e s s t h e r e i s a K - m o t z k i n . 

The t h e o r e m i s . p r o v e d . 

F o r d i m e n s i o n n > 6, the c a s e s w h e r e V h a s m o r e than 
2 e l e m e n t s m u s t be t r e a t e d in o r d e r to ve r i fy o r d i s p r o v e U • 
The q u e s t i o n r e m a i n s open. 

T H E O R E M 3. 6. U i m p l i e s V 
n n+1 

C o n s i d e r K in R . L e t p be a point of K. Le t H 
n+1 

be a h y p e r p l a n e in R no t con ta in ing p s u c h t h a t e a c h l ine 
t h r o u g h p and any o t h e r point k of K i n t e r s e c t s H in a 
point kr and c o n s i d e r K' = { k' Jk€ K} . 

If K ! l i e s in an ( n - l ) - f l a t , then K l i e s in a h y p e r p l a n e 
n+1 

of R c o n t r a d i c t i n g the h y p o t h e s i s . Suppose K1 does not 
l i e in an ( n - 1 ) - d i m e n s i o n a l sub f lat of H. T h e n , by U , 

n 
t h e r e i s a (K' , ( n - l ) ) - m o t z k i n P ' = k' : FT in H. Hence 

o 
P = pkf F f , w h e r e L = pk1 and F = pF f s a t i s f i e s V 

o o n+1 
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