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Abstract
Lower limb rehabilitation robots based on linkage-based mechanisms have recently drawn significant attention in the
field due to their numerous advantages. The control of previously proposed linkage-based gait rehabilitation robotic
orthoses has been achieved using constant speed control without consideration for the interaction forces. However,
such an approach can be harmful to people with stroke since the level of disability varies among individuals, and it
may cause potential injuries when excessive force is applied by the robot. To overcome this limitation and improve
the rehabilitation process, it is necessary to recognize the force exerted by the person during walking and adjust
the robot’s assistive torque accordingly, to provide synchronized motion. Thus, in this work, a human-cooperative
approach based on a stiffness control strategy for the six-bar linkage-based gait rehabilitation robot is presented. The
proposed methodology can serve as a solid foundation for developing a human-cooperative approach for linkage-
based lower limb rehabilitation robotic orthoses. The control was validated and tested with eight healthy human
subjects. As a result, customized robotic assistance with this mechanism can be provided during training to meet
the individual needs of stroke patients, which can lead to increased engagement and contribution, thus improving
treatment outcomes.

1. Introduction
One of the main causes of lower limb disability is a stroke, which affects a person’s coordination, bal-
ance, and mobility [1]. Rehabilitation of lower limbs is currently done with manual techniques that
involve repetitive lower limb movements along a natural gait trajectory under the constant supervision
of physiotherapists. However, due to high demand and an insufficient number of specialists available,
many patients do not receive the necessary training on time, leaving them untreated [2]. Over the past two
decades, there has been an increase in the development of robotic devices designed for the lower limb
training of stroke patients. This approach has gained significant attention as it addresses the limitations
of manual therapy and assists patients in regaining their ability to walk [3–5]. Popular treadmill-based
gait rehabilitation robots, such as LOKOMAT [6], Lower Extremity Powered Exoskeleton (LOPES) [7],
Active Leg Exoskeleton (ALEX) [8], ReoAmbulator [9] and the others [10–14] are equipped with several
actuators that actively control the motions of lower limb joints to facilitate walking. Most of the assistive
motion supplied by these multi-DOF (Degree-of-Freedom) lower limb rehabilitation robots occurs in
the sagittal plane. Thus, essential training of the natural gait can still be achieved, avoiding redundant
DOFs. This balance allows users to walk without feeling overly constrained by an excessively intricate
robotic system. By employing designs that use fewer components, simplified control algorithms, and
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less complex assembly methods, it is possible to significantly lower the cost of gait rehabilitation robots
without compromising the quality of gait training.

Recently, there has been increased attention on developing less complex designs for lower limb
rehabilitation robots based on single DOF linkage mechanisms. These mechanisms usually based on
four-bar [15, 16], five-bar [17], six-bar [18–20], eight-bar [21–24], and ten-bar [25] linkage systems,
have demonstrated their capability to generate human-like gait motion trajectories. The majority of these
linkage-based gait rehabilitation robots are in the development stage, with primarily theoretical concepts
presented. All manufactured proof-of-concept prototypes are reported to be controlled using constant
speed. The actuator of the linkage is rotated at a constant speed, moving the legs in a looped trajectory
generated by the mechanism without considering the stiffness of the lower limbs. Such a control method
may not be suitable for stroke survivors, as the level of disability varies among them. The movement
intention, in terms of torque supplied by the patient, needs to be estimated to adjust the assistive robotic
torque accordingly, allowing the patient to engage more fully in a rehabilitation process [26]. Active
human participation during the gait training can significantly enhance the effectiveness and speed of
recovery [27]. For this purpose, terms such as Assist-as-Needed (AAN), human-cooperative, compli-
ant, and interactive control schemes have been extensively used in the literature [28–32]. A recent review
covering the patient-cooperative control strategies implemented for multi-DOF lower limb exoskeletons
is presented in ref. [33].

Human-cooperative control strategy, which is sometimes referred to as AAN can be realized by con-
trolling the stiffness of the robot depending on the external forces/torques during training. By adjusting
the robot’s stiffness responding to varying external torques due to the patient’s disability conditions,
customized assistance can be achieved. Stiffness control is part of a general well-known impedance
control. The concept of impedance control, pioneered by Hogan [34], allows for the precise adjust-
ment of robot impedance, enabling the robot to respond to external forces/torques during training. So
far, impedance control has been implemented among various multi-DOF gait rehabilitation robots such
as Lokomat [28]. However, the heavy weight and high friction, limit the robot to operate properly in
impedance-controlled mode. This control scheme has been presented in pneumatically driven gait reha-
bilitation robots [35, 36], however, such types of actuators are not precise and the level of assistive force
may be incorrectly supplied. For patients with mild impairments, a stiffness control between the robot
and the human accommodates natural movement patterns, while for individuals unable to move their
legs, a stiffer robot offers the necessary stability and support. Establishing an active interaction between
the human and the robot is an important aspect of the gait rehabilitation process as it can expedite the
recovery process.

This research focuses on the development of stiffness control for the Stephenson III six-bar linkage-
based gait rehabilitation robot for providing gait training based on the principles of AAN. We simplify
the impedance control concept to stiffness control between the human and the robot as the developed
robot doesn’t require quick velocity changes and the friction is low. Readers are referred to [37, 38] for
more information on the developed robot, its dimensional synthesis, and its dynamic characteristics. The
constructed gait rehabilitation robot has only one actuator to drive the system. The motor is located at
the hip region and is able to provide naturalistic lower limb trajectories for knee and ankle joints relative
to the hip joint in sagittal plane as shown in Figure 1(c). It is important to assure that the trajectories
generated by the mechanism provide natural walking angles to avoid joints following unintended motion
patterns against body’s natural style [39]. The optimization of the linkage mechanism to meet the natu-
ralistic walking requirements is presented in our previous work [37]. The device has a telescopic feature
which allows to extend the link to fit people with different leg lengths. The device can assist humans
weighing up to 130 kg, which is an integral part of the robotic gait rehabilitation system. The torque
corresponding to one that is required to move the dead weight of the lower limbs of the person who is
completely paralyzed is weight normalized.

This paper is organized as follows: Section II presents the dynamical formulation for the mechanism,
the stiffness control scheme, and human intent torque estimation using computational neural model.
Section III presents the experimental protocol and the results obtained from eight healthy participants
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Figure 1. (a) The gait rehabilitation system and its major components with passive DOFs labeled, (b)
Loadcells’ placement behind the braces for capturing the human/robot interaction force, (c) Trajectories
generated by the mechanism for knee and ankle joints relative to the hip joint in the sagittal plane.

walking in the rehabilitation robot controlled by the implemented control scheme. Finally, the discussion
and conclusions from the present research are provided in Section IV.

The contributions of this work include the development of a customized stiffness control strategy
for the Stephenson III six-bar linkage robot, which is actuated by a single motor to provide customized
training. To the authors’ best knowledge, no prior work has studied or implemented a human-cooperative
control strategy on single DOF mechanisms designed for gait rehabilitation purposes. Thus, the novelty
of this work lies in demonstrating the applicability of stiffness control techniques on such types of mech-
anisms. This work will also serve as a foundation for building human-cooperative control strategies for
single DOF linkage-based rehabilitation robots.

2. Methodology
2.1. Stephenson III six-bar mechanism
The Stephenson III six-bar linkage mechanism developed is a bilateral system for both right and left
leg as shown in Figure 1(a). It can provide lower limb motions required for walking in a sagittal plane
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and be operating previously using constant speed control [38]. To further implement human-cooperative
control, it is necessary to monitor the interaction forces between the robot and the human. Therefore,
the prototype was appended with additional tension/compression load cells added at the thigh and shank
regions in the prototype as indicated in Figure 1(b).

2.2. Safety
To ensure the safety of individuals engaged in experimental activities, the robotic system is equipped
with essential safety provisions. Emergency stop buttons, integrated into an independent circuit, are
incorporated within the system, accessible to both the researcher and the participant during the exper-
iment. These buttons serve the purpose of promptly deactivating the power source in the event of an
emergency or when the subject experiences discomfort. While the developed mechanism is designed
to follow predetermined trajectories, supplementary mechanical stops are installed as an additional
safety measure at the rocker links to avoid going beyond the range of motion. These mechanical stops
serve to restrict the robot from surpassing physiological ranges of motion, particularly in unforeseen
circumstances. They can withstand the peak torque delivered by the motor, thereby safeguarding against
potential hazards. To ensure the safety of paralyzed individuals, especially those with weakened bone
structures due to conditions such as osteoporosis, our rehabilitation system is meticulously designed to
prevent any risk of bone fractures. The motor does not directly apply force to the bones; instead, it uses
intermediary links to move the legs. This method significantly reduces the risk of injury as the motor’s
torque is translated through these links rather than being applied directly to the bones. For instance,
the motor rotates a crank, which then moves other links by pulling or pushing them, thereby provid-
ing a naturalistic movement trajectory that aligns with the human body’s natural angles. This design
consideration minimizes the risk of unnatural forces that could lead to fractures. Furthermore, the sys-
tem calculates the overall torque at the hip joint by considering the leg’s deadweight and applies the
torque through the joints, ensuring it remains within safe limits. The peak torque supplied by our motor
is 120 Nm, which is well below the torque required to fracture even weakened bones. It is reported
that the compressive strength of a healthy adult femur translates to a fracture torque of approximately
30,750 Nm [40]. This significant difference provides a substantial safety margin, ensuring that our sys-
tem operates safely even for individuals with severely weakened bones. By maintaining this safety
margin, we effectively prevent any risk of fractures, providing a secure and effective rehabilitation solu-
tion. Precautions are also taken into consideration for electricity and wiring of the machine to assure the
device does not cause any electrocution of the patients during training. Given the importance of meet-
ing regulatory standards for medical devices, this research acknowledges the necessity of adhering to
ISO 13,485 regulations intended for medical devices and adheres to the safety requirements set for such
devices [41, 42].

2.3. Dynamic formulation of the mechanism
The overall motion of the mechanism can be described using the Lagrange modeling methodology [43].
The notations and configurations defined for solving the dynamics of the mechanism are shown in
Figure 2. The lengths between the joints are defined to be Li. The masses of links GH, HEK (trian-
gular platform p1), BC, CDE (triangular platform p2) and AD are defined as m1, mp1, m5, mp2 and m9,
respectively, and Ii is the mass moment of inertia for the corresponding link. Vi is the velocity at the mass
center of the corresponding link. The distance from the joint to the center of mass of the ternary link
is defined by Ri. The derivations of the assumed angles that result to the input angle motion û at crank
AD are provided at the end of the manuscript in Appendix section. The whole system’s Lagrangian is
defined as the difference between the total kinetic energy and the total potential energy.

L= K − P (1)
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Figure 2. Scheme of stephenson III six-bar linkage for motion evaluation.

The definition of kinetic energy K of the mechanism can be expressed as follows:

K =1
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Then, the potential energy P is determined as:

P = m1g
L1

2
sin û1 + mp1g (L1 sin û1 + R2 sin γ2) + mp2g (L9 sin û+ R6 sin û6) (3)

+ m5g
L5

2
sin û5 + m9g

L9

2
sin û

where g is the gravitational acceleration.
After reconfiguring Equation (3), the final expression for the Lagrangian of the mechanism has the

following form:

L= J1û̇2
1 + J3û̇2

3 + J5û̇2
5 + J6û̇2

6 + J0û̇2 + M1γ̇
2

2 + M2γ̇ 2
6 + P1C1 (θ1, γ2) û̇1γ̇2 (4)

+ P6C6 (θ , γ6) û̇γ̇6 + G (û1, û5, û6, û, γ2)

The definitions of variables used in the above equation J0, J1, J3, J5, J6, M1, M2, P1, C1(θ1, γ2), P6,
C6(θ , γ6) and G(û1, û5, û6, û, γ2) are presented in the Appendix. By introducing function S which is the
derivative of the assumed angles γ̇2, γ̇6, û̇1, û̇3, û̇5, û̇6 with respect to û̇ we could replace these velocity
terms and present Lagrangian in the terms of θ :

L= (
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)
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The expression for the Lagrangian contains parameters that are also functions of θ . The motor rotates
the crank (input link which the motor drives continuously) by input angle θ . Next, we need to identify
the equation of motion by:

d

dt

(
∂L
∂û̇

)
− ∂L

∂θ
= Trob (6)

Trob is the torque supplied by the robot, û̇ is the angular velocity of the crank AD. Since the damping
in the mechanism is relatively small, and bearings are used between the links to minimize the friction
between them, dissipative energy can be ignored and is not considered in this work. To finalize the
equation of motion, first, let’s determine the following:
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in the Appendix. The overall dynamic equation of motion for the system can be described using the
following expression:
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Figure 3. Overall stiffness control scheme for the gait rehabilitation. The robot outputs the crank posi-
tion, crank angular velocity, and interaction forces at shank and thigh regions. The robot dynamics block
calculates the robot’s torque, while a computational neural model block estimates the human’s torque.
This scheme enables dynamic adjustment of the robot’s assistance based on the human’s input.

2.4. Stiffness control architecture
Depending on the level of lesion, the disability in the lower limbs among stroke patients may vary sub-
stantially. Stiffness control can adjust and provide the necessary assistive motion to the subject based on
his/her needs. The assistance from the robot is modified by considering the human joint forces supplied
by the subject. When the subject does not move, the robot increases the assistance to guide the subject
along the physiological gait trajectories. On the other hand, if the subject makes an effort to walk, the
robot reduces stiffness. This approach is effective in patients requiring gait training, as it encourages
active participation from them, which facilitates the recovery process of impaired gait capabilities.

The architecture of the implemented stiffness controller is illustrated in Figure 3. The angular posi-
tions of the robot’s joints are measured using the rotary encoders. The load cells are installed on the
thigh and shank regions to track the interaction force between the human and the robot during walking.
The human-robot interaction forces occurring at the shank Fsh and thigh segments Fth, measured from
loadcells, crank position û and its angular velocity û̇ serve as essential inputs for the overall control
scheme. The dynamic model from (6) determines the robot’s torque based on the inputs such as crank
angle û and its angular velocity û̇. The computational neural model, denoted as h( · ), accepts mea-
sured four inputs from the human-robot system and produces a single output of predicted human torque
exerted on the system as follows:

h
(
Fsh, Fth, û, û̇

)≈ τ̂h (9)

Where τ̂h is the predicted human torque (explained in the following section) obtained from the com-
putational neural model. Further, the robot’s torque Trob and the predicted human torque τ̂h are added
together producing the total human-robot torque.

2.5. Computational neural model for human torque estimation
This section describes a computational neural model-based system identification approach to estimate
the combined torque supplied by the human during the training process on the robot. Solving analytically
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for the human torque, based on the position and interaction forces for this mechanism, is a challenging
and time-consuming process due to the non-linearity and incomplete knowledge of the biomechanical
model. Instead, existing machine learning techniques can be utilized to solve this task. These techniques
do not require strict knowledge of the system’s model, can manage uncertainties, and can establish addi-
tional criteria to evaluate the system’s performance [44]. Therefore, a computational neural model was
used in this work, since it is a powerful tool for nonlinear function approximation. The input layer is
represented by the vector x = [Fsh, Fth, û, û̇]. The network outputs a single value, the predicted human
torque. The model is expected to converge to the biomechanically applied torque values, despite the
absence of ground truth for the human torque values. This expectation is based on the use of measured
interaction forces occurring at the shank and thigh regions as inputs for the model. Various hyperparam-
eters, including the depth of the network, number of nodes/neurons per layer, learning rate, momentum,
etc., were selected heuristically through a grid search approach [45]. ReLU is used as the activation
function to avoid the vanishing gradients problem and save computational time. The network is trained
using the Adam (Adaptive Moment Estimation) gradient-based optimizer [46] with a learning rate of
0.001. The architecture of the model used can be presented as follows:

h (x) = W2 · ReLU (W1 · x + b1) + b2 (10)
where ReLU is the Rectified Linear Unit activation function [47], represented by

ReLU (x) =
{

x, if x ≥ 0

negative_slope × x, otherwise
(11)

W1 ∈R
32×4, W2 ∈R

1×32 are weight matrices, and b1 ∈R
32×1, b2 ∈R are bias vectors.ψ = (W1, W2, b1, b2)

are learnable parameters of the neural model and are optimized using an objective function. The objec-
tive function is to minimize the MSE between the predicted and approximated human torque values.
We compute approximated human intention torque values by subtracting the measured torque from the
motor driving the human/robot system and the torque required to drive empty robot without a human
subject. We have also added L2 regularized to balance variance-bias tradeoff. The objective loss function
is defined as follows:

LMSE = 1

N

N∑
j=1

T∑
i=1

(
τ̂h(i,j) − (

τmotor(i,j) − τr(i,j)

))2 + λψ (12)

Here N is the number of samples, T is the number of instances recorded in a single gait cycle, τ̂h is
the predicted value of the human torque, τmotor is the actual torque provided by the motor to drive the
human/robot system and τr is the torque supplied to drive the robot without a human subject. In (12),
the subscripts (i, j) correspond to two different aspects of the data. The ‘i’ index refers to the specific
sample within the batch and can take on any value within the total number of samples, N. On the other
hand, the ′j′ index refers to the time-specific instance within a single gait cycle torque trajectory, with ‘j’
being any value within the total instances, T . λ is a regularization parameter used to reduce the risk of
overfitting.

The value of λ was determined empirically through a series of preliminary experiments, evaluating
the model’s performance on a validation set for different values of λ. The selection was based on achiev-
ing an optimal balance between bias and variance, thereby minimizing the validation error. In an overfit
model, the coefficients are generally inflated. Regularization adds penalties to the parameters and avoids
them weighing heavily to avoid overfitting. Each crank angle value in the mechanism corresponds to a
specific point in the gait cycle, allowing for a direct comparison of torque values with and without a
human subject at the same gait cycle instance.

Before feeding the data into the model, it was preprocessed to remove outliers and scaled accordingly,
ensuring that all features were on the same scale. The dataset consists of 330,397 points, recorded at
a sampling rate of 100 Hz from the loadcells and encoders. According to the work done by Goyal &
Bengio, the inductive bias introduced with prior knowledge helps to learn better in many tasks [48]. The
processed data was then split into a training set (60%), validation set (20%), and testing set (20%) to
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assess the model’s performance. It was split on shuffled samples to strengthen the model’s generaliz-
ability on seen subjects’ different trials. The dataset is obtained from eight participants (7m, 1f) who
were asked to stay passive while wearing the robot and allow it to move their legs in a predefined motion
and walk concurrently while wearing the robot. This was to ensure capturing both end extremities in the
interaction forces’ values.

3. Experimental evaluation
3.1. Experimental protocol
Before the start of the experiments, corresponding ethics approval to experiment on eight neurologically
intact subjects (7 m, 1f) (age 22–45 years) was granted by the Human Research Ethics Committee at the
University of Canberra. The subjects reported no history of having neurologic disorders. During the
experiments, participants’ legs were fixed to the robot legs with the braces located in the thigh and
shank segments using Velcro straps. Subjects’ feet were attached to the footplate. The body weight
support system was used to balance the weight of human subjects against gravity, thus allowing them
to keep their legs relaxed during the first stage of the experiment. During this stage, the robot moved
the subjects’ legs on a predefined trajectory at a constant speed. In passive mode, participants were
asked to stay relaxed without moving their legs and allowing the robot to direct the lower limbs along
the predefined trajectory. During the active mode, participants were asked to perform the usual walking
while wearing the robot. The walking speed for the participants was set by the speed of the treadmill.
The study aimed to determine if significant differences existed between the interaction forces (at the
robot and human interface) observed during passive and active modes. We utilized the Wilcoxon Rank-
Sum test [49], a non-parametric method, to perform this analysis as it offers robustness against data not
adhering to a normal distribution. Wilcoxon Rank-Sum test was used for both thigh and shank interaction
forces and the torque supplied by the robot during active and passive

3.2. Results
Initial results from the stiffness control scheme developed for the proposed mechanism are presented
in this section. The model was trained using the Pytorch Lightning framework, which was further con-
verted to the Open Neural Network Exchange (ONNX) format and then imported to Matlab R2022B.
It took the model less than 1 hour to be trained on 2nd Gen Intel(R) Core(TM) i7-1265U. The training
and testing loss results are presented in Figure 4. The training Mean Squared Error (MSE) is a value
of approximately 0.0835 Nm2. The small value for MSE indicates a high level of accuracy in predicting
torque values based on the given input features, which include joint angular positions, angular velocity,
and interaction forces. The validation set was introduced to avoid common problems in machine learn-
ing such as overfitting. The validation loss was monitored throughout the training process to ensure that
the model was learning generalizable patterns instead of memorizing the training data.

The smooth convergence to a steady state, as depicted in Figure 4, validates the model selection,
demonstrating that the optimized parameters are suitable for the proposed architecture. Regularization,
introduced along with the cross-validation technique using validation sets, helped to avoid overfitting.
Parameters of the network are fine-tuned using the validation set, the validation set is evaluated at every
epoch. Once the learning curve stabilizes, training is halted, and the model is then evaluated on the
test dataset. The test was done once at the last stage to verify it is the same as validation loss. These
findings demonstrate the model’s ability to generalize well to unseen data and make accurate human
torque predictions for robotic applications. The model’s ability to generate accurate torque predictions
with a low error suggests that it has the potential to contribute to stable robot control.

The change of assistive torque supplied by the robot during passive and active modes over the gait
cycles together with the torque to drive the robot without human subject are indicated in Figure 5. The
torque supplied during active mode is the torque required to keep the robot moving while being aligned
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Figure 4. Performance of the model: training loss, validation loss, and testing results.

Figure 5. The adjusted torque from robot during the passive and active phases averaged across eight
subjects with±1 st.dev. (shaded).

to the walking of the person. The values for the torques are the average across eight healthy participants.
The crank of the robot was rotating at around 3 rad/s, driving a stride frequency of 0.47 Hz, and the
walking speed of the treadmill was in the range of 0.2 – 0.4 m/s. The transition of the change in torque
supplied by the robot in response to switching from active to passive and from passive to active modes
is shown in Figure 6.

Further, the interaction forces that occurred during active and passive phases are plotted in Figure 7.
The interaction forces occurring at the shank and thigh regions of the leg during passive phase are much
larger than the interaction forces happening during the active phase. Each spike in the graph representing
the crank angular position corresponds to a single gait cycle. As the torque adjusts the supplied torque
based on the torque of human subject the human-cooperative control strategy is achieved.

4. Discussion and conclusion
In this work, a customized stiffness control was designed for a Stephenson III six-bar linkage-based
gait rehabilitation robot. The experimental results demonstrated the feasibility of the proposed control
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Table 1. Maximum absolute values parameters. Standard deviations ± are
presented for within-subject variability.

Variable Active Passive p-Values
Trob 21.44 Nm ± 2.86 31.96 Nm ± 5.40 p < 0.01
Fsh 38.46 N ± 9.01 200.01 N ± 58.21 p < 0.01
Fth 33.33 N ± 9.81 100.00 N ± 29.06 p < 0.01

Figure 6. The overall torque supplied by the robot during transition from active to passive and passive
to active modes.

scheme and its applicability to such types of mechanisms. From the experimental results, significant
differences were observed in the data from both the human-robot interaction forces and the torques sup-
plied by the robot during the active and passive stages. The medians of the interaction forces and torques
differed between active and passive modes, with both measures yielding a p-value of less than 0.01. This
finding signifies a statistically significant difference in both interaction forces and robot-supplied torques
between the two modes. The maximum absolute values recorded for the interaction forces at shank and
thigh regions and Trob provided during active and passive stages with standard deviation are presented
in Table I.

The peak value for the robot’s torques is close between the active and passive phases, which indicates
the instantaneous torque recorded at the starting point when the robot needs to start the motion from
the resting stage. Further, the standard deviation in the active phase is much smaller than in the passive
phase.
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Figure 7. The human/robot interaction forces occurring during the passive and active modes.

The boxplots that provide a graphical representation of the shank and thigh parts’ interaction forces
observed during the passive and active modes are drawn in Figure 8. For the shank interaction forces,
the boxplot reveals a distinct difference between the active and passive modes. It can be noticed that
the median force in active mode is lower when compared to the passive mode. The interquartile range
in active mode appears to be smaller, which means there is a smaller spread of the data. Since there
are few outliers, most of the data are close to the median. A similar trend is observed in the boxplot
for the thigh interaction forces. However, there is a large difference in median forces between the active
and passive modes. The active mode has a smaller spread of data, as evidenced by the height of the
box. The outliers in this case are few, suggesting that the data is more evenly distributed. This visual
representation supports our statistical findings and highlights the significant differences in forces during
the two different modes.

A body weight support system was used to unload the subjects’ weight to help them relax their
legs. This was done to simulate as closely as possible the impaired lower limbs of stroke survivors. We
quantified the differences in the mechanical torque generated in these active/passive modes taken during
multiple gait cycles. The results demonstrated that the robot could vary the torque supplied at the crank
depending on the torque supplied by the human joints during. Providing assistive torque during specific
phases of gait can have several clinical implications. For example, providing assistive torque during the
stance phase can help stabilize the patient and reduce the risk of falls. On the other hand, providing
assistive torque during the swing phase can help facilitate a more natural and efficient gait pattern. The
key difference between the stiffness control implemented and a standard trajectory controller lies in
the ability of the system to adapt to the user’s effort dynamically. While any trajectory controller will
indeed reduce the robot’s torque when the human effort is helping, a stiffness controller will also adapt
to the user’s effort in real time across the entire gait cycle. This means that if the user is unable to exert
sufficient effort, the robot will supply more torque to keep the legs along the naturalistic lower limb
trajectories. Conversely, if the user exerts more effort, the robot will reduce its assistance accordingly.
This dynamic adaptation to the user’s effort helps to promote active participation from the user, which
is crucial for effective rehabilitation.
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Figure 8. Distribution and comparison of human/robot interaction forces occurring at thigh and shank
regions during active and passive phases.

One of the limitations of this work is that implemented computational neural model estimates the
combined torque exerted by the lower limb on the robot, which causes challenges in identifying torque
of individual joints. For that purpose, we will upgrade the design to be able to quickly disengage the
robot, to tackle only either hip, knee, or ankle joint separately. As for the future work, different controllers
will be also tested and compared to each other to obtain the most optimum approach for people who had
stroke.
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Appendix

The angle definitions from Figure 2 are derived as follows:

α = sin−1

(
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2

)
(13)

where
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α2 = tan−1

(
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the substation variables used are as follows:
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∂θ

+ ∂S8 (θ, α2, β2, α3)

∂α3

∂α3

∂θ

)
+ S8 (θ, α2, β2, α3)

(
∂C1 (θ1, γ2)

∂θ1

∂θ1

∂θ
+ ∂C1 (θ1, γ2)

∂γ2

∂γ2

∂θ

))

+ P6

(
C6 (θ, γ6)

(
∂S9 (θ, α1)

∂θ
+ ∂S9 (θ, α1)

∂α1

∂α1

∂θ

)
+ S9 (θ, α1)

(
∂C6 (θ, γ6)

∂θ
+ ∂C6 (θ, γ6)

∂γ6

∂γ6

∂θ

))]
θ̇2

(24)

∂L

∂θ
=
[

2J1S1 (θ , α2, β2)

(
∂S1 (θ , α2, β2)

∂θ
+ ∂S1 (θ , α2, β2)

∂α2

∂α2

∂θ
+ ∂S1 (θ , α2, β2)

∂β2

∂β2

∂θ

)

+ 2J3S3 (θ , α3, β3)

(
∂S3 (θ , α3, β3)

∂θ
+ ∂S3 (θ , α3, β3)

∂α3

∂α3

∂θ
+ ∂S3 (θ , α3, β3)

∂β3

∂β3

∂θ

)

+ 2J5S5 (θ , β, γ )

(
∂S5 (θ , β, γ )

∂θ
+ ∂S5 (θ , β, γ )

∂β

∂β

∂θ
+ ∂S5 (θ , β, γ )

∂γ

∂γ

∂θ

)

+ 2J6S6 (θ , α1, β1)

(
∂S6 (θ , α1, β1)

∂θ
+ ∂S6 (θ , α1, β1)

∂α1

∂α1

∂θ
+ ∂S6 (θ , α1, β1)

∂β1

∂β1

∂θ

)

+ 2M1S2 (θ , γ )

(
∂S2 (θ , γ )

∂θ
+ ∂S2 (θ , γ )

∂γ

∂γ

∂θ

)
+ 2M2S7 (θ , γ )

(
∂S7 (θ , γ )

∂θ
+ ∂S7 (θ , γ )

∂γ

∂γ

∂θ

)

+ P1

(
C1 (θ1, γ2)

(
∂S8 (θ , α2, β2, α3)

∂θ
+ ∂S8 (θ , α2, β2, α3)

∂α2

∂α2

∂θ
+ ∂S8 (θ , α2, β2, α3)

∂β2

∂β2

∂θ

+∂S8 (θ , α2, β2, α3)

∂α3

∂α3

∂θ

)
+ S8 (θ , α2, β2, α3)

(
∂C1 (θ1, γ2)

∂θ1

∂θ1

∂θ
+ ∂C1 (θ1, γ2)

∂γ2

∂γ2

∂θ

))

https://doi.org/10.1017/S0263574724001425 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574724001425


18 Akim Kapsalyamov et al.

+ P6

(
C6 (θ , γ6)

(
∂S9 (θ , α1)

∂θ
+ ∂S9 (θ , α1)

∂α1

∂α1

∂θ

)
+ S9 (θ , α1)

(
∂C6 (θ , γ6)

∂θ
+ ∂C6 (θ , γ6)

∂γ6

∂γ6

∂θ

))]
θ̇ 2

+ ∂G (û1, û5, û6, û, γ2)

∂θ
+ ∂G (û1, û5, û6, û, γ2)

∂û1

∂θ1

∂θ
+ ∂G (û1, û5, û6, û, γ2)

∂û5

∂θ5

∂θ

+ ∂G (û1, û5, û6, û, γ2)

∂û6

∂θ6

∂θ
+ ∂G (û1, û5, û6, û, γ2)

∂γ2

∂γ2

∂θ
(25)
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