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Container motion along a planar circular trajectory at a constant angular velocity, i.e.
orbital shaking, is of interest in several industrial applications, e.g. for fermentation
processes or in cultivation of stem cells, where good mixing and efficient gas exchange
are the main targets. Under these external forcing conditions, the free surface typically
exhibits a primary steady-state motion through a single-crest dynamics, whose wave
amplitude, as a function of the external forcing parameters, shows a Duffing-like
behaviour. However, previous experiments in laboratory-scale cylindrical containers have
revealed that, owing to the excitation of super-harmonics, diverse dynamics are observable
in certain driving-frequency ranges. Among these super-harmonics, the double-crest
dynamics is particularly relevant, as it displays a notably large amplitude response, which
is strongly favoured by the spatial structure of the external forcing. In the inviscid limit
and with regards to circular cylindrical containers, we formalize here a weakly nonlinear
analysis via a multiple-time-scale method of the full hydrodynamic sloshing system,
leading to an amplitude equation suitable for describing such a double-crest swirling
motion. The weakly nonlinear prediction is shown to be in fairly good agreement with
previous experiments described in the literature. Lastly, we discuss how an analogous
amplitude equation can be derived by solving asymptotically for the first super-harmonic
of the forced Helmholtz–Duffing equation with small nonlinearities.
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1. Introduction

Orbital shaking is a method to gently mix the liquid content of a container by its
displacement at fixed container orientation along a circular trajectory and at a constant
angular velocity. It is used in biological and chemical industrial applications, notably
bacterial and cellular cultures (McDaniel & Bailey 1969; Wurm 2004), as an alternative
to stirred tanks, where liquid agitation results from a rotating impeller or the rotation of
a magnetic rod. In these cultivation protocols, cells are in suspension in an extracellular
liquid medium, which serves as buffer for consumables from which they feed and for
their secretions. The motion of the liquid prevents sedimentation and homogenizes the
concentration of dissolved oxygen and nutrients and of secreted proteins and carbon
dioxide. Because of the possible gas exchanges at the free surface, oxygen supply from
the container bottom can possibly be circumvented, avoiding the formation of bubbles and
thereby the damage that their collapse can exert on cells (Handa-Corrigan, Emery & Spier
1989; Kretzmer & Schügerl 1991; Papoutsakis 1991), sparking interest in the development
of large-scale, in the hectolitre range, orbital-shaken bioreactors (Liu & Hong 2001; Jesus
et al. 2004; Muller et al. 2007). It is therefore not a surprise that a significant body of
research on gas exchange and mixing in these devices has emerged over the last two
decades (Büchs et al. 2000a,b; Büchs 2001; Maier, Losen & Büchs 2004; Muller et al.
2005; Micheletti et al. 2006; Zhang et al. 2009; Tissot et al. 2010; Tan, Eberhard & Büchs
2011; Tissot et al. 2011; Klöckner & Büchs 2012).

Since the shear stresses and, therefore, the mixing are proportional to the velocity
gradients in the liquid phase, most of the gas exchange phenomena listed above are
directly linked to the liquid motion, with the optimal working conditions essentially
dictated by the wave pattern (Reclari 2013). For these reasons, at a more fundamental
level, the hydrodynamics of these orbital shaking devices has received recent attention,
from both experimental (Reclari et al. 2014; Bouvard, Herreman & Moisy 2017; Moisy,
Bouvard & Herreman 2018) and theoretical (Reclari et al. 2014; Horstmann, Herreman &
Weier 2020) perspectives, predominantly using linear potential flow models. These models
are often complemented with effective viscous damping rates to incorporate the energy
dissipation responsible for the phase shifts between wave and shaker, which was also seen
to be sometimes responsible for damping-induced symmetry-breaking linear mechanisms
resulting in linear spiral wave patterns (Horstmann et al. 2020, 2021). Previous studies
mostly made use of classical existing theories for general linear sloshing dynamics,
reviewed for instance in Ibrahim (2005) and Faltinsen & Timokha (2009).

In order to refine the linear potential model and, specifically, to predict the occurrence of
the super-harmonic wave dynamics observed experimentally (by super-harmonic, we mean
here a wave of a certain frequency ω emerging from an excitation at Ω = ω/2, with Ω the
driving angular frequency), Reclari (2013) and Reclari et al. (2014) proposed an inviscid
weakly nonlinear (WNL) analysis based on a second-order straightforward asymptotic
expansion procedure, which was shown to be capable of capturing the observed resonance
frequencies and of characterizing different multiple-crest wave patterns. Among these
patterns, the super-harmonic double-crest (DC) wave dynamics is particularly relevant,
as it appears to be the most stable and the one that displays the largest amplitude response.
However, their analysis, as typical of straightforward asymptotic expansions, suffers from
secular terms (Castaing 2005; Nayfeh 2008) and, therefore, it still fails in describing the
correct nonlinear behaviour close to both harmonic and super-harmonic resonances.

With regards to the experiments of Reclari (2013) and Reclari et al. (2014),
Timokha & Raynovskyy (2017) and Raynovskyy & Timokha (2018a,b) have applied
the Narimanov–Moiseev multimodal sloshing theory (Narimanov 1957; Moiseev 1958;
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Dodge, Kana & Abramson 1965; Faltinsen 1974; Narimanov, Dokuchaev & Lukovsky
1977; Lukovsky 1990). The theory is capable of accurately describing the nonlinear wave
dynamics near the primary harmonic resonance, when no secondary resonances occur
(Faltinsen, Rognebakke & Timokha 2005; Faltinsen, Lukovsky & Timokha 2016). Despite
the fact that the experiments performed by Reclari (2013) and Reclari et al. (2014) were
made for non-dimensional fluid depths H = h/R = 1.04 and 1, which lie slightly beyond
the applicability threshold of the multimodal theory (Hth should be � 1.05 as stated by
Raynovskyy & Timokha (2020)) and imposed by the occurrence of secondary resonances,
the authors found a quantitative good agreement with the experimental observations
associated with hard-spring-type single-crest (SC) swirling.

In the spirit of the aforementioned multimodal theory but with regards to square-base
basins, the resonant amplification of higher-order modes for forcing frequency in the
vicinity of the primary resonance (secondary or internal resonances) was investigated by
Faltinsen et al. (2005), who formalized a so-called adaptive asymptotic modal approach
capable of improving the agreement with earlier experiments. A thorough discussion on
this regard is also outlined in Chapters 8 and 9 of Faltinsen & Timokha (2009), where
the importance of the ratio of tank liquid depth to tank breadth for the occurrence of
the internal resonance phenomenon is carefully discussed. Generally speaking, secondary
resonance is a broader concept and it may occur even far from the primary resonance zone,
as in the case of the DC swirling observed in Reclari et al. (2014). To the knowledge of the
authors, the adaptive modal approach has never been extended to super-harmonic system
responses of orbital-shaken circular cylindrical containers far from the primary resonance.

For these reasons, it appears that a quantitatively accurate model for the prediction of
the diverse wave dynamics observed during the thorough experimental campaign carried
out by Reclari (2013) and Reclari et al. (2014) has not been provided yet.

The present work is precisely dedicated to the development of a WNL analysis based
on the multiple-time-scale method, which will be seen to successfully capture nonlinear
effects for the main additive harmonic resonances as well as the more subtle additive and
multiplicative resonance governing the super-harmonic DC swirling. Amplitude equations
are rigorously derived in an inviscid framework, which, once amended with an ad
hoc damping term as the only tuning parameter, well match the experimental findings
of Reclari (2013) and Reclari et al. (2014). Lastly, the obtained amplitude equations
for harmonic SC and super-harmonic DC waves are found to be compatible with two
well-known one-degree-of-freedom systems: the Duffing and the Helmholtz–Duffing
oscillators, respectively.

The paper is organized as follows. The flow configuration and governing equations are
introduced in § 2. Section 3 is dedicated to a brief summary of the salient points of the
asymptotic model proposed by Reclari et al. (2014), the limitations of which motivated the
present work. After tackling the more common case of harmonic SC waves in § 4.1, the
WNL amplitude equation governing the super-harmonic DC wave dynamics is derived in
§ 4.2. Final comments and conclusions are outlined in § 5.

2. Flow configuration and governing equations: potential model

We consider a cylindrical container of diameter D = 2R filled to a depth h with a liquid
of density ρ. The air–liquid surface tension is denoted by γ . The orbital (circular)
shaking motion (see sketch in figure 1) can be represented as the combination of two
sinusoidal translations with a π/2 phase shift, thus leading to the following equations of
motion for the container axis intersection with the z = 0 plane, parametrized in cylindrical
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coordinates (r, θ ):

Ẋ 0 =

⎧⎪⎨
⎪⎩

−ds

2
Ωd sin (Ωdt − θ) er,

ds

2
Ωd cos (Ωdt − θ) eθ .

(2.1)

In the classical potential flow limit, i.e. the flow is assumed to be inviscid, irrotational
and incompressible, the motion is described in terms of free-surface deformation, η, and
a potential velocity field, Φtot, which is typically separated into a container component,
Φc, and a fluid component, Φ. Hence, the liquid motion within the moving container is
governed by the Laplace equation,

	Φ = 1
r

∂Φ

∂r
+ ∂2Φ

∂r2 + 1
r2

∂2Φ

∂θ2 + ∂2Φ

∂z2 = 0, (2.2)

subjected to the homogeneous no-penetration condition, ∇Φ · n = 0, at the solid sidewall
and bottom, and by the dynamic and kinematic free-surface boundary conditions at z = η

(see Ibrahim 2005),

∂Φ

∂t
+ 1

2
∇Φ · ∇Φ + η − κ (η)

Bo
= rf cos (Ωt − θ), (2.3a)

∂η

∂t
+ ∂Φ

∂r
∂η

∂r
+ 1

r2
∂Φ

∂θ

∂η

∂θ
− ∂Φ

∂z
= 0, (2.3b)

which have been made non-dimensional by using the container’s characteristic length R,
the characteristic velocity

√
gR and the time scale

√
R/g. In (2.3a), κ(η) denotes the

fully nonlinear curvature, while Bo = ρgR2/γ is the Bond number. The non-dimensional
driving amplitude and angular frequency read f = dsΩ

2
d/(2g) and Ω = Ωd/

√
g/R,

respectively. When surface tension is accounted for, an additional contact line boundary
condition is required at z = η and r = 1, typically written as ∂η/∂r = cot ϑ , where ϑ is the
macroscopic contact angle. Under the classic free-end edge contact line assumption with
ϑ = π/2 adopted here, the latter dynamic equation simply reduces to ∂η/∂r = 0. This
means that the free surface at rest is flat and that a π/2 static contact angle is maintained
when the contact line elevation changes dynamically.

3. Linear solution and second-order straightforward asymptotic expansion

In order to enlighten the limitations of the expansion procedure developed by Reclari et al.
(2014), which motivates the formalization of the new theoretical framework proposed
in the present paper, we briefly recall the salient points. Let us consider the following
asymptotic expansion for the flow quantities:

Φ = Φ0 + εΦ1 + ε2Φ2 + O
(
ε3

)
, (3.1a)

η = η0 + εη1 + ε2η2 + O
(
ε3

)
, (3.1b)

together with the further assumption of small driving forcing amplitudes of O(ε), i.e. f =
εF, with ε a small parameter ε � 1 and the auxiliary variable F of O(1). Solution q0 =
{Φ0, η0}T represents the rest state, which has a potential velocity field null everywhere,
Φ0 = 0, and a flat interface, η0 = 0, as the contact angle is here assumed to be ϑ = π/2.
Substituting the expansions above in (2.2)–(2.3b), a series of systems at the various orders
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2

sin(Ωdt)
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Ω
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trajectoryθ

δ

η
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Figure 1. Sketch of a cylindrical container of diameter D = 2R and filled to a depth h. The gravity acceleration
is denoted by g. The Cartesian inertial reference frame is O′e′

xe′
ye′

z, while Oexeyez is the Cartesian reference
frame moving with the container. The origin of the moving cylindrical reference frame (r, θ, z) is placed at the
container revolution axis and, specifically, at the unperturbed liquid height, z = 0. The perturbed free surface
and contact line elevation are denoted by η and δ, respectively. Parameter ds is the diameter of the circular
shaking trajectory, characterized by a driving angular frequency Ωd .

in ε is obtained. At leading order, (2.2)–(2.3b) reduce to a forced linear system, whose
matrix compact form reads

(∂tB − A) q1 = F1, (3.2)

with q1 = {Φ1, η1}T, F1 = F{0, r/2}Tei(Ωt−θ) + c.c. = FF̂F
1 ei(Ωt−θ) + c.c. and

B =
(

0 0
Iη 0

)
, A =

⎛
⎝	 0

0 −Iη + 1
Bo

∂κ

∂η

⎞
⎠ , (3.3a,b)

where c.c. stands for complex conjugate, ∂κ/∂η represents the first-order variation of
the curvature associated with the small perturbation εη1 and Iη is the identity matrix
associated with the interface η. Note that the kinematic condition does not explicitly appear
in (3.3a,b), but it is enforced as a boundary condition at the interface (Viola, Brun &
Gallaire 2018). In the limit of zero external forcing, i.e. F = 0, system (3.2) is a linear
homogeneous problem which, by seeking for solutions having the following normal form:

q̂mn (r, z) exp(i (ωmnt − mθ)) + c.c., (3.4)

reduces to the classic generalized eigenvalue problem for inviscid capillary–gravity waves:

(iωmnB − Am) q̂mn = 0, (3.5)

where indices (m, n) represent the number of nodal circles and nodal diameters,
respectively, with m also commonly known as azimuthal wavenumber. Owing to the
normal mode expansion, we note that the operator A depends on the azimuthal
wavenumber, m, and, therefore, we denote it by Am. An exact analytical solution to
(3.5) can be readily obtained via a Bessel–Fourier series representation leading to the
well-known dispersion relation (Lamb 1993)

ω2
mn = (kmn + k3

mn/Bo) tanh (kmnH), (3.6)

with H = h/R and where the wavenumber kmn is given by the nth root of the first derivative
of the mth-order Bessel function of the first kind satisfying J′

m(kmn) = 0.
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Despite the existence of this analytical solution, in this work we opt for a numerical
scheme based on a discretization technique, where linear operators B and Am are
discretized in space by means of a Chebyshev pseudospectral collocation method with
a two-dimensional mapping implemented in Matlab, which is analogous to that described
by Viola et al. (2018). This numerical technique will enable us to avoid straightforward,
but cumbersome calculations, otherwise required in the development of the rest of this
work and, particularly, of § 4.2. One must note that when (3.5) is solved numerically as
in the present case, additional boundary conditions need to be made explicit in order to
regularize the problem on the revolution axis (r = 0), i.e.

m = 0 :
∂η̂mn

∂r
= ∂Φ̂mn

∂r
= 0, (3.7a)

|m| ≥ 1 : η̂mn = Φ̂mn = 0. (3.7b)

It is also useful to note that owing to the symmetries of the problem, system (3.5) is
invariant under the transformation

(q̂mn, +m, iωmn) −→ (q̂mn, −m, iωmn). (3.8)

Convergence of the numerical solution was checked by computing the first 16 modes
(m = 0, 2, 3, 4 with n = 1, 2, 3, 4), whose corresponding natural frequency values, ωmn,
matched the analytical ones given by (3.6) up to the fourth digit for a computational grid
Nr = Nz = 60, with Nr and Nz the number of radial and axial grid points, respectively.

Let us now reintroduce the forcing term on the right-hand side of (3.2). In
contradistinction with the cases of unidirectional forcing (Miles 1984a,b), for circular
orbits, given the azimuthal periodicity of the associated forcing, the shaking at linear order
is expected to excite non-axisymmetric modes only and, specifically, those with m = 1.
Therefore, the linear response to the external forcing can be sought as

q1 = Fq̂F
1 exp (i (Ωt − θ)) + c.c., (3.9)

with q̂F
1 being the solution of the following forced problem:

(iΩB − A1) q̂F
1 = F̂F

1 . (3.10)

The response structure q̂F
1 is here computed numerically, but, in practice, it is formally

equivalent to that obtained analytically by Reclari et al. (2014) by projecting the forcing
term F̂1 onto the basis formed by the first-order Bessel functions of the first kind, except
that surface tension is retained here because of the finite Bond number. Noting that
εF = f = dsΩ

2/(2g), in figure 2 the linear solution εqF
1 from (3.9) is shown (black solid

lines) and compared with experimental measurements reported by Reclari et al. (2014) in
terms of maximum non-dimensional crest-to-trough contact line amplitudes, δ̃ = δR/D,
with δ(θ, t) = η(r = 1, θ, t). Measurements for different values of the non-dimensional
shaking diameters, d̃s = ds/D, are shown. Blue and green markers in figure 2 correspond
to highly nonlinear scenarios manifesting a free-surface breaking, which is therefore
subsequently ignored. As discussed by Reclari et al. (2014) and reproduced here, the
linear solution describes well the SC wave dynamics for driving frequencies far enough
from harmonic resonances and, particularly, for small d̃s. However, as typical of undamped
forced oscillators, the amplitude of the inviscid linear response to the external forcing is
proportional to 1/|Ω2 − ω2

1n| and therefore it naturally diverges close to ω1n, thus failing in
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Figure 2. Markers correspond to the experimentally measured maximum crest-to-trough contact line
amplitude (non-dimensional), with δ̃ = δR/D = δ/2, reported by Reclari et al. (2014) for two container
diameters, D = 0.144 m and D = 0.287 m, a non-dimensional depth H̃ = h/D = 0.52 and five values of d̃s =
ds/D, as a function of the non-dimensional shaking frequency Ω normalized by the natural frequency of the
first non-axisymmetric mode, ω11 = 1.3286 (m = 1), on the bottom x axis and by that of first non-axisymmetric
mode with m = 2, ω21 = 1.7475, on the top x axis (the frequency values correspond to D = 0.287 m). Colours
denote different wave conditions. Black solid lines: linear potential model solution, from (3.9), computed
by solving numerically equation (3.10). Red solid lines: WNL solution close to Ω ≈ ω21/2, obtained by
computing (3.14). Note that in order to ease the comparison with experiments, the non-dimensional δ was
rescaled by a factor R/D = 1/2, as the container diameter D, rather than the container radius R, was used by
Reclari et al. (2014) to make the equations non-dimensional.

predicting the close-to-resonance behaviour, e.g. for d̃s = 0.02 at Ω ≈ ω11. Introduction of
viscous dissipation would regularize the divergent behaviour at Ω = ω11; however, in the
absence of any nonlinear restoring term, the hardening nonlinearity displayed in figure 2
cannot be retrieved.

Furthermore, in experiments multiple-crested waves were observed at fractions of the
natural frequencies (red markers in figure 2), i.e. the system responses with a frequency
which is n times (with n a positive integer) that of the external forcing. Here we refer
to such conditions as super-harmonic dynamics (note that the terminology sub-harmonic
was used by Reclari et al. (2014) instead). Among these super-harmonics, the DC wave
dynamics, occurring at a driving frequency Ω ≈ ω21/2, was seen to be the most relevant
(see figure 2), i.e. the most stable and the one displaying the largest deviation from
the linear approximation. This specific multiple-crest dynamics, which is intrinsically
nonlinear, is indeed favoured by the azimuthal symmetry of the external forcing. Reclari
et al. (2014) tentatively described such a DC dynamics by pursuing the asymptotic analysis
up to the second order in ε, as in (3.1a) and (3.1b), in order to account for second-order
system weak nonlinearities.

At the second order in ε, one obtains the following forced linear system:

(∂tB − A)q2 = F2 = F2(F̂FF
2 exp(i(2Ωt − 2θ)) + c.c.) + F2F̂FF̄

2 , (3.11)

where F2 gathers a series of terms produced by the first-order solution through the
second-order system nonlinearities. For the sake of brevity, the explicit expression of
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these forcing terms is here omitted (see Appendix D for details). The overbar denotes
the complex conjugate. Also note that amplitude F is actually a real quantity and in
the following the superscript F̄ is used only to indicate forcing terms produced by the
combination of the direct and complex conjugate contributions of the first-order response
to the external forcing. The right-hand side of (3.11) clearly shows how second-order
terms naturally induce a super-harmonic response, whose spatial periodicity is m =
2, hence precisely corresponding to the DC dynamics experimentally observed. The
second forcing term on the right-hand side of (3.11) has ω = 0 and m = 0, i.e. it is
steady and axisymmetric. It originates in the leading-order contribution in time- and
azimuthal-averaged flow, the so-called mean flow. Equation (3.11) was solved analytically
by Reclari et al. (2014) by retaining for convenience only two modes, namely those
with (m, n) = (2, 1) and (0, 1), expected to be the relevant ones. The numerical scheme
employed in this work allows us to effortlessly account for all the (2, n) and (0, n) modes
simultaneously, as their contribution is directly encompassed in the spatial function q̂FF

2
and q̂FF̄

2 , appearing in the second-order solution,

q2 = (F2q̂FF
2 exp(i (2Ωt − 2θ)) + c.c.) + F2q̂FF̄

2 , (3.12)

whose contributions are computed by solving the following systems:

(i2ΩB − A2) q̂FF
2 = F̂FF

2 , −A0q̂FF̄
2 = F̂FF̄

2 . (3.13)

The total flow field, obtained through the asymptotic model, is then given by the sum of
the first- and second-order solutions:

q = ( f q̂F
1 exp(i (Ωt − θ)) + f 2q̂FF

2 exp(i (2Ωt − 2θ)) + c.c.) + f 2q̂FF̄
2 , (3.14)

where, in order to eliminate the implicit small parameter ε, the amplitudes εF and ε2F2 are
recast in terms of the physical amplitudes f and f 2, respectively. The resulting prediction
of the maximum crest-to-trough contact line amplitude δ(θ, t) = η(r = 1, θ, t) is shown
in figure 2 for driving frequencies close to Ω/ω21 ≈ 0.5 (see top x axis) as red solid
lines. Although this straightforward asymptotic expansion detects the emergence of the
super-harmonic DC wave in that frequency window, it completely fails in capturing the
correct nonlinear wave amplitude saturation displaying a hardening behaviour clearly
visible in figure 2. Once again, the amplitude of the inviscid second-harmonic response
is proportional to 1/|Ω2 − ω2

2n/4| and the total solution tends to diverge close to the DC
super-harmonic at ω21/2.

Such a symmetric and, in the absence of dissipation, close-to-resonance divergent
behaviour is actually expected when performing straightforward asymptotic expansions
as they typically suffer from secular (or resonating) terms that must be properly treated
(see Castaing (2005) and Nayfeh (2008) among many other references).

4. Weakly nonlinear analysis via multiple-time-scale method

In order to overcome the aforementioned limitations of the straightforward asymptotic
expansion procedure and thus to attempt to bridge the gap between theoretical predictions
and experimental observations, we conduct in this section a WNL analysis based on
the multiple-time-scale method. With the aim of deriving a WNL amplitude equation

943 A28-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.440


Double-crest swirling in orbital-shaken cylindrical containers

governing the DC dynamics, we first tackle the simpler problem of SC waves. In both
cases we look for a third-order asymptotic solution of the system

q = {Φ, η}T = εq1 + ε2q2 + ε3q3 + O(ε4), (4.1)

where the zeroth-order solution, q0 = 0, is omitted.

4.1. Single-crest dynamics
In § 3 the forcing amplitude f was assumed of order ε, thus leading to a linear first-order
problem directly forced by external shaking, which produces a divergent response close to
harmonic resonances. With regards to SC waves and specifically to the harmonic response
at a driving frequency close to that of one of the non-axisymmetric modes, ω1n, we assume
here a small forcing amplitude of order ε3. This assumption is justified by the fact that
close to resonance, Ω ≈ ω1n, and in the absence of dissipation, even a small forcing will
induce a large system response. The following analysis is therefore expected to hold for
Ω = ω1n + λ, where λ is a small detuning parameter assumed of order ε2. Lastly, in the
spirit of the multiple-scale technique, we introduce the slow time scale T2 = ε2t, with t
being the fast time scale at which the free surface oscillates with angular frequency ≈ ω1n.
Hence, the following scalings are assumed:

f = ε3F, λ = Ω − ω1n = ε2Λ, T2 = ε2t, (4.2a–d)

with F and Λ of O(1). We note that the forcing amplitude could be assumed of order ε2 (as
the other parameters); however, this complicates unnecessarily the second-order problem
without modifying the final amplitude equation, even if the values of its coefficients end
up being slightly, up to order ε, different.

Although the asymptotic expansion is here pursued up to the third order in ε, the
procedure of the WNL analysis is essentially equivalent to that of the straightforward
asymptotic model discussed in § 3. The major difference lies in the solution form of
the leading-order problem that is now a homogeneous problem, as in (3.5). Given the
azimuthal periodicity of the external forcing, among all possible natural eigenmodes we
assume a leading-order solution as

q1 = A1 (T2) q̂A1
1 exp(i (ω1nt − θ)) + c.c., (4.3)

where q̂A1
1 is the eigenmode (computed by solving (3.5)) associated with (m, n) = (1, n)

and ω1n is the corresponding natural frequency (solution of (3.6)).
The complex amplitude A1, a function of the slow time scale T2 and still unknown at this

stage of the expansion, describes the slow-time amplitude modulation of the oscillating
wave q̂A1

1 and introduces a new arbitrariness in the problem, which must be fixed at a
higher order. Eigensurface η̂

A1
1 and eigenpotential field Φ̂

A1
1 , computed for ω1n = ω11, are

shown in figures 3(a) and 3(b), respectively.
By pursuing the expansion to the second order, a linear system forced by the

first-order solution and analogous to that of (3.11) is obtained (see Reclari (2013) for
the full expansion of the original nonlinear governing equation up to the second order).
Nevertheless, the forcing terms on the right-hand side are here proportional to A2

1 (super-
or second-harmonic) and to A1Ā1 (mean flow). Thus, we seek for a second-order solution

943 A28-9

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

44
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.440


A. Bongarzone, M. Guido and F. Gallaire

–0.5

y

z

–1.0

0

1.0

0.5

0

1.00.5–0.5

–1 0 1

–1 –1.27 0.790 01

0

x

1.00.5

–H
0

0.750.380

r

0

1.00.5

–H
0

r

0

1.00.5

–H
0

r

–0.5

–1.0

1.0

0.5

0

1.00.5–0.5

–2.72 0 1.28

0

x

–0.5

–1.0

1.0

0.5

0

1.00.5–0.5

–2.95 0 2.95

0

x

ε–order solution

εA1 ε2A1A
–
1 ε2A1A1
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Figure 3. (a–c) Real part of the first-order η̂
A1
1 and second-order η̂

A1A1
2 and η̂

A1A1
2 free-surface deformations

computed for ω1n = ω11. (d–f ) Imaginary part of the associated first-order Φ̂
A1
1 and second-order Φ̂

A1A1
2 and

Φ̂
A1A1
2 potential velocity field. Each response is denoted by its amplitude dependence, εA1, ε2A1Ā1 and ε2A1A1.

The first-order eigenmode is normalized with the amplitude and phase of the contact line (at r = 1), such
that the free surface η̂

A1
1 is purely real, whereas Φ̂

A1
1 is purely imaginary. Note that the second-order mean

flow constantly induces an upside-down bell-like axisymmetric interface deformation pushing the free surface
downward at the centre of the moving container. Calculations are performed for the case of figure 2, i.e. pure
water with ρ = 1000 m m−3, γ = 0.072 N m−1, D = 0.287 m and H̃ = h/D = 0.52, for which Bo = 2802.8
and ω11 = 1.3286.

of the form

q2 = A1Ā1q̂A1Ā1
2 + (A2

1q̂A1A1
2 exp(i (2ω1nt − 2θ)) + c.c.), (4.4)

with q̂A1Ā1
2 and q̂A1A1

2 computed numerically and displayed in figures 3(b,d) and
3(c, f ), respectively, in terms of second-order free-surface deformations and potential
velocity fields evaluated for ω1n = ω11. From a numerical perspective, we note that the
second-order responses can be straightforwardly computed as long as the pairs (ω, m) =
(2ω1n, 2) and (0, 0) do not correspond to eigenvalues of (3.5), i.e. the second-order
operators (i2ω1nB − A2) and −A0 are non-singular and hence invertible.

With regards to figure 3, it is interesting to note how the second-order mean flow
potential velocity field is null everywhere. This can be rigorously proven by first noticing
that the mean flow corresponds to a time- and azimuthal-averaged flow, i.e. ∂/∂t =
∂/∂θ = 0. Moreover, in the inviscid limit, free-surface elevation and potential field have
a π/2 phase shift, meaning that the first-order eigenmode can be normalized such that
the eigensurface is purely real, whereas the eigenpotential is purely imaginary. Under
these conditions, the mean flow forcing term on the right-hand side of the kinematic
equation cancels out, so that the associated Laplace equation appears to be constrained by
homogeneous Neumann conditions on all the domain boundaries, thus prescribing a trivial
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constant potential field and therefore a null velocity field. In other words, the second-order
mean flow system reduces to forced linear meniscus equation (resulting from (2.3a)) and
its conditions at r = 0 and r = 1 (both ∂η̂

A1Ā1
2 /∂r = 0), which prescribes a static mean

interface deformation only. Such a result was expected since the second-order mean flow
response represents the Eulerian mean flow, which, together with the so-called Stokes drift,
contribute to the overall Lagrangian mean flow (see van den Bremer & Breivik (2018) for
a thorough review).

While the Stokes drift is a pure kinematic concept, the Eulerian mean flow, often
referred to as streaming flow (Bouvard et al. 2017), is generally believed to be of viscous
origin, although another appealing interpretation has been recently proposed (Faltinsen
& Timokha 2019). Sticking to the well-accepted viscous Eulerian mean flow generation
mechanism, it is not a surprise that the absence of viscous boundary layers results in a
vanishing Eulerian mean flow.

We now move forward to the ε3-order problem, which is once again a linear problem
forced by combinations of the first- and second-order solutions as well as by the slow time
derivative of the leading-order solution and by the external forcing, which was assumed of
order ε3:

(∂tB − Am) q3 = F3 = −∂T2A1Bq̂A1
1 exp(i (ω1nt − θ)) + |A1|2A1F̂A1Ā1A1

3 exp(i (ω1nt − θ))

+ FF̂F
3 exp(iΛT2) exp(i (ω1nt − θ)) + NRT + c.c., (4.5)

with F̂F
3 = {0, r/2}T and where NRT stands for non-resonating terms, which are not

relevant for further analysis. As standard in multiple-scale analysis, the indeterminacy
introduced by the unknown amplitude A1 is resolved by requiring that secular terms do
not appear in the solution to (4.5). Secularity results from all resonant forcing terms in
F3, i.e. all terms sharing the same frequency and wavenumber (ω1n, 1) of q1, and in
effect all terms explicitly written in (4.5). It follows that a compatibility condition must
be enforced through the Fredholm alternative (Friedrichs 2012). Such a compatibility
condition imposes the amplitude B = εA1eiλt to obey the following normal form:

dB
dt

= −iλB + i μSCf + i νSC|B|2B, (4.6)

where the physical time t = T2/ε
2 has been reintroduced and where forcing amplitude

and detuning parameter are recast in terms of their corresponding physical value, f =
ε3F and λ = ε2Λ. Moreover, the small implicit parameter ε is eliminated by defining
the total physical amplitude A = εA1 (Bongarzone et al. 2021a). The various normal
form coefficients, which turn out to be real-valued quantities owing to the absence of
dissipation, are computed as scalar products between the adjoint mode, q̂A1†

1 , associated
with q̂A1

1 , and the third-order resonant forcing terms as follows:

i μSC = 〈q̂A1†
1 , BF̂F

3 〉
〈q̂A1†

1 ,Bq̂A1
1 〉

=
∫

z=0 r ¯̂ηA1†
1 /2 rdr∫

z=0(η̂
A1†
1 Φ̂

A1
1 + Φ̂

A1†
1 η̂

A1
1 ) rdr

, (4.7a)

i νSC = 〈q̂A1†
1 , BF̂A1Ā1A1

3 〉
〈q̂A1†

1 ,Bq̂A1
1 〉

=
∫

z=0(η̂
A1†
1 F̂A1Ā1A1

3dyn
+ Φ̂

A1†
1 F̂A1Ā1A1

3kin
) rdr∫

z=0(η̂
A1†
1 Φ̂

A1
1 + Φ̂

A1†
1 η̂

A1
1 ) rdr

. (4.7b)
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(b)(a)

Figure 4. Comparison of the WNL prediction for SC waves with experiments in terms of maximum
crest-to-trough contact line amplitude (non-dimensional), 	δ̃. (a) Black pentagons correspond to the
experimental measurements presented in figure 4.30 of Reclari (2013) (R13) for d̃s = ds/D = 0.01, where
the first two non-axisymmetric modes (m, n) = (1, 1) and (1, 2) are detected. Dotted black lines: solution of
the linear potential model according to (3.9). Light blue and blue lines: WNL SC prediction (4.10). Unstable
branches are represented as a dashed line. Violet solid lines: theoretical prediction by Raynovskyy & Timokha
(2018a) (R&T18) (see § 4.1.2 for further comments). (b) Same as (a) with the black filled circles corresponding
to the measurements of Reclari et al. (2014) (R14) reported in figure 2 for d̃s = 0.02. The values of normal
form coefficients μSC and νSC computed for Ω ≈ ω11 and ω12 (see bottom and top x axes) are given in table 1,
together with the corresponding values of H̃, D and natural frequencies ωmn used in this calculation.

Figure (m, n) H̃ = h/D D [m] ωmn μSC νSC

4(a) (1, 1) 0.50 0.287 1.324 0.277 1.526
4(a) (1, 2) 0.50 0.287 2.321 0.042 17.025
4(b) (1, 1) 0.52 0.287 1.323 0.278 1.485

Table 1. Values of the amplitude equation coefficients μSC and νSC used to produce figure 4.

Here q̂A1†
1 = ¯̂qA1

1 , since the inviscid problem is self-adjoint with respect to the Hermitian
scalar product 〈a, b〉 = ∫

Σ
ā · b dV , with a and b two generic vectors (see Viola et al.

(2018) for a thorough discussion and derivation of the adjoint problem). For the sake of

brevity, the explicit expression of F̂A1Ā1A1
3 is omitted, as it only involves straightforward

calculations, i.e. a Taylor expansion of nonlinear governing equations and boundary
conditions (2.2)–(2.3b) around the rest state q0 = 0. Here we simply denote with the
subscripts ‘dyn’ and ‘kin’ the forcing components appearing in the dynamic and kinematic
boundary conditions, respectively.

By turning to polar coordinates, B = |B|eiΘ , splitting the modulus and phase parts
of (4.6) and looking for stationary solution, d/dt = 0 with |B| /= 0, the following implicit
relation is obtained:

d̃sΩ
2 ∓

(
λ− νSC|B|2) |B|

μSC
= 0, (4.8)
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Double-crest swirling in orbital-shaken cylindrical containers

or, in a more common polynomial form,

P (|B|) = |B|3 − λ

νSC
|B| ± μSCd̃sΩ

2

νSC
= 0, (4.9)

where f = d̃sΩ
2, λ = (Ω − ω1n) and the ∓ signs correspond to the phases Θ = 0 and π,

respectively. The two branches prescribed by (4.8) for |B| as a function of Ω at a fixed
non-dimensional shaking diameter d̃s can be easily computed using the Matlab function
fimplicit. After evaluating the stable and unstable stationary solutions for |B| and Θ , the
total SC wave solution is reconstructed as

qSC = {Φ, η}T = q1 + q2. (4.10)

4.1.1. Experiments versus WNL prediction: wave amplitude
In figure 4 the WNL prediction in terms of maximum crest-to-trough contact line
amplitude, 	δ̃, for SC waves is compared with two sets of experimental measurements
and with the potential linear solution (3.9). In comparison with the linear theory presented
in § 3, the agreement with experiments improves for different shaking diameters and
for different harmonic resonances, e.g. those associated with modes (m, n) = (1, 1) and
(1, 2) of figure 4(a). The hardening nonlinearity is correctly captured and the amplitude
prediction matches well the measurements until the free surface eventually breaks and the
wave regime leaves the WNL regime, hence suggesting the little relevance of dissipative
effects attributable to viscosity in this regime.

However, one must note that in this WNL approach the driving frequency is
essentially fixed around that of a unique non-axisymmetric natural mode, Ω ≈ ω1n.
Consequently, when performing the analysis for a mode (1, n), the influence of all other
modes is completely overlooked. In consequence, the accuracy of the asymptotic solution
rapidly deteriorates moving away from harmonic resonances, when compared with the
linear solution (3.9), which turns out to be more accurate. This is visible looking at
the bottom stable branch in the multi-solution range of figure 4(b) or by looking at
the driving frequency window Ω ∈ [0.7ω12, 0.9ω12] in figure 4(a). In other words, the
detuning parameter should be small in order for the present WNL analysis, based on
a single-mode expansion, to hold. On this regard, as no other natural frequencies are
encountered for Ω < ω11, an exception is made for the left-hand branch associated with
the harmonic resonance of the first (or fundamental) non-axisymmetric mode, where
an excellent agreement of the single-mode prediction, comparable to that of the linear
solution, lasts until Ω ≈ 0.

4.1.2. Comparison with the multimodal theory of Raynovskyy & Timokha (2018a)
The violet solid curves reported in figure 4 correspond to the predictions associated with
the ω11 SC swirling from the Narimanov–Moiseev multimodal sloshing theory employed
by Raynovskyy & Timokha (2018a) (R&T18) (only the stable branches are reported).
Their curves have been here carefully reproduced by manually sampling those reported in
figure 3 of R&T18 in the range of frequency available, i.e. Ω/ω11 ∈ [0.8, 1.3]. By looking
at the upper stable branch, although an increasing discrepancy is observed for increasing
wave amplitudes, one can see that both analyses are in fairly good agreement with
experiments and with each other until wave breaking eventually occurs. Such a discrepancy
could be tentatively attributed to the different definition of the detuning parameter
employed in R&T18, i.e. ε2ΛR&T18 = ω2

1n/Ω
2 − 1. On the other hand, by looking at the
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lower stable branch, one sees that, whereas the jump-up frequencies according to R&T18
and to the present model essentially coincide, the discrepancy between the two predictions
increases at larger frequency, i.e. Ω/ω11 > 1, with that of R&T18 being closer to the linear
potential model. One should also note that, in contradistinction with our analysis, that of
R&T18 accounts for damping and predicts the jump-down transition visible in figure 4(a).
This damping was essentially fitted from the experimental measurements and, specifically,
from the jump-down frequency occurring at a larger frequency, once the wave-breaking
regime is fully established, i.e. Ω/ω11 = 1.27 for d̃s = 0.01 and Ω/ω11 = 1.45 for d̃s =
0.02 (see figure 4). However, experiments suggest that the damping effect on the curves
displayed in figure 4 would not be easy to observe, even for d̃s = 0.01. Indeed, the motion
undergoes a SC wave breaking, thus entering in a fully nonlinear regime, where both
our analysis and that of R&T18 loose predictive power. We therefore decided to discard
damping while comparing our results with the close-to-harmonic resonance experiments
from Reclari (2013) and Reclari et al. (2014).

4.1.3. The Duffing oscillator analogy
Mass–spring models are widely employed in several engineering fields, e.g. in aerospace
engineering, for the description of close-to-resonance sloshing motions (Moiseev 1958;
Bauer 1966; Dodge 2000), where nonlinearities are of crucial importance. The most
popular driven nonlinear mass–spring model is that developed by Duffing (1918), who
added a cubic nonlinear spring deformation (cubic term) to the classical driven harmonic
oscillator:

ẍ + 2σ ẋ + x + c3x3 = p cos Ωt, (4.11)

where σ is the damping coefficient and where, depending on the sign of c3, the
resonance curve bends and the nonlinear resonance frequency shifts, i.e. it decreases
for a softening spring (c3 < 0), whereas it increases for a hardening spring (c3 > 0),
thus explaining the original observation of Duffing on vibration mechanism. Ockendon
& Ockendon (1973) showed via asymptotic expansion of the potential flow solution in
the neighbourhood of a harmonic resonance that for small external forcing amplitudes,
sloshing in a two-dimensional rectangular container responds exactly as an undamped
Duffing oscillator (with σ = 0). In Appendix B, we briefly show that, as expected,
the same holds for close-to-harmonic-resonance sloshing in orbital-shaken cylindrical
containers, whose formal amplitude equation, starting from the full inviscid hydrodynamic
system, was derived in § 4.1 (see (4.6)). Typically, when the Duffing equation is
employed to model close-to-resonance responses in sloshing dynamics and experimental
measurements are available, the nonlinear coefficient is often computed by fitting the
experimental measurements. Recently, with regards to quasi-two-dimensional rectangular
containers laterally excited, Bäuerlein & Avila (2021) have carried out careful quantitative
comparisons between experiments and theoretical predictions from the damped Duffing
equation, showing that their actual sloshing system is remarkably well described by the
forced-damped Duffing oscillator. Nevertheless, for increasing wave amplitude responses,
experiments deviate from the Duffing solution, which is not capable of predicting correctly
the phase lag between driving and response, shown to be the key factor for an accurate
estimation of the sloshing amplitude of the maximal nonlinear resonance (Cenedese &
Haller 2020; Bäuerlein & Avila 2021). We note that, by analogy with the undamped
Duffing equation, the WNL analysis formalized in § 4.1 exacerbates this aspect, since,
owing to the lack of dissipation, it can only predict the classic phase-lag bounds, 0 and
π (see Appendix A for further comments in this regard). Nevertheless, one should notice
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that this intrinsic limitation turns out to be unimportant in cases as those of figure 4, where
for increasing amplitude a wave breaking eventually occurs and the WNL theory as well
as the Duffing mechanical analogy no longer apply.

4.2. Double-crest dynamics
We now tackle the DC wave response. Its formalization is slightly more subtle, as it
requires a new reordering of the small control parameter magnitudes as well as an
unusual form of the leading-order problem, involving both a homogeneous and a particular
solution. We recall that the DC dynamics in figure 2 occurs at a driving frequency
Ω ≈ ω21/2. Results at the end of this section are presented for mode (2, 1), for which
experiments are available; however, for the sake of generality, we formalize the analysis
for any mode (2, n), i.e. Ω = ω2n/2 + λ, where λ is the small detuning parameter.

4.2.1. Formalism
To determine a suitable scaling for the forcing amplitude f and detuning parameter λ it
is instructive to look at the experimental measurements shown in figure 2 for Ω close
to ω21/2. One can see that approaching Ω ≈ ω21/2 from lower frequencies, the DC
wave emerges on the top of a SC dynamics, with the latter being correctly described
by the linear solution, which still behaves well as ω21/2 is far enough from the primary
harmonic resonance occurring at ω11. It follows that the forcing amplitude f and detuning
λ could be retained at order ε and the first-order problem takes the form (3.2), with

F1 = F{0, r/2}Tei(Ωt−θ) + c.c. = FF̂F
1 ei(Ωt−θ) + c.c., with f = εF and λ = εΛ.

Furthermore, in § 3 we have shown how, close enough to the super-harmonic resonance,
the divergent behaviour is produced by a second-order resonating term, which breaks the
straightforward expansion, as ε2-order terms should not become larger than the ε-order
ones. In the following, this asymptotic breakdown is overcome by assuming that the
leading-order solution is given by the sum of (i) a particular solution, given by the linear
response to the external forcing computed by solving (3.10), and (ii) a homogeneous
solution, represented by the natural mode (m, n) = (2, n), obtained by solving the
generalized eigenvalue problem (3.5), up to an amplitude to be determined at higher orders.
The second-order resonating term will then require, in the spirit of multiple-time-scale
analysis, an additional second-order solvability condition, complementing the third-order
non-resonance condition already obtained in the SC wave WNL model. This suggests that
two slow time scales exist, namely T1 and T2, with T1 one ε-order faster than T2, hence
implying that quadratic nonlinearities are stronger than cubic ones. To summarize, the
fundamental scalings underpinning the WNL multiple-scale expansion for DC waves are
the following:

f = εF, λ = Ω − ω2n/2 = εΛ, T1 = εt, T2 = ε2t. (4.12a–d)

The first-order solution reads

q1 = A2 (T1, T2) q̂A2
1 exp(i (ω2nt − 2θ)) + Fq̂F

1 exp(i ((ω2n/2) t − θ))eiΛT1 + c.c.,
(4.13)

where the unknown slow-time amplitude modulation, A2, is here a function of the two time
scales T1 and T2, while the amplitude of the particular solution simply equals the forcing
amplitude and q̂F

1 is computed from (3.10) for Ω = ω2n/2.
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The second-order linearized forced problem reads

(∂tB − Am) q2 = F2 = F ij
2 − ∂A2

∂T1
Bq̂A2

1 exp(i (ω2nt − 2θ))

− iΛFBq̂F
1 exp(i ((ω2n/2) t − θ))exp(iΛT1) + c.c. (4.14)

The first-order solution is made up of four different contributions of amplitude A2, Ā2, F
and F̄; therefore it generates 10 different second-order forcing terms, here denoted by F ij

2,
which exhibit a certain frequency and azimuthal periodicity (ω̆, m̆).

The additional two forcing terms stem from the time derivative of the first-order
solution (4.13) with respect to the first-order slow time scale T1. In order to interpret
the last term in (4.14), it is worth first noting that, while the amplitude of the linear
solution (3.9), computed at a generic driving frequency, grows with Ω as F/|Ω2 − ω2

11| =
d̃sΩ

2/|Ω2 − ω2
11| ∝ Ω2/|Ω2 − ω2

11|, in the WNL model for DC waves, the amplitude of
the particular solution (4.13) is proportional to F/|ω2

21/4 − ω2
11| = d̃sΩ

2/|ω2
21/4 − ω2

11| ∝
Ω2, since the driving frequency was frozen at Ω = ω21/2 + λ, with the small detuning
parameter λ contributing to modify its phase, but not its amplitude. This leads to an
increasing discrepancy between (3.9) and the leading-order particular solution (4.13) away
from the super-harmonic resonance. The response to the forcing term proportional to ΛF
in (4.14) can be then interpreted as a second-order correction of the amplitude of the
first-order particular solution accounting for a detuning from the exact resonance through
ΛF ∝ d̃sΩ

2(Ω − ω2n/2) and contributing to improve the asymptotic approximation in a
wider range of driving frequency in the neighbourhood of the super-harmonic frequency.

None of the forcing terms in (4.14) is resonant, as their oscillation frequency and
azimuthal wavenumber differ from those of the leading-order homogeneous solution,
except the term produced by the second harmonic of the leading-order particular

solution, i.e. FFF
2 = F2F̂FF

2 exp(i(ω2n − 2θ))exp(i2ΛT1) + c.c. To avoid secular terms,
a second-order compatibility condition is imposed, requiring that the following normal
form is verified:

∂A2

∂T1
= i μDCF2exp(i2ΛT1), (4.15)

with μDC computed as before, i.e.

i μDC =
∫

z=0(η̂
A2†
1 F̂FF

2dyn
+ Φ̂

A2†
1 F̂FF

2kin
) rdr∫

z=0(η̂
A2†
1 Φ̂

A2
1 + Φ̂

A2†
1 η̂

A2
1 ) rdr

. (4.16)

Taken alone, the dynamics resulting from (4.15) is, however, of little relevance, since
the solution, i.e. the frequency–response curve, would still diverge (symmetrically) to
infinity for 	 = Ω − ω2n/2 → 0 in the absence of any restoring term, i.e. the nonlinear
mechanism responsible for the finite-amplitude saturation, which only comes into play at
order ε3. This means that the expansion must be pursued up to the following order, and
thereby that we must solve for the second-order solution.
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Double-crest swirling in orbital-shaken cylindrical containers

εA2 εF ε2A2A2 ε2ΛF ε2A2Ā2 ε2FF̄ ε2A2F ε2A2F̄

m̆ 2 1 4 1 0 0 3 1
ω̆ ω2n ω2n/2 2ω2n ω2n/2 0 0 3ω2n/2 ω2n/2

Table 2. First-order linear solutions and second-order non-resonating forcing terms gathered by their
amplitude dependency and corresponding azimuthal and temporal periodicity (m̆, ω̆). Six terms have been
omitted as they are the complex conjugates of εA2, εF, ε2A2A2, ε2ΛF, ε2A2F and ε2A2F̄.

By substituting (4.15) in the forcing expression, (4.14) can be rearranged as follows:

(∂tB − Am) q2 = F i,j
2NRT

+ F i,j
2RT

= F i,j
2NRT

+ F2(F̂FF
2 − i μDCBq̂A2

1 ) exp(i (ω2nt − 2θ)) exp(i2ΛT1) + c.c., (4.17)

where the subscripts ‘NRT’ and ‘RT’ denote non-resonating (whose frequencies and
azimuthal periodicities are gathered in table 2) and resonating terms, respectively. Note
that the term proportional to ΛF has been included in the non-resonating forcing terms,
whereas the resonant term is written explicitly. The compatibility condition is now trivially
satisfied, meaning that the new forcing term is orthogonal to the adjoint mode, q̂A2†

1 = ¯̂qA2
1 ,

by construction and therefore, according to the Fredholm alternative, a non-trivial solution
exists. Hence, we seek for a second-order solution having the following form:

q2 = A2Ā2q̂A2Ā2
2 + F2q̂FF̄

2

+ A2
2q̂A2A2

2 exp(i (2ω2nt − 4θ)) + ΛFq̂ΛF
2 exp(i ((ω2n/2) t − θ))exp(iΛT1)

+ A2Fq̂A2F
2 exp(i ((3ω2n/2) t − 3θ))exp(iΛT1)

+ A2F̄q̂A2F̄
2 exp(i ((ω2n/2) t − θ))exp(−iΛT1)

+ F2q̂FF
2 exp(i (ω2nt − 2θ))exp(i2ΛT1) + c.c. (4.18)

All non-resonant responses in (4.18) are handled similarly, i.e. they are computed in Matlab
by performing a simple matrix inversion using standard LU solvers (as in §§ 3 and 4.1).
As anticipated above, although the operator associated with the resonant forcing term, i.e.
(iω2nB − A2), is singular, the value of the normal form coefficient (4.16) ensures that a
non-trivial solution for q̂FF

2 exists. Diverse approaches can be followed to compute this
response. Here such a response is computed by using the pseudoinverse matrix of the
singular operator (Orchini, Rigas & Juniper 2016). Another possible approach is given
in Appendix A of Meliga, Gallaire & Chomaz (2012), where a two-step regularization
procedure, involving an intermediate factious solution for q̂FF

2 , is employed. We also note
that in (4.18), exactly as in (4.4), a second-order homogeneous solution has not been
accounted for as its introduction would be irrelevant to the final solution.

The first-order solutions together with all the non-resonating second-order responses are
shown in the various panels of figure 5, where the two leading-order contributions, εA2
and εF, corresponding to the DC and SC waves, respectively, can be identified. Moreover,
we note that the second-order response proportional to ε2ΛF has a spatial structure similar
to that of the leading-order response εF, as it represents the second-order correction to the
latter caused by small frequency shifts of order ε.
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0

ε–order solution ε2–order non-resonant responses

1–1

0 0.82–0.82

0 1.68–1.35

0 0.38–0.55

0 1.37–1.37

0 2–2

0 1.31–1.31

0 1.34–1.34

εA2 ε2A2A–2 ε2A2A2

ε2A2F–ε2A2Fε2FF–εF

ε2ΛF

(a) (b) (c) (d)

(e) ( f ) (g) (h)

Figure 5. Real part of the first-order (a) η̂
A2
1 and (e) η̂F

1 and non-resonating second-order (b) η̂
A1Ā2
2 , (c) η̂

A2A2
2 ,

(d) ξ̂
Λ1F
2 , ( f ) η̂FF̄

2 , (g) η̂
A2F
2 and (h) η̂

A2F̄
2 free-surface deformations computed for ω2n = ω21. The first-order

eigenmode is normalized with the amplitude and phase of the contact line (at r = 1), such that the free surface
η̂

A2
1 is purely real, whereas Φ̂

A2
1 is purely imaginary. Note that the second-order mean flow η̂FF̄

2 constantly
induces an upside-down bell-like axisymmetric interface deformation pushing the free surface downward at

the centre of the moving container, by analogy with the effect produced by η̂
A1Ā1
2 for SC waves, as the two

responses are essentially equivalent up to a pre-factor. Here the mean flow η̂
A2A2
2 for DC waves pushes the

interface upward at the wall (same as η̂FF̄
2 ) and, at the same time, downward in an annular region at intermediate

radial coordinates, without altering the free-surface elevation at the container revolutions axis.

Lastly, at third order in ε, the problem reads

(∂tB − Am) q3 = F3

= −∂A2

∂T2
Bq̂A2

1 exp(i (ω2nt − 2θ)) − i2ΛF2Bq̂FF
2 exp(i (ω2n − 2θ))exp(i2ΛT1)

+ |A2|2A2F̂A2Ā2A2
3 exp(i (ω2nt − 2θ)) + A2F2F̂A2FF̄

3 exp(i (ω2nt − 2θ))

+ ΛF2F̂ΛFF
3 exp(i (ω2nt − 2θ))exp(i2ΛT1) + NRT + c.c., (4.19)

where the first two forcing terms arise from the time derivative of the first-order solution
with respect to the second-order slow time scale T2 and from that of the second-order
solution with respect to the first-order slow time scale T1, respectively (see Appendix D
for the full expression of F2 and F3). By noticing that the second and last forcing terms
share the same amplitude dependence, i.e. ΛF2, they can be recast into a single forcing
term, say ΛF2F̂ΛFF

3 exp(i(ω2nt − 2θ))exp(i2ΛT1) + c.c.
Once again, all terms explicitly written in (4.19) are resonant, as they share the same

pair (ω2n, 2) as the first-order homogeneous solution; hence a third-order compatibility
condition, leading to the following normal form, must be enforced:

∂A2

∂T2
= iζDCΛF2exp(i2ΛT1) + i χDCA2F2 + i νDC|A2|2A2, (4.20)
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with

i ζDC =
∫

z=0(η̂
A2†
1 F̂ΛFF

3dyn
+ Φ̂

A2†
1 F̂ΛFF

3kin
) rdr∫

z=0(η̂
A2†
1 Φ̂

A2
1 + Φ̂

A2†
1 η̂

A2
1 ) rdr

, (4.21a)

i χDC =
∫

z=0(η̂
A2†
1 F̂A2FF̄

3dyn
+ Φ̂

A2†
1 F̂A2FF̄

3kin
) rdr∫

z=0(η̂
A2†
1 Φ̂

A2
1 + Φ̂

A2†
1 η̂

A2
1 ) rdr

, (4.21b)

i νDC =
∫

z=0(η̂
A2†
1 F̂A2Ā2A2

3dyn
+ Φ̂

A2†
1 F̂A2Ā2A2

3kin
) rdr∫

z=0(η̂
A2†
1 Φ̂

A2
1 + Φ̂

A2†
1 η̂

A2
1 ) rdr

. (4.21c)

As a last step in the derivation of the final amplitude equation for the DC waves and
in order to eliminate the implicit small parameter ε, we unify (4.15) and (4.20) into a
single equation recast in terms of the physical time t = T1/ε = T2/ε

2, physical forcing
control parameters f = εF, λ = εΛ, and total amplitude A = εA2. This is achieved by
summing (4.15) and (4.20) along with their respective weights ε2 and ε3, thus obtaining

dB
dt

= −i (2λ− χDCf 2)B + i (ζDCλ+ μDC)f 2 + i νDC|B|2B, (4.22)

where the change of variable A = Bei2λt has been introduced for convenience. As in § 4.1,
by turning to polar coordinates, B = |B|eiΘ , splitting the modulus and phase parts of (4.22)
and looking for a stationary solution, d/dt = 0 with |B| /= 0, the following implicit relation
is obtained:

d̃sΩ
2 −

√(
2λ− νDC|B|2) |B|/ [χDC|B| ± (ζDCλ+ μDC)] = 0, (4.23)

where only the real solutions corresponding to f = d̃sΩ
2 > 0 are retained, as the

combinations d̃sΩ
2 < 0 are not physically meaningful.

Although two more terms appear in (4.22) and the dependence on the forcing amplitude
is different with respect to the SC case, i.e. f 2 instead of f , thus leading to the square root
in (4.23), amplitude equation (4.22) is reminiscent of that given in (4.6). Indeed, (4.22)
contains essentially three contributions,

λ↔
(

2λ− χDCf 2
)

, μSCf ↔ (ζDCλ+ μDC) f 2, νSC ↔ νDC, (4.24a–c)

in order: a detuning term (forcing-amplitude-dependent), an additive (quadratic) forcing
term (forcing-frequency-dependent) and the classic cubic restoring term. Hence, the same
qualitative hardening or softening nonlinear behaviours as well as hysteresis, typical
features of the Duffing equation, are expected under the hypotheses of the present analysis.

The total flow solution predicted by the WNL model for DC waves and reconstructed as

qDC = {Φ, η}T = q1 + q2 (4.25)

is compared in figures 6 and 7 with experiments from Reclari (2013) and Reclari et al.
(2014) (see also figure 2).
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Linear
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ε3-WNL DC

(a) (b)

(c) (d)

Figure 6. (a–d) The WNL prediction for DC waves versus experiments by Reclari et al. (2014) (R14) (reported
in figure 2) in terms of 	δ̃ for a container diameter D = 0.144 m, H̃ = 0.52 and for various d̃s. Dotted black
lines: linear model (3.9). Red lines: straightforward asymptotic (3.14). Light-blue solid and dashed lines: stable
and unstable branches, respectively, predicted by the WNL solution (4.25). The normal form coefficient values
for this configurations are χDC = 2.755, ζDC = 0.150, μDC = 0.129 and νDC = 10.018. Violet lines: WNL
solution (4.28) including the ε3-order correction discussed in § 4.2.3.

4.2.2. Experiments versus WNL prediction: wave amplitude
In figures 6 and 7, the WNL prediction of DC waves according to (4.25) (light-blue
solid and dashed lines) is quantitatively compared with the experimental measurements
from Reclari (2013) and Reclari et al. (2014) in terms of maximum non-dimensional
crest-to-trough contact line amplitude 	δ̃ for different values of the shaking diameters
d̃s corresponding to those of figure 2 in the frequency window close to ω21/2.

The improvement gained through the formal WNL analysis, when compared with the
linear and straightforward asymptotic models, is striking. The amplitude equation model
correctly predicts the surge of the DC swirling and the resulting finite-amplitude saturation
via hardening nonlinear mechanism, thus markedly narrowing the gap with experiments
for all values of d̃s considered and for different container configurations.

Notwithstanding such an improvement, figure 6 highlights the main limitation of the
present amplitude equation model for DC waves. Indeed, one notices that, while at larger
shaking diameters, i.e. d̃s = 0.13 and 0.20, a DC wave first emerges on the top of a SC
dynamics and eventually a DC wave breaking occurs at larger frequencies, a jump-down
transition from DC to SC takes place with increasing Ω at lower shaking diameters,
i.e. d̃s = 0.07 and 0.10 for D = 0.144 m. This well-known hysteretic behaviour can be
reasonably ascribed to the viscous dissipation of the system. For instance, at sufficiently
small shaking diameters, e.g. d̃s ≈ 0.02 (see figure 2), the DC dynamics does not manifest
at all, as the energy pumped into the system by the external forcing is likely not sufficient to
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Figure 7. Same as figure 6 (same colour convention) but for a container diameter D = 0.287 m and H̃ = 0.50
(experiments are reported in figure 4.19 of Reclari (2013) (R13)). Normal form coefficients: χDC = 2.709,
ζDC = 0.169, μDC = 0.134 and νDC = 9.885.

dominate over the system viscous dissipation, whose effect also depends on the container
diameter D. Indeed, figure 7 clearly shows that larger diameters, i.e. D = 0.287 m, generate
less dissipation. It follows that for larger D, on increasing the driving frequency at a fixed
shaking diameter, e.g. d̃s = 0.10, the free surface is more likely to undergo wave breaking,
rather than a jump-down transition (see figures 6b and 7c). Obviously, the inviscid
model employed here is not capable of predicting the so-called jump-down frequency.
In Appendix A, a heuristic viscous damping model is introduced to tentatively overcome
these limitations.

Finally, we note that, for frequency moderately far from the super-harmonic resonance,
the agreement of the WNL model with experiments and with the linear solution, which
behaves well away from Ω ≈ ω11, progressively deteriorates. This is particularly evident
on the lower stable branch and can be ascribed to the fact that the asymptotic model is
essentially formalized for a fixed driving frequency, i.e. Ω ≈ ω21/2. The second-order
correction (proportional to ΛF and discussed in § 4.2.1) to the leading-order particular
solution seems to be sufficient to guarantee a fairly good agreement of the upper stable
branch in a relatively wide range of frequency Ω < ω21/2. However, for the lower stable
branch, i.e. Ω > ω21/2, the agreement with non-breaking-wave experiments sufficiently
far from resonance is still relatively poor, despite the fact that these measurements
essentially follow the linear prediction.

4.2.3. The ε3-order correction to the leading-order SC particular solution
The last consideration in § 4.2.2 suggests that the leading-order SC solution with its
second-order correction is only accurate in a limited range of frequency and higher-order
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terms should be accounted for in order to better retrieve the linear prediction far from
resonance. In this regard, as the present asymptotic expansion is pursued up to the ε3

order, we note that the third-order forcing contains a term, namely

FΛΛF
3 = −iΛ2FBq̂ΛF

2 exp(i ((ω2n/2) t − θ)) exp(iΛT1) + c.c., (4.26)

generated by the derivative of the second-order solution with respect to the slow time
scale T1. This term is not resonating in exp(i(ω2n − 2θ)) and therefore it can be gathered
together with the other third-order non-resonating terms (NRT) in (4.19), which in
asymptotic models are typically ignored, unless one aims to proceed to higher orders.
Nevertheless, such a forcing term produces a system response:

qΛΛF
3 = Λ2Fq̂ΛΛF

3 exp(i ((ω2n/2) t − θ)) exp(iΛT1) + c.c., (4.27)

which precisely represents the third-order frequency correction of the leading-order
particular solution and acts similarly to the second-order frequency correction qΛF

2 =
ΛFq̂ΛF

2 exp(i((ω2n/2)t − θ)) exp(iΛT1) + c.c. discussed in § 4.2.1.
A better intuition about why this third-order correction should improve the prediction

farther away from the super-harmonic resonance is given in the following. As anticipated
in § 4.2.1, the first-order particular solution simply represents the linear system response to
the external forcing εF cos (Ωt − θ). In general, the resulting amplitude is ∝ εF/(Ω2 −
ω2

1n), but in our asymptotic analysis the leading-order forcing frequency is frozen to
ω2n/2, which implies that the first-order particular solution has an amplitude fixed to
εF/(ω2

2n/4 − ω2
1n), which does not account for the frequency detuning. If one replaces

Ω = ω2n/2 + εΛ in εF/(Ω2 − ω2
1n) and takes its Taylor expansion, the ε2-order term is

∝ ε2FΛ, while the ε3-order term is ∝ ε3FΛ2. It naturally follows that accounting for this
third-order correction (4.27) leads to a more accurate description of the linear response to
the external forcing and, therefore, it should give a better model prediction farther away
from resonance, where the DC amplitude |B| ≈ 0 and the non-breaking-wave experiments
follow the linear theory.

To conclude, taking the total solution as

qDC = {Φ, η}T = q1 + q2 + qΛΛF
3 (4.28)

is expected to leave the amplitude saturation prediction for the DC wave, |B|, unaltered,
as it does not contribute to the amplitude equation solution, and, simultaneously, to better
describe the SC swirling farther away from Ω ≈ ω2n/2 (at least where no breaking waves
occur).

The influence of the aforementioned ε3-order corrections on the prediction for DC
waves is shown as violet lines in figures 6 and 7, where it can be seen that accounting
for the additional term allows one to eventually close the gap with the experiments even
farther away from resonance, hence ensuring to the WNL model a wider frequency range
of validity in all cases examined.

4.2.4. Experiments versus WNL prediction: free-surface reconstruction
In figure 8, the WNL model prediction for the DC waves is compared with the
straightforward asymptotic prediction discussed in § 3 and the experimental measurements
for DC waves from Reclari (2013) and Reclari et al. (2014). The direct quantitative
comparison is here outlined in terms of dimensionless and phase-averaged wave height
measured at the sidewall, δ̃(θ).
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Figure 8. (a,c,e,g) Comparison of the dimensionless and phase-averaged wave height measured at the wall
δ̃(θ, π/Ω) (black circles) with the straightforward asymptotic solution rebuilt via (3.14) (grey solid line) and
the WNL solution for the DC wave (4.25). Panels correspond to H̃ = 0.52, d̃s = 0.11 and D = 0.144 m. The
experimental measurements, here shown as black circles, are available in Reclari (2013), except for those of (e),
which are provided in Reclari et al. (2014). Note that (c) the nonlinear prediction has a very large amplitude.
(b,d, f,h) Corresponding three-dimensional free-surface deformation, η(r, θ,π/Ω), reconstructed via (4.25).
The transition from SC to DC swirling via hardening nonlinearity is clearly visible moving from top to bottom,
i.e. for increasing frequency.
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We observe that, if at Ω/ω21 = 0.490 both models match satisfactorily the experimental
points, as soon as Ω/ω21 = 0.5 is approached, the straightforward asymptotic solution
diverges due to the resonant (second-order) super-harmonic term, while the WNL solution
predicts correctly the finite-amplitude saturation and the emergence of a DC wave on the
top of a SC one. The WNL model for DC waves remains in fairly good agreement even at
larger driving frequency, although the increasing phase asymmetry between the two local
peaks at θ = π/2 and 3π/2 is not retrieved by the present inviscid asymptotic analysis,
where secondary effects, e.g. the phase shift induced by viscous dissipation and influence
of other higher modes, as well as stronger nonlinear effects for increasing wave amplitudes
are overlooked.

For completeness, the three-dimensional free surface, η(r, θ, π/Ω), is reconstructed
through (4.25) and shown in figure 8(b,d,f ,h), where, for increasing shaking frequencies,
the nonlinear transition from nearly SC to DC swirling is evident.

4.2.5. The Helmholtz–Duffing oscillator analogy
While the Duffing equation is known to capture period-3 and period-1/3 dynamics arising
from the cubic nonlinearity (Jordan & Smith 1999; Kalmár-Nagy & Balachandran 2011),
as those observed by Bäuerlein & Avila (2021) and occasionally by Reclari et al. (2014),
it cannot predict the period-halving (the system responds at a frequency which is twice
that of the external forcing) dynamics associated with the super-harmonic resonance
investigated in this paper. Therefore, in connection with § 4.1.3, here we aim to identify
the simplest possible mechanical oscillator that could mimic, at least from a qualitative
perspective, the period-1/2 dynamics studied in this work.

The WNL analysis as well as the straightforward asymptotic model highlighted the
crucial role of quadratic nonlinearities emerging at second order and from which the DC
dynamics stems. At the same time, the WNL model revealed that second-order terms only
are not sufficient to capture all the dynamics features owing to the lack of restoring terms
and, therefore, cubic nonlinearities must be retained. These considerations suggest that
the DC dynamics could be tentatively described by a driven oscillator with both quadratic
(asymmetric) and cubic (symmetric) nonlinear terms, i.e.

ẍ + 2σ ẋ + x + c2x2 + c3x3 = p cos Ωt. (4.29)

Equation (4.29), also commonly known as the Helmholtz–Duffing equation, has wide
applications in engineering problems, such as those related to beams, plates and shells
subjected to an initial static curvature (Mirzabeigy, Yazdi & Nasehi 2014; Askari et al.
2011), whose governing equations are reduced to a second-order nonlinear ordinary
equation with quadratic and cubic nonlinear terms (Ke, Yang & Kitipornchai 2010; Alijani,
Bakhtiari-Nejad & Amabili 2011; Fallah & Aghdam 2011).

Among the diverse asymptotic solutions of (4.29) in different limits (Rega 1995;
Benedettini & Rega 1989; Kovacic & Brennan 2011), the most relevant to our work is
that of Benedettini & Rega (1989). Within the context of planar nonlinear response of
suspended elastic cables to an external excitation, they derived an amplitude equation
which is concerned with the first or fundamental super-harmonic excitation, i.e. Ω ≈ 1/2,
of (4.29). Their WNL approach is detailed in Appendix C, with the additional assumption
of vanishing damping σ = 0. Assuming 2Ω = 1 + λ = 1 + ελ̂, small nonlinearities, c2 =
εĉ2 and c3 = ε2ĉ3, and introducing two slow time scales, one obtains

dD/dt = −i (2λ+ c5f 2)D + i (1 − λ) c2f 2/2 − i 4c4|D|2D, (4.30)
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with C = Dei2λt and with the auxiliary coefficients c4 and c5 (both functions of c2 and
c3) defined in Benedettini & Rega (1989). By comparing term by term, the analogy with
(4.22) is evident.

To conclude, although the DC dynamics examined in this paper is intrinsically related
to the simultaneous interplay of multiple waves, thus making particularly challenging an
accurate one-to-one quantitative comparison with a single-degree-of-freedom mechanical
model, (4.30) seems to suggest that the actual inviscid sloshing dynamics in the DC
regime may be, at least qualitatively, described by the undamped Helmholtz–Duffing
equation (4.29) driven super-harmonically.

5. Conclusion

With regards to orbital-shaken cylindrical containers and, specifically, to the careful
experimental campaign reported in Reclari (2013) and Reclari et al. (2014), a WNL
analysis via a multiple-time-scale method was formalized in § 4 in order to investigate
diverse features of the steady-state free-surface dynamics and, particularly, the DC wave
dynamics pertaining at half the frequency of the first m = 2 natural mode.

After having discussed the substantial limitations of the straightforward expansion
procedure proposed by Reclari et al. (2014) and summarized in § 3, the WNL analysis
was first formulated under the most common condition of pure harmonic resonance.
Despite the inviscid assumption, the WNL analysis developed for the SC wave dynamics
was shown to be in fairly good agreement with all the experimental measurements. In
fact, the present model correctly describes the close-to-resonance hardening nonlinear
behaviour experimentally observed. The agreement remains sufficiently accurate until the
free surface eventually breaks and a transition to a fully nonlinear regime occurs.

It is well assessed in the literature that the close-to-harmonic-resonance sloshing
dynamics can be modelled (from both qualitative and quantitative perspectives; Bäuerlein
& Avila 2021) by a single-degree-of-freedom system with a cubic nonlinearity and
driven harmonically, i.e. by the famous Duffing oscillator, as rigorously proved for a
two-dimensional rectangular container laterally excited (Ockendon & Ockendon 1973).
Without surprise, this was shown to hold for the case of orbital-shaken cylindrical
containers as well.

The WNL analysis was then extended to the more complex case of a DC swirling. The
overall agreement with experiments and, especially, the improvements with respect to the
simple straightforward asymptotic model are remarkable in all cases considered, although
the slight asymmetry observed in the reconstruction of the periodic free-surface dynamics
at the sidewall was not retrieved in the present model.

To the knowledge of the authors, a formal amplitude equation describing the
super-harmonic DC sloshing dynamics in orbital-shaken containers and coupled with
a thorough experimental validation has not been reported in the literature yet, hence
representing the most significant finding of this work.

Lastly, by analogy with the close-to-harmonic-resonance dynamics for SC waves,
for which the Duffing oscillator represents a suitable mechanical analogy, a
one-degree-of-freedom mechanical oscillator having both quadratic and cubic nonlinear
terms, commonly referred to as a Helmholtz–Duffing oscillator, driven super-harmonically,
was tentatively identified as the simplest possible mechanical system that could mimic, at
least qualitatively, the super-harmonic DC sloshing dynamics investigated in this paper.
The Helmholtz–Duffing equation was largely adopted in the last few decades within the
context of structural analysis, i.e. beams, plates and shells subjected to an initial static
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curvature as well as suspended elastic cables (Nayfeh 1984; Benedettini & Rega 1989),
and it was here proposed as a direct mechanical analogy with the present orbital sloshing
system.

The main limitation of the models derived in this work is intrinsic to the fundamental
assumption of an inviscid fluid. This precludes correctly accounting for the jump-down
transition experimentally observed for DC waves at low shaking amplitudes and, therefore,
for an accurate estimation of the maximum amplitude response when such a transition
occurs. Furthermore, in the absence of viscous boundary layers, the WNL time- and
azimuthal-averaged mean flow reduces to a free-surface deformation only. This is in stark
contrast with the existence of the so-called Eulerian mean flow (van den Bremer & Breivik
2018), also known as viscous streaming flow, typically observed in experiments (Bouvard
et al. 2017). Therefore, the present work overlooks one of the essential points of interest in
applications of orbital shaking. The mean flow, which contributes to an efficient mixing,
is not captured.

The extension of the asymptotic models developed in this work to a viscous analysis is
desirable, as it would enable one to predict quantitatively these secondary but fundamental
effects for both cases of harmonic and super-harmonic resonances. However, it presently
hinges on the subtle modelling of the moving contact line condition.
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Appendix A. Heuristic damping model: jump-down frequency and DC dynamics
suppression at low driving amplitudes

In § 4.2.2 the WNL model for DC waves was compared with experimental measurements
from Reclari (2013) and Reclari et al. (2014) in terms of non-dimensional maximum
crest-to-trough contact line amplitude, 	δ̃, for different non-dimensional shaking
diameters, d̃s, and container diameters, D (see figures 6 and 7). We have observed that
at larger shaking amplitudes, d̃s, and for larger container diameter, D, a DC wave first
emerges on the top of a SC wave at Ω ≈ ω21/2 and eventually wave breaking occurs
at larger frequencies. On the contrary, a jump-down transition from DC to SC then
takes place with increasing Ω at lower values of d̃s and/or for smaller D. The latter
well-known hysteretic behaviour can be ascribed to the viscous dissipation of the system,
obviously overlooked by the present inviscid analysis. In this appendix, viscous dissipation
is tentatively reintroduced by employing a simple heuristic viscous damping model, as
described in the following.

The viscous dissipation essentially arises at three locations: (i) at the solid tank
boundary layers, i.e. bottom and sidewall, (ii) in the fluid bulk and (iii) at the free surface,
the latter being typically negligible for ideal surface waves (in the absence of any form
of contamination). A well-known formula for the prediction of the viscous damping
coefficient of capillary–gravity waves in upright cylindrical containers was provided by
Case & Parkinson (1957) and Miles (1967). Such an estimation is computed according to
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the following formula:

σ = 2k2
mn

Re
+

(ωmn

2Re

)1/2 kmn

sinh (2kmnH)
+

(ωmn

2Re

)1/2
[

1
2

1 + (m/kmn)

1 − (m/kmn)
− kmnH

sinh (2kmnH)

]
,

(A1)

where the first term represents the bulk dissipation and the second and third terms are
related to the dissipation occurring at the solid bottom and sidewall, respectively. In (A1),
H = h/R is the non-dimensional fluid depth, kmn is the non-dimensional wavenumber
associated with mode (m, n), ωmn is the corresponding natural frequency obeying to
the dispersion relation (3.6) and Re = g1/2R3/2/ν is the Reynolds number (ν denotes
the kinematic viscosity of the fluid). In § 4.2.2 an amplitude equation, governing the
dynamics of a natural mode (2, n) (which leads to the DC wave dynamics observed
close to Ω ≈ ω21/2), was derived. For mode (2, 1) in the conditions of figure 6, i.e. pure
water with ρ = 1000 kg m−3, γ = 0.072 N m−1, ν = 1 × 10−6 m2 s−1, D = 0.144 m (for
which the Bond number is Bo = 705.6) and H = 1.04 = 2H̃, the values Re = 60 480,
k21 = 3.0542 and ω21 = 1.7561 give a non-dimensional viscous damping coefficient σ =
0.0051, mostly produced by the sidewall boundary layer. Typically, as in the present case
and as supported by experimental (Cocciaro, Faetti & Festa 1993) and numerical (Viola
et al. 2018) evidence, the viscous damping rate can be interpreted as a slow damping
process over a faster time scale represented by the wave oscillation. Under this hypothesis,
which translates in the assumption of a viscous damping coefficient of order ε2 within
the present WNL framework, the damping coefficient can be added a posteriori, i.e. in a
phenomenological way, to the final inviscid amplitude equation from (4.22), leading to

dB
dt

= −[σ + i(2λ− χDCf 2)]B + i(ζDCλ+ μDC)f 2 + iνDC|B|2B. (A2)

The stationary form of (A2) can be rearranged in the following implicit form:

(2λ− νDC|B|2 − χDCf 2)|B| ±
√

f 4(ζDCλ+ μDC)2 − (σ |B|)2 = 0, (A3)

which can be solved using the Matlab function fimplicit. The effect of viscous dissipation
on the DC regime is investigated in figure 9 for two representative values of the shaking
diameter.

The case of figure 9(a) shows that the so-called jump-down frequency is somewhere
between Ω ∈ [0.675, 0.685]. The damping value produced by (A1) appears to be too small
to match the experimental jump-down frequency; hence we tentatively added a pre-factor
in order to fit the measurements. It turns out that a pre-factor of 1.35 is sufficient to provide
a fairly good prediction of the jump-down frequency. We note that prediction (A1) does
not involve any dissipation mechanism associated with the contact line, i.e. contact line
hysteresis (Keulegan 1959; Miles 1967; Dussan 1979; Hocking 1987; Cocciaro et al. 1993;
Kidambi 2009; Viola et al. 2018; Viola & Gallaire 2018; Bongarzone, Viola & Gallaire
2021b) or possible surface contamination (Henderson & Miles 1990, 1994). Indeed,
depending on the configuration, contact line dynamics may rule the overall dissipation,
with a measured damping coefficient up to 10–20 times larger (Benjamin & Ursell 1954;
Hocking 1987; Kidambi 2009) than that predicted by (A1). Comparisons of the theoretical
damping coefficient value with that measured in moving contact line experiments, due
to unavoidable sources of uncertainty in the meniscus dynamics, have always been
mostly qualitative, rather than quantitative, requiring often the use of fitting parameters.
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d̃s  = 0.07

Ju
m

p
-d

o
w

n
0.625 0.650 0.675 0.700

0.05

0.10

0.15

0.20

0.25

0.30

Ω/ω11 Ω/ω11

	δ̃

Inviscid

1.00σ
1.35σ
2.00σ

d̃s  = 0.02

0.50 0.55 0.60 0.65 0.70 0.75 0.80
0

0.05

0.10

0.15
Inviscid

1.0σ

(a) (b)

Figure 9. (a) Same case as for figure 6(a) with d̃s = 0.07. (b) Same as (a), but for d̃s = 0.02 (from figure 2),
a value at which the DC dynamics does not manifest. Solid and dashed lines correspond to stable and unstable
branches, respectively, computed via the WNL analysis in the inviscid case and for different values of damping
coefficient, with σ given by (A1). Markers correspond to the experimental points shown in figure 2 and
extracted from Reclari et al. (2014).

For instance, in their predictive theory for single-mode Faraday experiments, Henderson
& Miles (1990) used an effective fluid viscosity three times larger than the actual one.
Recently, Bäuerlein & Avila (2021) have measured the damping coefficient of the first
anti-symmetric sloshing mode in a quasi-two-dimensional rectangular container, which
was seen to be approximately 1.5 larger than that predicted by the theory (Faltinsen &
Timokha 2009).

Even in the absence of strong contact line dissipation, free-surface contamination
may strongly contribute to the overall damping coefficient. Henderson & Miles (1990)
have considered a fully contaminated free surface, which can be modelled by a
surface film that is free to move vertically but cannot stretch horizontally. They
have also derived an analytical expression for the associated damping, which reads
(ωmn/2Re)1/2kmn cosh2 kmnH/ sinh 2kmnH. If such a contribution was accounted for
in (A1), it would produce a value of 0.0109, which is approximately twice the damping
obtained without contamination (and would correspond to the green lines in figure 9(a)
for 2σ ). The need for a pre-factor of 1.35 in figure 9(a), which approximately corresponds
to a fictitious fluid with a dynamic viscosity 1.8 times larger, is therefore not surprising
when the damping is computed via (A1) and contact line dissipation as well as free-surface
contamination are neglected.

We remark that the reasonings outlined in this appendix in order to elucidate the
effect of viscosity are in fact only qualitative. Many aspects are ignored in the present
inviscid analysis with phenomenological damping, two of which are commented upon in
the following.

Prediction (A1) is only valid for free capillary–gravity waves, whereas dissipation rates
of forced wave motions are generally more complex. In particular, the DC wave evolves
out of a non-resonant forced SC swirling motion. A proper viscous WNL analysis would
produce complex eigenmodes and responses (due to the phase shift owing to viscosity) and
hence complex-valued normal form coefficients. For instance, among these coefficients,
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the imaginary part of νDC (or νSC) multiplied by |B|2 in (A2) could be interpreted as a
sort of nonlinear damping (Douady 1990), (σ − Im[ν]|B|2), whose contribution to the
overall dissipation mechanisms is expected to increase at larger wave amplitudes, hence
influencing the location of the jump-down frequency (note that −Im[ν] can be > 0).
Moreover, the imaginary part of χ f 2 in DC waves would contribute to the overall damping,
(σ + Im[χ ] f 2 − Im[ν]|B|2), by introducing a further effect, proportional to f 2, that finds
its origin in the fact that the DC wave emerges at second order owing to nonlinear square
terms in the first-order non-resonant SC motion.

In contradistinction with the case of a pinned (or fixed) contact line, a formal viscous
analysis undertaking the case of a moving contact line would require the introduction of
a slip length model in order to regularize the well-known contact line stress singularity
(Navier 1823; Huh & Scriven 1971; Davis 1974; Lauga, Brenner & Stone 2007; Viola &
Gallaire 2018).

Most importantly, the inviscid WNL model is not capable of describing the continuous
modulation of the phase lag between the external forcing and the wave amplitude response,
which has been recently demonstrated by Bäuerlein & Avila (2021) (for unidirectional
sloshing waves in a three-dimensional rectangular container) to be of crucial importance
in the correct prediction of the jump-down frequency, otherwise often inaccurate, even
when the considered damping coefficient is that measured experimentally. In principle, a
formal viscous analysis, as briefly introduced above, is expected to correctly capture such
a phase lag.

Another interesting case, which is worth commenting upon, is that shown in figure 9(b).
At a shaking diameter d̃s = 0.02 (the lowest reported in figure 2), the DC dynamics was
not observed at all. This is in conflict with the inviscid straightforward asymptotic analysis,
which always prescribes a divergent behaviour close to the dominant super-harmonic, Ω ≈
ω21/2, even for vanishing d̃s. However, as soon as viscous dissipation is introduced, the
energy pumped into the system is not sufficient to overcome dissipative effects and DC
waves are essentially suppressed, with a system response that follows satisfactorily the
linear solution (see figure 2) showing a SC dynamics ranging over the whole frequency
window, Ω/ω11 ∈ [0, 1], in agreement with experimental evidence.

Appendix B. Asymptotic harmonic solution of the undamped Duffing equation

By analogy with the WNL analysis for harmonic SC wave dynamics presented in § 4.1, we
look for an asymptotic solution of the undamped Duffing equation

ẍ + x + c3x3 = p cos Ωt, (B1)

having the form x = x0 + εx1. Additionally, as standard in asymptotic solutions of the
Duffing equation, we assume a small external forcing amplitude p = εp̂ and detuning from
the exact resonance, i.e. Ω = 1 + λ = 1 + ελ̂, small nonlinearities through c3 = εĉ3 and
the existence of a characteristic slow time scale t̂1 = εt. Under these assumptions, the
ε0-order homogeneous solution simply reads

x0 = C
(
t̂1

)
eit + c.c., (B2)

with C(t̂1) to be determined at next order. At order ε one can readily verify that, in order
to avoid secular terms, a solvability condition must be satisfied. Such a condition leads to
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the very classical amplitude equation

dD/dt = −i λD + i (−1/4) p + i (3c3/2) |D|2D, (B3)

where the change of variable C = Deiλt was introduced and each quantity was recast in
terms of the corresponding physical value (to eliminate the implicit small parameter ε).

By noticing that
− 1/4 ↔ μSC, 3c3/2 ↔ νSC, (B4a,b)

one immediately recognizes that (4.6) has indeed the same structure of the formal
amplitude (B3), thus suggesting that the continuous sloshing system and the
one-degree-of-freedom Duffing system, under the specific conditions listed above, behave
essentially in the same way.

Appendix C. Asymptotic super-harmonic solution of the undamped Helmholtz–
Duffing equation

In this appendix, although with the additional assumption of vanishing damping, we briefly
summarize the super-harmonic WNL solution of the Helmholtz–Duffing equation,

ẍ + x + c2x2 + c3x3 = p cos Ωt, (C1)

derived by Benedettini & Rega (1989) and introduced in § 4.1.
We look for an asymptotic solution of the form x = x0 + εx1 + ε2x2 to (C1) with σ =

0 (undamped oscillator), 2Ω = 1 + λ = 1 + ελ̂ and with small nonlinearities through
c2 = εĉ2 and c3 = ε2ĉ3 (with the cubic term one order smaller than the quadratic one).
The existence of two slow time scales is hypothesized, t̂1 = εt and t̂2 = ε2t. Under these
assumptions, the solution of the ε0-order forced linear problem reads

x1 = C
(
t̂1, t̂2

)
eit + f exp(i (1/2) t) exp(i(λ̂/2)t̂1) + c.c., (C2)

with f = (2/3)p and C(t̂1, t̂2) to be determined at next order. At orders ε and ε2, resonating
terms produced by the weak quadratic and cubic nonlinearities, respectively, arise, thus
requiring the imposition of two solvability conditions prescribing that amplitude C(t̂) must
obey to the following normal forms:

ε1 : dC/dt̂1 = i (c2/2) f 2exp(iλ̂t̂1), (C3a)

ε2 : dC/dt̂2 = −i λ̂ (c2/4) exp(iλ̂t̂1) − i c5f 2A − i 4c4|C|2C, (C3b)

with the full expression of the auxiliary coefficients c4 and c5 (both functions of c2 and c3)
given in Benedettini & Rega (1989). Combining (C3a) and (C3b) into a single amplitude
equation (by summing the two expressions by their respective weights, i.e. ε and ε2, and
reintroducing the physical quantities in order to eliminate the dependence on the implicit
small parameter ε), one obtains

dD/dt = −i (λ+ c5f 2)D + i (1 − λ/2)c2f 2/2 − i 4c4|D|2D, (C4)

with C = Deiλt. Note that the procedure used in the perturbation analysis above and
outlined in Benedettini & Rega (1989) is in fact equivalent to that followed in Nayfeh
(1984) for treating the same second-order super-harmonic resonance in a more general case
of a two-term excitation. By comparing the various terms of (C4) with those of (4.22), the
analogy is evident, thus suggesting that the actual inviscid sloshing dynamics in the DC
wave regime may be, at least qualitatively, described by the undamped Helmholtz–Duffing
equation (4.29) driven super-harmonically.
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Appendix D. The ε2- and ε3-order dynamic and kinematic equations

For completeness, in this appendix we provide the second-and third-order asymptotic
expansions of the free-surface boundary conditions with regards to the most complex
formulation presented in this paper, i.e. that related to the DC swirling. At second order,
the dynamic and kinematic equations evaluated at z = η0 = 0 read, respectively,

∂Φ2

∂t
+ η2 − 1

Bo
∂κ

∂η
(η2) = −∂Φ1

∂T1
− η1

∂

∂z
∂Φ1

∂t
− 1

2
∇Φ1 · ∇Φ1 + 1

Bo
1
2

∂2κ

∂η2 (η1)
2 =F2dyn,

(D1)

∂η2

∂t
− ∂Φ2

∂z
= −∂η1

∂T1
− ∇Φ1 · ∇η1 + η1

∂

∂z
∂Φ1

∂z
= F2kin, (D2)

where ∇η = {∂η/∂r, r−1∂η/∂θ, 0}T, ∂κ/∂η represents the first-order variation of the
curvature,

∂κ

∂η
= ∂2

∂r2 + 1
r

∂

∂r
+ 1

r2
∂2

∂θ2 , (D3)

and it is applied to η2, while ∂2κ/∂η2 is its second-order variation applied to (η1)
2.

However, as the system is expanded around z = η0 = 0, it turns out that ∂2κ/∂η2 = 0.
By pursuing the expansion up to the third order in ε, one obtains

∂Φ3

∂t
+ η3 − 1

Bo
∂κ

∂η
(η3) = −∂Φ1

∂T2
− ∂Φ2

∂T1
− η1

∂

∂z
∂Φ1

∂T1

− η2
∂

∂z
∂Φ1

∂t
− η1

∂

∂z
∂Φ2

∂t
− 1

2
(η1)

2 ∂2

∂z2
∂Φ1

∂t
− ∇Φ1 · ∇Φ2 − η1∇Φ1 · ∂

∂z
∇Φ1

+ 1
Bo

1
2

∂2κ

∂η2 (2η1η2) + 1
Bo

1
6

∂3κ

∂η3 (η1)
3 = F3dyn, (D4)

∂η3

∂t
− ∂Φ3

∂z
= −∂η1

∂T2
− ∂η2

∂T1
− ∇Φ1 · ∇η2 − ∇Φ2 · ∇η1 − η1∇η1 · ∂

∂z
∇Φ1

+ η2
∂

∂z
∂Φ1

∂z
+ η1

∂

∂z
∂Φ2

∂z
+ 1

2
(η1)

2 ∂2

∂z2
∂Φ1

∂z
= F3kin, (D5)

with ∂3κ/∂η3( /= 0) the third-order variation of the curvature, whose explicit expression is
here omitted for the sake of brevity, applied to (η1)

3.
Note that the second order in the straightforward asymptotic model is retrieved by

retaining the ε2-order system only and imposing ∂/∂T1 = ∂/∂T2 = 0. On the other hand,
the equations above reduce to the second- and third-order problem in the SC swirling
formulation when ∂/∂T1 = 0 and the external forcing term, rF cos (Ωt − θ), appears on
the right-hand side of (D4). At each order in ε, by substituting the previous-order solutions,
it is possible to explicitly separate the various forcing contributions by their temporal
and azimuthal periodicities, thus leading to expressions (3.11) for the straightforward
model, (4.5) for the SC model and (4.17) and (4.19) for the DC one.

For the calculation of the amplitude equation coefficients at ε3 order, only resonant
terms matter. These terms, with their corresponding amplitudes, are proportional to
exp(i(ω1nt − θ)) for SC waves and to exp(i(iω2nt − 2θ)) for DC waves (or, more generally,
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proportional to exp(i(ωmnt − mθ))). As an example, in the following we provide the
expression of F̂AĀA

3,kin used in (4.7b) (with A = A1) and in (4.21c) (with A = A2) and which,

together with F̂AĀA
3,dyn, represents the most involved third-order resonant forcing term:

F̂AĀA
3,kin = −∇Φ̂A

1 · ∇η̂AĀ
2 − ∇Φ̂A

1 · ∇η̂AA
2 − ∇Φ̂AA

2 · ∇η̂A
1 − ∇Φ̂AĀ

2 · ∇η̂A
1

− η̂A
1 ∇η̂A

1 · ∂

∂z
∇Φ̂A

1 − η̂A
1 ∇η̂A

1 · ∂

∂z
∇Φ̂A

1 − η̂A
1 ∇η̂A

1 · ∂

∂z
∇Φ̂A

1

+ η̂AĀ
2

∂

∂z
∂Φ̂A

1
∂z

+ η̂AA
2

∂

∂z
∂Φ̂A

1
∂z

+ η̂A
1

∂

∂z
∂Φ̂AĀ

2
∂z

+ η̂A
1

∂

∂z
∂Φ̂AA

2
∂z

+
(
η̂A

1 η̂A
1

) 1
2

∂2

∂z2

∂Φ̂A
1

∂z
+

(
η̂A

1 η̂A
1

) 1
2

∂2

∂z2

∂Φ̂A
1

∂z
+

(
η̂A

1 η̂A
1

) 1
2

∂2

∂z2

∂Φ̂A
1

∂z
. (D6)

The expression of F̂AĀA
3,dyn (not reported here for the sake of brevity) is computed

analogously. The extraction of resonant terms, especially those appearing at third order,
involves tedious calculations due to several possible combinations of the previous-order
solutions. Nevertheless, the procedure is straightforward and systematic, so that tools of
symbolic calculus, e.g. the software Wolfram Mathematica, which was indeed used in this
work, can be employed to ease such a procedure.
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