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Summary

Inbred lines of the nematode Caenorhabditis elegans containing independent EMS-induced
mutations were crossed to the ancestral wild-type strain (N2). Replicated inbred sublines were
generated from the F1 offspring under conditions of minimal selection and, along with the N2 and
mutant progenitor lines, were assayed for several fitness correlates including relative fitness (w). A
modification of the Castle–Wright estimator and a maximum-likelihood (ML) method were used to
estimate the numbers and effects of detectable mutations affecting these characters. The ML method
allows for variation in mutational effects by fitting either one or two classes of mutational effect, and
uses a Box–Cox power transformation of residual values to account for a skewed distribution of
residuals. Both the Castle–Wright and the ML analyses suggest that most of the variation among
sublines was due to a few (y1.5–2.5 on average) large-effect mutations. Under ML, a model with
two classes of mutational effects, including a class with small effects, fitted better than a single
mutation class model, although not significantly better. Nonetheless, given that we expect there to
be many mutations induced per line, our results support the hypothesis that mutations vary widely
in their effects.

1. Introduction

Several important evolutionary phenomena have
been hypothesized to be consequences of recurrent
deleterious mutation. These include inbreeding de-
pression (Charlesworth & Charlesworth, 1987), the
evolution of sex and recombination (Kondrashov,
1988; Charlesworth, 1990), the evolution of mating
systems (Charlesworth et al., 1990), ecological special-
ization (Kawecki et al., 1997), genetic variability for
quantitative traits (Bulmer, 1989), senescence (Char-
lesworth, 1994) and the extinction of small popu-
lations (Lande, 1994; Lynch et al., 1995b). It has been
suggested that mutation accumulation might even
threaten the persistence of our own species (Muller,
1950;Kondrashov, 1995;Crow, 1997).Whether or not
mutations play a role in these phenomena critically
depends on parameters associated with mutations
(Turelli, 1984; Caballero & Keightley, 1994), includ-
ing the genomic mutation rate (U ), the distribution of

selection coefficients (s) and dominance coefficients
(h) of new mutations.

With theory increasingly showing the potential im-
portance of the properties of mutations, there has
been a resurgence of interest in attempting to estimate
U and mean s and h. Although inferring the distri-
bution of mutation effects has received less atten-
tion (Lynch et al., 1999), the distribution of effects is
important for several reasons. First, there is good
reason to expect that mutation effects vary substan-
tially, because genomes contain sites that vary greatly
in functional significance. Second, evaluation of some
evolutionary theories, such as the time to mutational
meltdown, requires knowledge of the distribution of
effects (Lande, 1994, 1995; Butcher, 1995; Lynch
et al., 1995a). Third, estimates of U and mean s
obtained from mutation accumulation experiments
might be substantially biased if the distribution of
mutation effects is not co-estimated.

Evidence for wide variation in effects of inducedmu-
tations comes from an analysis of the effects of ethyl
methane sulphonate (EMS) mutagenesis in C. elegans* Corresponding author. e-mail : peter.keightley@ed.ac.uk
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(Davies et al., 1999; Keightley et al., 2000). The dis-
tribution of effects of EMS-induced mutations was
evaluated by comparing an a priori estimate of the
number of induced mutations at the molecular level
with an estimate of the number of mutations detect-
able from fitness assays. The molecular estimate was
obtained from the expected rates of EMS-induced
point mutations based on experiments to measure
forward mutation rates (Bejsovec & Anderson, 1988)
and suppressor-induced reversion mutation rates.
This yielded the prediction that approximately 45
deleterious point mutations were induced per homo-
zygous mutant line. However, Davies and co-workers
found that only 3.60 (¡1.31) were detectable on the
basis of fitness assays (Keightley et al., 2000). It is
likely, therefore, that there is a large class of muta-
tions with undetectably small, but deleterious, effects.

In the present experiment we created inbred sub-
lines from a random selection of the EMS-induced
mutant lines produced by Davies et al. (1999) in an
attempt to refine our estimates of the number of mu-
tations per line. By crossing the mutant lines to an
inbred wild-type line and inbreeding the offspring, we
produced sublines, which are expected to contain a
random selection of half of the mutations present in
each mutant line. By measuring the fitness of each
mutant line, the wild-type control and the individual
sublines, it should be possible to estimate the number
of mutations present in each mutant line. The pattern
of segregation of mutations among sublines should
give information about the distribution of mutation
effects without having to rely on information from
higher order moments. We have used a modification
of the Castle–Wright estimator (Castle, 1921; Wright,
1968) and a maximum likelihood (ML) method to
estimate the average number of mutations per line.
The ML approach can accommodate data for which
the distribution of residual data points is significantly
different from the expectations of a normal distri-
bution. The method also allows two classes of mu-
tation effect, although it was not possible to fit a
continuous distribution of mutation effects owing to
the computing time required. Our results are consist-
ent with the conclusions of Davies et al., although we
did not have the power to verify the existence of a
large class of very small effect mutations.

2. Materials and methods

(i) Generation of sublines and life history trait assays

We arbitrarily chose ten of the 56 inbred EMS-
induced mutant lines (E1–E9 and E11, collectively
termed ‘progenitor’ lines (p-lines)) produced by
Davies et al. plus one control line (N2), and thawed
them from storage at x80 xC. Unless otherwise
stated, worms were maintained at 20 xC on 3.5 cm

MYOB agar plates seeded with Escherichia coli OP50
using standard techniques (Sulston &Hodgkin, 1988).

N2 males were generated by maintaining a few
young N2 hermaphrodites on 6 cm agar plates at
25.5 xC. These were examined daily, and males were
moved to agar plates containing several hermaphro-
dites of the same line and allowed to cross at 20 xC.
This was repeated for three consecutive generations,
after which time sufficient males had been generated
to carry out the crosses described below. Male worms
of the N2 strain were then randomly selected and
crossed to hermaphrodites of the ten p-lines to pro-
duce offspring that were heterozygous for the mu-
tations in each p-line. We checked that the ratio of
male to hermaphrodite offspring did not significantly
differ from the expected 1 : 1 using a x2 test with one
degree of freedom. Two of ten p-lines (E1 and E7) pro-
duced too few offspring or insufficient males and so
could not be included in the experiment.

For each of the eight remaining p-lines, ten F1
hermaphrodite offspring were chosen at random and
moved to new plates. Each resulting subline was then
inbred for a minimum of ten generations by trans-
ferring one larval hermaphrodite, chosen at random,
to a new plate every generation. This minimizes selec-
tion by bottlenecking the population to one individ-
ual each generation and generates offspring that are
homozygous for about half of the mutations in the
original mutant line, with wild-type (N2) alleles at the
rest of their loci. One backup plate was set up each
generation in case the primary plate failed. If both of
these plates failed, offspring from the previous gen-
eration’s plates (kept at 16 xC in order to slow their
growth) were used. This procedure yielded ten sub-
lines per p-line, labelled E2.1–E2.10, E3.1–E3.10 etc.
Only one subline (E4.10) was lost during the in-
breeding process owing to the primary, backup and
previous generation’s plates failure to produce a
viable worm, suggesting that the worms were subject
to very little natural selection.

Daily productivity and longevity were measured
contemporaneously for the control line (N2), the eight
p-lines and their respective sublines over three assays.
In each assay, each of three people (counters) assayed
one worm for each p-line and subline, and eight
worms for the control (N2) line per assay, giving a
total of nine replicates for each p-line and subline, and
72 replicates for the control line. Within each assay,
each counter’s plates were randomized with respect to
their position in the incubator and the order in which
they were counted. Before each assay, replicates were
maintained separately for three generations in an at-
tempt to remove any possible maternal effects. If any
replicates failed in one assay as a result of unnatural
death owing to human error or worms crawling off
the plate, extra replicates were added to the same
counter’s quota in the following assay.
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Daily productivity was recorded by counting the
number of offspring surviving to the L3 larval stage
daily for the first 5 days of productivity. Longevity
was scored by recording the day on which the parental
worm failed to respond to a light touch from a
platinum pick and showed any loss of turgor or
visible sign of decay. Four fitness correlates were ob-
tained from the productivity data: early productivity
(days 1–2), late productivity (days 3–5), total pro-
ductivity (days 1–5) and relative fitness. Relative fit-
ness (w) is a measure related to intrinsic population
growth rate and is suitable for an age-structured
population. To calculate w, the intrinsic growth rate
of the controls (rc) within each assay was computed by
solving Eqn 1X
x

exrcxlc(x)mc(x)=1, (1)

where lc(x) and mc(x) are the least-square means of
the proportion of worms surviving to day x and fec-
undity at day x, respectively, for the controls within
an assay. Relative fitness was then calculated separ-
ately for each individual from Eqn 2

wijk=
X
x

exrcixlijk(x)mijk(x), (2)

where rci is the average intrinsic growth rate for the
control lines within an assay i, and lijk(x) and mijk(x)
are the proportions of worms surviving to day x and
fecundities at day x, respectively, for assay i, worm
j of line k (Charlesworth, 1994, p. 120).

(ii) Castle–Wright estimator of number of mutations

The Castle–Wright estimator can be used to calculate
the effective number of factors (ne) contributing to the
difference in a trait between two divergently selected
inbred lines using information about the phenotypic
means and variances of the two progenitor lines and
their line-cross derivatives (Castle, 1921; Wright,
1968; Lande, 1981; Cockerham, 1986). We can mod-
ify this method to estimate the number of genes con-
tributing to the fitness difference between N2 and a
given p-line, assuming that all mutations are additive,
unidirectional in effect and unlinked, and have equal
effects. With this modification, the Castle–Wright
estimator is as follows

n̂e=
(m̂N2xm̂i)

2xŝ 2
m̂N2

xŝ 2
m̂ i

4ŝ2
si

, (3)

where m̂N2 and ŝm̂N2

2 are the observed mean and sam-
pling variance of the trait value for N2, and m̂i and ŝm̂ i

2

are the observed mean and sampling variance of mu-
tant p-line i. ŝsi

2 is the segregational variance among
the inbred sublines for p-line i (Lynch &Walsh, 1998).
The above means and sampling variances, and the

segregational variances amongst each p-line’s sub-
lines, were estimated using the MIXED procedure of
SAS 6.12 (SAS Institute, 1997) for each trait. Factors
included in the model were assay (1–3), counter (1–3),
line (1–8), line-type (N2, p-line or subline) and subline
(1–10, nested within linerline-type). Counter, assay
and subline (linerline-type) were treated as random
effects ; all other effects were treated as fixed.

The standard error of n̂e for the Castle–Wright es-
timator can be approximated using the delta method
(Lande, 1981). Modifying this formula to use a vari-
ance estimate from sublines instead of an F1, we ob-
tain Eqn 4.

Var(n̂e) ’ 4n̂2
e

4 ŝ2
m̂N2

+ŝ2
m̂ i

� �
m̂N2xm̂ið Þ2

+
Var ŝ2

si

� �
ŝ4
si

0
@

1
A: (4)

This estimate ignores the correction factor pro-
posed for the numerator of the Castle–Wright esti-
mator (ŝm̂N2

2 +ŝm̂ i

2 ) because it has been suggested that
this would unduly complicate the variance (Cocker-
ham, 1986).

(iii) Likelihood approach for estimating
mutational parameters

Using a ML method to estimate the number of loci
contributing to the fitness difference between N2 and
a given p-line has the advantage that it uses infor-
mation about the distribution of fitness values
amongst sublines. Similar ML approaches have been
used to estimate mutational parameters in previous
experiments (Keightley, 1994; Keightley & Bataillon,
2000; Keightley et al., 2000; Vassilieva et al., 2000) ;
the method used here is based on Keightley &
Bataillon (2000). In general, these approaches assume
that mutations have additive effects on fitness that
follow a given distribution and that, once these effects
are removed, the residual data points are normally
distributed with the same environmental variance and
mean. As an extension to this method, we have re-
laxed the assumption of normally distributed residuals
by assuming instead that the residuals are distributed
normally when transformed by an unknown (but esti-
mated) power k (Box & Cox, 1964).

Following Box and Cox (1964), we assume that for
some unknown k, observations (y) transformed by the
function

y(k)=
ykx1

k
(k–0)

log y (k=0)

8<
:

satisfy the full normal theory assumptions, assuming
that y>0. This function is continuous at k=0 and is
therefore preferable to simply using yk as the trans-
formation (Box & Cox, 1964).
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Replicates of N2 were assumed to have a mean m
and a varianceVE, and to follow a normal distribution
when transformed by an unknown power (k). The
p-line and subline replicates were also assumed to have
environmental variance VE, and the number of muta-
tions in each of the p-lines was assumed to be a Pois-
son random variable with mean l. Each mutation was
assumed to be unlinked from others, to have a nega-
tive effect on the trait and to fall into one of two dis-
crete classes of effect size (s1 and s2), where the
proportion of class 1 mutations (R) is also a par-
ameter of the model. As a special case, we can assume
that the proportion of mutations in class 1 is 1; we
term this the one-class model. The model allows any
number of fixed effects with any number of levels ; we
modelled both counter and assay as fixed effects for
the experimental data.

The levels within a fixed effect were all assumed to
have the same variance but different means (scaled
relative to the largest level in each fixed effect). For
more than one fixed effect, the total of the relevant

difference between levels for each fixed effect is cal-
culated separately for each replicate (k) of each p-line
(i), and this total is labelled aik for the following
equations. Because all levels are scaled relative to the
largest for each fixed effect, aik can only be negative,
meaning that all residuals will be positive when aik is
removed, satisfying the requirement that y>0 for the
Box–Cox transformation.

If we let Xik equal the phenotypic value of p-line i
replicate k then, according to the assumptions above

Xik=m+x1is1+x2is2+aik+e(k)ik , (5)

where x1i is the number of mutations in class 1 for p-
line i and x2i is the number of mutations in class 2 for
p-line i, s1 and s2 are the effects of class 1 and class 2
mutations, respectively, (x1+x2) is a Poisson deviate
with mean l, and x1 is a binomial deviate from a total
of (x1+x2) possible mutations with a probability of
success of R. eik

(k)
is a transformed Gaussian deviate

with mean 0 and variance VE.
Similarly, if we let Yiln equal the phenotypic value

of subline l, replicate n from the p-line i, then

Yiln=m+y1ils1+y2ils2+ailn+e(k)iln , (6)

where y1 and x1 are binomial deviates with a total of x1

and x2 possible events, respectively, and probabilities
of success of 0.5.

In the calculation of the likelihood for each line, the
likelihood of obtaining the data for that line at every
point in the probability space needs to be summed
across all the possible points. In our model, there can
be anywhere from 0 to an infinite number of mu-
tations present in each p-line. Of these ( j) mutations,
any number m (0fmfj) could be in class 1; the
remainder ( j–m) belong to class 2. Some number p
(0fpfm) of class 1 mutations and some number q
[0fqf( j–m)] of class 2 mutations are present in each
of the ten sublines of a given p-line. For each possible
combination of subline class 1 and class 2 mutations,
we need to calculate the likelihood of obtaining our
subline data for the ten sublines belonging to each
p-line. Each p-line and subline has some number of
replicates (p-reps and s-reps).

The likelihood associated with a single line’s data
will therefore be

where p(j|l) denotes the (Poisson) probability that the
p-line i contains j mutations given the mean l, bi(m|j)
denotes the (binomial) probability that p-line i con-
tains m class 1 mutations given that line i contains a
total of j mutations, and the probability of each mu-
tation being class 1 is R, bi(p|m) is the (binomial)
probability that subline i, l has p class 1 mutations
(given that p-line i has m), bi(q|j–m) is the (binomial)
probability that subline i, l has q class 2 mutations
(given that p-line i has j–m), and f is a transformed
Gaussian probability density function, shown below
(adapted from Box & Cox, 1964)

f(y)=
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
(k)

q � exp x
1

2

(y(k)xm(k))
2

s2
(k)

 ! !
� y(kx1),

(8)

where y and y(k) are the untransformed and trans-
formed observations as described above. There are
three parameters : m(k) and s(k)

2 are the mean and
variance of the transformed variable, respectively,
and k is the power of the transformation.

The overall log-likelihood is then obtained by
adding the sum of the log-likelihoods across all p-lines

L(linei)=
X1
j=0

p( jjl)r
Xj

m=0

bi(mj j)r
Yp-reps
k=1

f(Xikxms1x( jxm)s2xaik)

  

r
Ysublines
l=1

Xm
p=0

bi(pjm)r
X(jxm)

q=0

bi(qj( jxm))r
Ys-reps
n=1

f(Yilnxps1xqs2xailn)

!! ! !
,

(7)
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to the log-likelihood for N2 data. The log-likelihood
for the N2 data was summed over all N2 replicates,
where the likelihood for each N2 replicate is :

L(Zi)=f(Zixai),

where Zi is the observation for N2 replicate i and ai
denotes the total effect of any fixed effects modelled.

Approximate standard errors for all parameters
were calculated by fitting a quadratic function to a
profile likelihood of the parameter of interest.

To verify the calculations and functionality of the
ML program, simulations were carried out using the
same mutational model as in the likelihood calcu-
lation.

(iv) Likelihood maximization

It is necessary to search the likelihood space
thoroughly to be sure that any maximum found is the
true global maximum. Starting values for m, VE and
any fixed effects were estimated from the N2 data. In
order to obtain starting values for the remaining par-
ameters, a grid search was carried out, without maxi-
mization, where the likelihood was evaluated for a
combination of set values for each parameter over a
broad range.

Using the most likely values obtained during the
grid search, a linear search was then carried out in
which a series of fixed values for l were selected about
its starting value, because this is the parameter of
interest. The likelihood was maximized with respect
to all other parameters, using the simplex algorithm
(Nelder & Mead, 1965). The simplex was then re-
started using the values for m, VE, l, s and k that gave
the highest likelihood during the linear search, and
the likelihood was maximized with respect to all
parameters. The simplex algorithm was restarted after
each maximization until there was no further increase
in the likelihood.

(v) E5.2 and E5 extra line crosses

From the primary experiment, it was clear that line
E5.2 had a significantly lower relative fitness than
either of its progenitor lines (E5 and N2). Under the
assumptions that all mutations are deleterious, freely
recombining and show no epistasis, this result is
unexpected. Possible explanations are : (1) some lines
might carry mixtures of mutations with both positive
and negative effects on relative fitness, in which case it
would be possible for sublines to have fitnesses outside
the range of their progenitor lines ; (2) mutations in
line E5 might interact epistatically, such that they
only cause the dramatic reduction in fitness visible in
line E5.2 when segregated in a line cross ; (3) a new

spontaneous mutation occurred during the genera-
tions of selfing that produced subline E5.2.

In order to test the hypothesis that the reduction
in relative fitness in subline E5.2 was due to a new
spontaneous mutation, we subjected both lines E5
and E5.2 to further line crosses. If a new large-effect
mutation had occurred during the generations of
selfing then we would expect to see its segregation in
sublines generated from a cross between E5.2 and N2,
and no evidence of it in sublines produced from a
cross between E5 and N2. Alternatively, if mutations
present in line E5 cancelled out each others’ effects on
w through epistasis or by having both positive and
negative effects on w, then we would expect to see
further sublines (generated from lines E5 and N2)
performing outside the range of the two progenitor
lines.

We generated 20 sublines from both lines E5 and
E5.2 using the same experimental design as for the
main experiment except that two new (independently
frozen) replicates of the ancestral wild-type line
(labelled N2A and N2B) were thawed. E5 and E5.2
were each crossed to the males of N2A and N2B, and
ten offspring from each cross were selected randomly
and selfed under minimal selection conditions for
seven generations. This produced 44 different lines
that were then assayed for total productivity : N2A,
N2B, E5.2, E5 and 20 sublines for each of E5.2 and
E5. Six replicates were set up for each of these lines,
giving a total of 264 data points.

The results of the productivity assay were analysed
as before using the MIXED procedure of SAS 6.12
(SAS Institute, 1997). Lines E5 and E5.2 were ana-
lysed separately, and the factors included in each
model were line (N2 or E5/E5.2), line-type (wild type,
p-line or subline), subline (1–20, nested within
linerline-type) and N2 type (A or B). N2 type and
subline (linerline-type) were treated as random ef-
fects ; all other effects were treated as fixed. We also
attempted to estimate the number of mutations seg-
regating in line E5.2 and E5 by applying the Castle–
Wright estimator and the ML approach discussed
above.

3. Results

(i) Segregation of mutant phenotypes and
Castle–Wright estimates

A total of 830 data points were obtained from the
experiment for five fitness correlates, and a total of
193,157 offspring were counted to obtain the pro-
ductivity data. EMS mutagenesis has the strongest
effects on early productivity, and this is reflected in a
large effect on relative fitness (Table 1, Fig. 1). Mu-
tational effects on late productivity and longevity,
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however, are relatively weak on average (Table 1,
Fig. 1). This pattern was also noted by Keightley et al.
(2000), who hypothesized that this was due to mu-
tations lengthening mean development time, resulting
in a decrease in early reproductive output. Deleterious
mutations might therefore either increase or decrease
late productivity, by delaying development or by
reducing total productivity. Longevity in particular
appears to be a small ‘mutational target ’, with large
amounts of environmental variation. This has also
been noted in previous literature, several experiments
finding little evidence for strong directional effects of
mutations on longevity (Keightley & Caballero, 1997;
Pletcher et al., 1999; Vassilieva & Lynch, 1999;
Keightley et al., 2000). Neither longevity nor late
productivity fit a model with only negative-acting
mutations, so these traits were excluded from any of
the ML analyses.

The EMS-induced mutant lines tested all had lower
point estimates for w than N2 (seven out of eight were
significantly lower ; p<0.0001; Fig. 1A), seven out of
eight had lower point estimates for total productivity
(five were significant; p<0.05; Fig. 1B), and, for lon-
gevity, none were significant (for all, p>0.5; Fig. 1C).
For w, the mean values of the ten sublines fell between
those of their respective p-lines and the N2 for all but
one of the lines studied (Fig. 1A). This was also true
for all but two lines for total productivity (Fig. 1B)
and all but three lines for longevity (Fig. 1C). Most
individual sublines also had point estimates for w
between their respective p-line and N2 (Fig. 2), with
one major exception: line E5.2 had a significantly
lower early productivity, total productivity and w
(p<0.0001) than both line E5 and N2 from which
it was derived (Fig. 2D). It is shown later that
this is likely to be the result of a single large-effect
spontaneous mutation that occurred during the ten
generations of inbreeding needed to produce sublines.
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Table 1. LS-means from Proc MIXED for lines of type N2, p-line or subline. Standard errors are shown
in brackets

Trait N2 mean p-line mean Subline mean

w 1.00 (0.0293) 0.611 (0.0739) 0.792 (0.0244)
Early productivity (worms) 211 (15.9) 140 (21.0) 171 (15.7)
Total productivity (worms) 258 (8.30) 208 (16.7) 231 (7.58)
Late productivity (worms) 46.7 (10.3) 70.7 (12.1) 60.1 (9.61)
Longevity (days) 11.9 (0.367) 11.6 (0.523) 11.9 (0.367)

Fig. 1. Means for relative fitness (w), total productivity
and longevity for N2 (horizontal bar)¡standard error
(grey box), compared with the means of the p-lines and
sublines by line¡standard error. Asterisks above the
means of the p-lines and sublines correspond to the
significance of the difference between the given genotype
and the wild type. * p<0.05; ** p<0.01; *** p<0.0001.
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The data for this subline were therefore excluded from
the following analyses.

Several of the data points for line E4 were also
excluded because many of the worms died during
the assay of what were considered to be unnatural
causes. Most of these deaths were a result of the

worms desiccating after crawling onto the plastic
edge of the agar plate. Significantly ( p<0.0001) more
worms from line E4 and its sublines (17 worms) died
in this manner than from the rest of the exper-
iment put together (only two worms). It is conceivable
that line E4 contains a behavioural mutation that
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Fig. 2. Means for relative fitness by line, comparing the means for the two progenitor lines (p-line and N2) with all
the sublines generated for that line (¡standard errors). Asterisks above the error bars correspond to the significance
of the difference between the given subline and the wild type. Asterisks below the error bars correspond to the
significance of the difference between the given subline and the p-line. * p<0.05; ** p<0.01; *** p<0.0001.
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causes the worms to be more likely to die in this
manner.

To estimate the variability among sublines, we
performed a mixed-model analysis (SAS Institute,
1997). The effects of counter and assay on all three
traits are non-significant but there is significant vari-
ation among sublines within lines for most traits
(Table 2, Fig. 2). This suggests that much of the
variation among sublines within a line is due to a few
mutations of large effect, or that there is substantial
variation in mutational effects or epistasis among
mutations. The large variation in relative fitness
among sublines for several p-lines can be seen in Fig.
2. For example, the sublines of line E3 (Fig. 2B) ap-
pear to have a bimodal distribution of relative fitness
values, implying that there is one large-effect mu-
tation segregating amongst them. Contrasts between
p-line E3 and E3 sublines show that three of the sub-
lines (E3.1, E3.4 and E3.6) are significantly different
from N2 ( pf0.0005) but not E3, whereas the other
seven sublines are significantly different from E3

(pf0.0001) but not N2 (Fig. 2B). This pattern is most
striking in line E3, although most sublines for the
other p-lines show significant differences from one
progenitor but not the other. Very few sublines were
nonsignificantly different from either progenitor
(seven out of 78, excluding subline E5.2). Similarly,
very few were significantly different from both (seven
out of 78, excluding subline E5.2) (although, in three
of these cases, the subline performed worse than
either parent). This limited evidence is suggestive of
one or two major effect mutations (rather than many
similarly sized small effect mutations) for most of the
lines tested.

The Castle–Wright estimator was used to estimate
the effective number of segregating factors within
each mutant p-line. These estimates were then aver-
aged over all eight p-lines to give estimates for each
trait (Table 3). Estimates of the effective number of
factors using the Castle–Wright estimator are quite
low and, despite the large standard errors, are not
substantially different from the numbers estimated by

Table 2. ANOVA table for mixed-model general linear models (GLMs) of relative fitness (w), early productivity,
total productivity, late productivity and longevity. Random effects were estimated by restricted maximum
likelihood (REML) and significance was tested with Z scores rather than F statistics

Trait Effect Variance dfnum dfden F Z

w Line 7 76.8 1.82
Line type 1 78.7 6.72*
Subline (linerline-type) 0.0311 5.07**
Assay 6.52r10x5 0.28
Counter 9.32r10x5 0.3
Residual 0.0587 19.1**

Early productivity Line 7 77.1 1.48
Line-type 1 77 5.36*
Subline (linerline-type) 1240 5.21**
Assay 683 0.323
Counter 0.928 0.912
Residual 2110 19.4**

Total productivity Line 7 76.3 1.65
Line-type 1 78 2.37
Subline (linerline-type) 1570 5.18**
Assay 86.7 0.90
Counter 0.00 –
Residual 2570 19.1**

Late productivity Line 7 77.5 5.46**
Line-type 1 80.4 2.21
Subline (linerline-type) 252 3.73**
Assay 262 0.98
Counter 11.8 0.69
Residual 1430 19.1**

Longevity Line 7 75.7 0.55
Line-type 1 80.6 0.62
Subline (linerline-type) 0.132 0.67
Assay 0.360 0.92
Counter 0.00 –
Residual 8.76 18.8**

* p<0.05.
** p<0.001.
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Davies et al. (1999) or Keightley et al. (2000). The
Castle–Wright estimator assumes equal effects but, if
this assumption is violated, the estimator will under-
estimate the number of mutations present. Any single
large-effect mutation segregating amongst the sub-
lines produced from a cross will lead to a large
amount of among-subline variance, reducing the num-
ber of factors estimated. It is possible to correct for
this bias if the variation of effects is known (Zeng,
1992) ; alternatively, a ML approach can be used that
allows more than one class of mutation effect.

(ii) Likelihood analysis

We verified the utility of ourML approach using simu-
lations, the results of which are shown in Table 4.
Each set of parameter values in Table 4 was used to
simulate 50 data sets. We then used the ML approach
to estimate the parameter values from the data. Mean
estimates for all parameters do not differ significantly
from the simulated values. However, the estimates of
some parameters appear to be noisier than others ;
estimates of k have the largest standard deviations.
Because the accuracy of the estimate of k depends on
the number of data points modelled, the two-class
model simulations were designed to have a compar-
able number of data points per simulation to the
experimental data. For each simulation, parameter
values were estimated from 600 data points (in com-
parison to 830 data points for the actual experiment).
Over the five sets of simulations, there is a high cor-
relation between the simulated and average estimated
values for k (r=0.927 for one class of mutational ef-
fects ; r=0.997 for two classes of mutational effects).

The one-class model allows one class of mutational
effects and assumes additivity ; in this respect, it is
comparable to the Castle–Wright estimator. The num-
ber of mutations estimated for the least noisy traits
are all similar, low and not substantially different from
the Castle–Wright estimates but have smaller stan-
dard errors (Table 5). The two-class model allows for
two classes of mutations with different effects. It was
expected that including variable effects in this way
would lead to higher estimates for the number of
mutations with correspondingly lower average effects
(Keightley, 1998). However, for the three least noisy
traits, the most likely mutational model found was
a few (y0.13) very-large-effect mutations (y70%)
and many (y1.3) medium-effect mutations (y20%)
(Table 5). The large-effect class seems to emerge as
a result of the large-effect mutation segregating in line
E3 (Table 3, Fig. 2B). With the one-class model, the
fitness reduction associated with line E3 can only be
explained away with multiple medium-effect mu-
tations ; therefore, the number of mutations estimated
with the two-class model is lower (albeit not signifi-
cantly) than that for the one-class model. For all threeT
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Table 4. Simulation results for maximum likelihood one- and two-class models. Relative fitness data was simulated according to the models described for the ML
analyses. For the one-class model, two sublines per p-line were modelled for a total of 20 simulated p-lines with three replicate data points per p-line and subline.
For the two-class model, more (30) p-lines with more ( five) replicate data points were modelled owing to the extra number of parameters to be estimated. There
were 50 replicates per parameter combination and standard deviations over the 50 replicates are shown in brackets

One-class model

Simulated values Estimated values

l s VE k l s VE k

1 0.05 0.001 1 1.10 (0.545) 0.0496 (0.00840) 0.000984 (9.28r10x5) 0.658 (2.39)
1 0.1 0.001 1 0.979 (0.196) 0.0999 (0.00307) 0.000979 (8.13r10x5) 1.10 (1.87)
2 0.05 0.001 1 2.02 (0.498) 0.0487 (0.00437) 0.000990 (9.83r10x5) 1.04 (2.44)
2 0.1 0.001 2 1.98 (0.315) 0.0995 (0.00192) 0.000977 (8.86r10x5) 1.66 (1.72)
2 0.1 0.001 2 2.01 (0.305) 0.100 (0.00188) 0.000995 (9.51r10x5) 1.85 (1.59)

Two-class model

Simulated values Estimated values

l s1 s2 R VE k l s1 s2 R VE k

1 0.05 0.02 0.4 0.0001 1 0.957 (0.169) 0.0504 (0.00192) 0.0201 (0.000956) 0.394 (0.108) 9.87r10x5 (5.79r10x6) 1.11 (2.57)
4 0.05 0.03 0.6 0.0001 x2 4.08 (0.390) 0.0501 (0.000532) 0.0300 (0.000661) 0.594 (0.0661) 9.86r10x5 (5.40r10x6) x2.14 (2.71)
2 0.1 0.03 0.6 0.001 1 2.07 (0.379) 0.0993 (0.00388) 0.0316 (0.00735) 0.588 (0.0943) 0.000980 (6.38r10x5) 0.876 (1.13)
1 0.05 0.03 0.4 0.001 2 1.28 (0.495) 0.0475 (0.0143) 0.0299 (0.0102) 0.354 (0.194) 0.000990 (6.74r10x5) 2.27 (1.21)
3 0.05 0.03 0.4 0.001 x1 3.16 (1.17) 0.0534 (0.0192) 0.0317 (0.0138) 0.422 (0.263) 0.000990 (6.31r10x5) x0.935 (1.28)
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traits studied, the two-class model fitted significantly
better than the one-class model (p<0.0001 in all
cases).

The above analysis appears to be dominated by
the single large-effect mutation in line E3. Because
this might obscure patterns caused by smaller-effect
mutations in the other lines, we applied the two-
class ML model to our data, excluding line E3. The
results of this analysis are shown in Fig. 3A–C for the
trait w ; similar results were found for early and total
productivity. For w, there is virtually no change in
log-likelihood above approximately 1.5 mutationsT
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Fig. 3. Plots of total numbers of mutations against
log-likelihood (A), number of mutations (B) and
contribution to fitness difference of mutations (C), for class
1 mutations (squares), class 2 mutations (triangles)
and class 1+class 2 mutations (diamonds). The number of
class 1 or class 2 mutations was calculated by multiplying
the proportion of class 1 or class 2 mutations (R or 1xR)
by the total number of mutations. The contribution to
fitness difference from class 1 or class 2 mutations is
calculated by multiplying the number of class 1 or class 2
mutations by their estimated effect size.
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(Fig. 3A) (lower confidence limit of 0.487 mutations),
suggesting that any number of mutations above y1.5
is equally supported by the data. As this estimate of
total mutation number increases, the number of class
1 (medium-effect) mutations in the best fitting model
remains constant (at y1.5) ; only the number of class
2 (small-effect) mutations increases (Fig. 3B), and
these have correspondingly lower effects on fitness,
such that their total contribution to the average fitness
difference remains more or less constant (Fig. 3C).
The only way to distinguish between a model with a
few small-effect mutations (e.g. four total mutations,
y2.5 of which have very small effects ofy0.8%) and
a model with many very-small-effect mutations (e.g.
20 total mutations, y18.5 of which have very small
effects of y0.1%) is to use information about the
distribution of these mutations amongst the sublines.

It is unlikely, given the number of sublines used in this
experiment and the level of environmental variation,
that it would be possible to distinguish between these
distribution patterns. For all traits, when line E3 was
removed, a model with two classes of mutations is
more likely than a model with one class, but not sig-
nificantly so (p<0.1).

Estimates of k, from the two-class ML model
including line E3, were tested to see whether they
increased the fit to normality of the N2 data after it
was transformed, using a Ryan–Joiner normality test
(Ryan & Joiner, 1976). Because N2 replicates were
assumed to have no mutations, the residual data
points could be calculated simply by removing the
fixed effects estimated from the ML model. N2 data
for both w and early productivity departed signifi-
cantly ( p<0.025) from the expectation of a normal
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distribution without the transformation, but not once
transformed (p>0.1). When the same tests were car-
ried out for total productivity, the data did not sig-
nificantly depart from a normal distribution, with or
without the Box–Cox transformation (p>0.1). For
relative fitness, a significant increase in the likelihood
(p=0.0285) is obtained when k is estimated instead of
being fixed at 1. The same is true of early productivity
(p<0.0001) and total productivity (p<0.0001).

(iii) E5.2 and E5 extra line crosses

Unexpectedly, line E5.2 had a significantly lower
relative fitness than either of its progenitors, E5 and
N2. To investigate this further, 20 sublines were gen-
erated from both lines E5.2 and E5 by crossing them
to two freshly thawed replicates of the ancestral N2
(N2A and N2B). Subline 9 generated from line E5.2
was lost during the generations of selfing, owing to the
extremely low fitness of the line. Even if this lost line is
ignored, it is clear that there is one large-effect mu-
tation present in E5.2, which is segregating amongst
the sublines (Fig. 4A). Sublines 4, 16, 17 and 19,
which appear to contain this mutation, are not sig-
nificantly different from their progenitor line E5.2 but
are all significantly different from N2 (pf0.0001). Of
the remaining 15 sublines, ten are significantly differ-
ent from both E5.2 and the N2 replicate from which
they were generated; only five are not significantly
different from line N2. This indicates that there are
likely to be some other smaller-effect mutations seg-
regating amongst the sublines of this cross.

Using the Castle–Wright estimator, we estimated
that there were 2.64 mutations segregating in line E5.2
(SE 2.39) with an average effect of 0.645. Using our
one-class ML model, we estimated that E5.2 con-
tained 1.00 (SE 1.42) mutations with an average effect
of 0.957. For the two-class model, we estimated that
E5.2 contained 2.00 (SE 2.00) mutations, and that
0.500 of these had an effect of 0.689, whereas the
remainder had a lower effect size of 0.278.

All of the extra 20 sublines produced from line E5
had fitness values that were intermediate between the
two progenitor lines and there appears to be no evi-
dence of a single large-effect mutation of the size that
was observed in the original line E5.2 (Fig. 4B). Using
the Castle–Wright estimator, we estimated that there
were 5.88 mutations (SE 8.28) with an average effect
of 0.212. Applying our one-class MLmodel, we found
the most likely model contained 8.87 mutations,
although this model was not a significantly better
fit than any models with more than y0.5 mutations.
The most likely two-class model tended towards the
results from the one-class model.

We have established that E5.2 contains a single
large-effect mutation but we were unable to detect this
mutation in the progenitor line E5, suggesting that the

mutation occurred spontaneously during the gener-
ations of inbreeding that produced line E5.2. Altern-
atively, it is possible, although unlikely, that the
mutation causing the reduction in fitness is present in
line E5 but that another tightly linked mutation
masked its effects. These mutations might then have
been separated after a recombination event during the
period of inbreeding that led to line E5.2 but none of
the other 29 sublines.

4. Discussion

Davies et al. (1999) compared the number of EMS-
induced mutations detectable from fitness assays to
the number estimated to have been induced in the
DNA. They estimated that they had induced an
average of at least 45 amino-acid-changing mutations
that would be deleterious under natural conditions
per homozygous line they studied. However, Davies
et al. (1999) were able to detect only 1.6 (SE 0.21)
(assuming equal effects) or 2.5 (assuming a c distri-
bution of effects) mutations affecting productivity.
Subsequently, Keightley et al. (2000) found that only
3.60 (¡1.31) mutations could be detected per line on
average with effects on relative fitness. The aim of the
present experiment was to estimate more accurately
the number of induced mutations per EMS-induced
mutant line, by producing sublines for a random
selection of the mutant lines. The use of sublines al-
lows large-effect mutations to segregate and it should
therefore be possible to determine whether the fitness
difference between a wild-type line and a single EMS-
induced mutant line is primarily due to few or many
mutations with correspondingly large or small effects
on fitness. This information in turn can then be used
to draw inferences about the distribution of mutation
effects.

We used a modification of the Castle–Wright esti-
mator (Castle, 1921) to estimate the number of mu-
tations segregating per line and their average effect.
With this approach, we estimated that there were 2.23
mutations on average affecting relative fitness (SE
2.71) and 2.46 on average affecting early productivity
(SE 5.96). We also developed a maximum-likelihood
approach to estimate the number of mutations, which
can allow for variable mutation effects, modelled as
two classes of effects. Under the assumption of two
mutation classes, ML estimates of mutation numbers
are lower than either the Castle–Wright or ML esti-
mates under a one mutational class model. This sur-
prising result seems to be a consequence of the
segregation of a single large-effect mutation in one
line (E3), which is modelled as several medium-effect
(15–20%) mutations under the one-class model but as
a single large-effect mutation under the two-class
model. When line E3 was removed from the analysis,
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it was found that the most likely two-class model
consisted of approximately 1.5medium-effect (y20%)
mutations plus several smaller-effect mutations affect-
ing w. However, it proved impossible to determine the
number and corresponding effect size of these smaller-
effect mutations, despite the extra power afforded by
producing sublines. Our data are therefore consistent
with both a model with several small effect mutations
(y3 mutations with an effect size of y1%) and a
model with many very small effect mutations (>20
mutations with an effect size <0.2%). Distinguishing
between these models would clearly require very
much more data.

Our estimates of mutation number are dependent
on how we treat variability in effects of mutations. If
it is assumed that all mutations have the same effect
then it is possible to obtain a concrete estimate of their
number, but this is not possible if we assume that
there are two classes of effects. Unfortunately, we
were unable to test the fit of a c or other continuous
distribution because of the limits of computing power,
but such an analysis might provide greater support for
a leptokurtic distribution of mutation effects than the
two-class model.

There are at least three possible explanations
for the difference between the numbers of mutations
estimated to have been induced and the number
of mutations detected at the phenotypic level. If the
estimate of at least 45 deleterious mutations induced
per p-line is correct then our results suggest that the
distribution of mutation effects is highly leptokurtic
and that a large class of mutations have undetectable
effects in laboratory assays. This is consistent with
several other direct and indirect estimates of the shape
of the distribution of mutation effects. For example,
transposable elements provide an opportunity to con-
trol the number ofmutational events at theDNA level,
and experiments using these have provided estimates
of the distribution of mutation effects. Analysis of
the effects of P-element insertions in Drosophila
melanogaster on metabolic parameters (Clark et al.,
1995) and bristle numbers (Lyman et al., 1996)
suggest that mutations with the smallest effects are the
most frequent. Similarly, there is direct evidence from
Tn10 insertions in E. coli for an L-shaped distribution
of mutational effects (Elena et al., 1998; Elena &
Lenski, 1997). A second possibility is that each p-line
carries many fewer than 45 deleterious mutations on
average, because our estimates of the number carried
are indirect. A possible way to resolve this would be to
estimate the number of mutational events at the DNA
sequence level directly (Denver et al., 2000). Finally,
it is possible that assaying fitness under standard lab
conditions would not reveal every large effect del-
eterious mutation and that assaying fitness under
a range of environments could reveal many more
potentially large-effect deleterious mutations.

If the distribution of mutation effects is L-shaped
and the vast majority of deleterious spontaneous
mutations have nearly neutral (but still deleterious)
effects on fitness then this could have implications for
several areas of evolutionary theory. For example,
mildly detrimental mutations on the border of neu-
trality are the most damaging to population viability
if the effective population size is larger than a few in-
dividuals (Lande, 1994). Second, mutations of very
small effect are undetectable in the vast majority of
fitness assays, leading to underestimates of the mu-
tation rate, which has implications for our understand-
ing of the evolution of sex. It is thought that that the
diploid mutation rate must be above one per gener-
ation for sexual reproduction to be maintained by del-
eterious mutations alone (Kondrashov, 1988, 1995).
Many estimates of the mutation rate from mutation
accumulation experiments that do not account for
variability in the effects of mutations fall well below
this value (see reviews by Drake et al., 1998; Keightley
& Eyre-Walker, 1999; Lynch et al., 1999). However,
these might be substantial underestimates if the
degree of variation in mutation effects is high.

We thank B. Charlesworth, J. Christians and two anony-
mous referees for helpful comments and suggestions, and
J. Elrick for technical assistance.
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