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Abstract

An immune set is found such that the recursive equivalence type of its infinite subsets are
universal in a very strong sense.

1. Introduction

Let @ be the non-negative integers and for ¢ = w let (¢) be the recursive
equivalence type of ¢. A is of course the isols.

THEOREM 1. There is an immune n S o such that for every infinite £ < g
and R < w x o the graph of a function r, if (3z € A)({&),z) € R, thenr is even-
tually recursive combinatorial.

THEOREM 2. There is an immune 1 S w such that for every infinite £ < 1
and R < o x o the graph of a function r, if 3zeA)(KE),z)eR, then r is
eventually recursive increasing.

THEOREM 3. n may be taken to be A} and © may be taken to be ¢ (and
retraceable).

Theorem 3 is a rather curious result. Theorems 1 and 2 look very much
alike, the requirements on # appearing only slightly stronger than those on 7.
We have no idea as to what degree the of n might be, our v on the other hand
is of degree 0’. As an open problem we ask if better upper bounds or perhaps
some lower bounds could be found for # and 7?

2. Details

Use lower case Greek letters for subsets of w and let {J be the empty set.
Define (o, §)° = {a U ¢}¢ = BAE is infinite}, (1, )° = {aUE|ESPAE s
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finite}, P = (J,w)*, Q = (F,w)=*. A set S<2°=PuUQ is completely
Ramsey if for every a € Q and fe P there is a £ e(, f)° such that (o, ) =S
or (a, &)® = 2° — S. The Galvin-Prikry theorem asserts that every Borel set is
completely Ramsey (cf. Galvin and Prikry (1973)). We refer to this result as GP.

Let R € w x w be the graph of a function which is not eventually recursive
combinatorial and let F be a recursive R-frame. We use standard frame notation
from Nerode (1961). If ye F* and i <2 let Ci(y) be the ith coordinate of
CH(y). dom and rng denote domain and range respectively. If (y, &¥) € F* put ¢(y) =
Ce(y, &) and then define

B(F) = {{eP|(Fy e (B, ) ) (Vo € (3, ) “)(8) < 8}

Note that we always have § = ¢(d) provided dedom(¢). Let «eQ and feP.
Since B(F) is clearly Borel, GP gives us an ne(J, f)® such that (&, 7)® < B(F)
or (o, 7)® < 2° — B(F). That the latter always holds is given by

LeMMA 1. (a,n)® < 29 — B(F).

PRrOOF. Assume (&, #)” < B(F). We strive for a contradiction. Now o U 5 € B(F)
and hence there is a y e (&, a U 1)~® such that ¢(5) = J for all Se(y,a U n)~°
Without loss of generality we may assume that « < y so that ¢(8) = J for all
de(y,n)“. By shrinking # slightly we may also assume that y "n = . For
the moment let § range over (y,7) < and define Y(8) = CH(5, &). Then (5,¥(5)) e F.
Let |5| be the cardinality of . Since R is single valued [5[ = |5’| implies
|w(®)| = |¥(8"]. Also

(6N, = G, ¥(O) A (S, ¥(8)) = (6N, Y NY(E)eF

and thus Y(6 N 8’) < Y(8) NY(8"). Since (§ N&', Y (6 N ') e F as well we have
W NS = yY(d) NY(s"). Let p be a one-one function mapping w onto x.
Define 6 on Q by 6(1) = ¥(» U p(3). Then |A| = | 4’| implies |0(A)| = |8(4"]
and 8(ANA") = 6(2) NO(A"). These properties are inherited from the corre-
sponding ones for . 8 is therefore a combinatorial operator inducing a com-
binatorial function r:® — @ such that (x + Iy l, r(x))eR for xew. Thus R is
the graph of an eventually combinatorial function. Let B= {(A, )€ Q x Q | ANy
=AU ApeF} and S={(x,y)ew x ® I(H(A,u)eB)x = lll Ay= |,u|}
B and hence S are r.e., the latter being the graph of r. Thus R is the graph of an
eventually recursive combinatorial function. Since R was initially specified as
not being such a relation, we have the desired contradiction.

Let R € o x w be the graph of a function and let F be a recursive R-frame.
¢ is as above and define

D(F) = {¢eP|(Vye(F, ) o() < &}.
Let e Q and BeP. Since D(F) is clearly Borel, GP gives us an 7 €(J, f)® such
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that (a,7)” € D(F) or (a,n)” < 2° — D(F). We relate D(F) to the previous
lemma by

LeMMA 2. If (a,n)® < 2° — B(F) then (a,n)® & D(F).

PrROOF. Assume (o, )” < 2“ — B(F), £e(a,n)® and (x1,)” < D(F). Since £ e
2° — B(F) there is a de(a, €)“? such that §¢dom(¢) or () £ 5. In the

former case £¢D(F) and in the latter & U (¢— ¢(5)) € (a,m)® — D(F), both of
which contradict (x,n)” < D(F).

Let E(F) = {CePI(E!C) (&, 0) is attainable from F}.
LemMMA 3. 2° — D(F) < 2° — E(F).
Proor. An immediate consequence of definitions.

Let S, < 2° be a sequence such that for each ne w, xe Q and fe P there is
an n e (J, ) such that («, 7)® < 2 — S,. That we can find a uniform # is given by

LEMMA 4. For each a€Q and feP there is an ne(,B)* such that
(a,m)® = 2° — 8, for every new.

Proor. Shrink f§ slightly so that every element of « is less than every element
of B. Let ap, = a and choose 7y (L, f)® so that (¢, 1) < 2° — Sy. Now
suppose we have defined «, and #, such that every element of «, is less than every
element of #,. Let a, be the least element of ,. Set o,,, = &, U {a,} and choose
M+1 € (Do, — {a,})® so that for each ay =y < a,,; we have (3,7,+1)° S
2° — S,+1. Then n = vUa, has the required property.

PrROOF OF THEOREM 1. Let F, be an enumeration of all recursive R-frames
where R € w x w is the graph of a which is not eventually recursive combinatorial.
Start with an immune set § and use GP and lemma 1 to get an # € (&, ) such
that (J,n)® < 2° — B(F,) and either (&,n)° = D(F,) or (&,n)*° < 2°D(F,). By
lemma 2, (&,n)* = 2° — D(F,) and by lemma 3, ({,n)® < 2° — E(F,). Lemma 4
gives an n which uniformly works for all new. Thus if R is as above and
¢ e(H,n)® then for no recursive R-frame F and { [an (&, () be attainable from F.
This is the contrapositive of our theorem.

Let j be the usual pairing function with k, [ as its first, second inverse. Order
the elements of Q according to their canonical indices so that we can effectively
speak of a first, second... element of Q. Let g,(x) be a partial recursive function
of new and aeQ which with index n enumerates partial recursive functions
mapping subsets of @ into w. Put gj(e) = y if g,(¢) = y in s or fewer compu-
tation stages, otherwise we say that g(«) is undefined. Denote the largest clement
in aeQ by max(a). A retraceable function, ¢, is called hereditarily 1-meager
if for every e € w there is an m € w such that for all n >m and o < {t(i) | i<n}
g.(«) is undefined or g.(x) < #(n). The following lemma is closely related to our
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proof (cf. Ellentuck (1973)) of McLaughlin’s theorem on the existence of here-
ditarily retraceable isols (cf. McLaughlin (1967)).

LEMMA 5. There exists a hereditarily 1-meager function with cosimple
range.

ProOOF. Our proof is a stage by stage construction of functions ’(n) whose
limit #(n) = lim¢#°(n) is hereditarily 1-meager.

Stage s = 0: Let 1°(0) = 1 and then go on to stage 1.

Stage s +1: As inductive hypothesis assume at the end of stage s that we
have defined #*(n) for n < s, that *(0) = 1, and that k'(n + 1) = ’(n) for
n < s. Search for the least n < s, and for it the least m < n, and for them the
least @ = {ts(i)] i< n} such that

g5 (o) is defined and (n) £ g5(®).
If there is no such (n,m, ) go to case A below, otherwise go to case B.
Cast A. Let £#*1(x) = £°(x) for x £ s, £ (s+ 1) = j(£(s),0).
Case B. Find the least y such that

max{q;(«), £*(s)} < j(**(n—~1),y)

(note that n > 0) and let £**(x) = £(x) for x < n, £*'(n) = j(©(n—1),y), and
£ x + 1) = j(©*'(x),0) for n < x £ s. This completes stage n+1 of the
construction. Now go on to stage s+2. It is easy to see that our inductive hypoth-
esis is maintained as we pass through stages. t(n) = lim*(n) exists for every n
because #°(0) = 1 for every s, and once £(n—1) has reached its final value ’(n)
changes its value at most n 2" times. #(0) = 1 and kt(n + 1) = #(n) by our induc-
tive hypothesis and t is one-one since #(0) # 0. Thus ¢ is retraceable, and the
construction in case B insures that x ¢ rng(?) if and only if (Ix > s)x ¢ rng(¢").
This makes rng(t) co-r.e. The immunity of rng(r) follows from the meagerness
of t. We demonstrate the latter. Let m < n and choose a stage r so large that
t'(i) for i £ n have reached their final values. There can be no a = {1(i) | i<n}
such that #(n) < g¢,(»), otherwise t(n) would subsequently change its value.

PROOF OF THEOREM 2. Let { = rng(f), o e (I, 7)” and s, a strictly increasing
enumeration of 6. Let R < w x @ be the graph of a function r for which
(3ze A)( o), z) e R, . Then there is an isolated ¢ and a recursive R-frame F such
that (o,{) is attainable from F. If (¢, ) € F* put ¢(o) = max C(«, &) and let
A={aeQ l C(2,&) = o}. By applying Lemma 5 to ¢ we see that there is an
me such that {s;|i<n}eA for any n>m. Let Y(®) = Ci(x, &) for ae4.
A is a r.e. family of finite sets, i is a partial recursive function taking finite sets
into finite sets and (o, Y(a))eF for every acd. If a,a’ed and a Sa’ then
(@) £ (@,¥(«") and hence Y(®) < Y(2'). Let S = {(a, b)l(EIaeA)a =
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|a] A b =]¥(@)]}. Sis r.e. subset of R and the graph of a partial function whose
domain contains all n >m. It is also the graph of an eventually increasing func-
tion by the monotonicity of . Thus r is eventually recursive increasing.

ProOF OF THEOREM 3. We have already dealt with 7. For 5 notice that
(B, M) < 2% — B(F) is a II} predicate. Since ‘R is the graph of a function
which is not eventually recursive combinatorial’ is an arithmetical predicate,
and there is an arithmetical enumeration of all recursive frames, we see that the
condition required of # in the proof of Theorem 1 is IT}. By Addison’s modifi-
cation of the Kondo theorem (cf. Rogers (1967)) n may be chosen as A}.

We had originally hoped to get n recursive in the ordinal notations. We
have not been able to do so; however, such an attempt seems promising.
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