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NEW TAUBERIAN THEOREMS FROM OLD 

Dedicated to the memory of Professor B. Kuttner 

MANGALAM R. PARAMESWARAN 

ABSTRACT. A new and very general and simple, yet powerful approach is intro
duced for obtaining new Tauberian theorems for a summability method V from known 
Tauberian conditions for V, where V is merely assumed to be linear and conservative. 
The technique yields the known theorems on the weakening of Tauberian conditions 
due to Meyer-Konig and Tietz and others and also improves many of them. Several 
new results are also obtained, even for classical methods of summability, including ana
logues of Tauber's second theorem for the Borel and logarithmic methods. The approach 
yields also new Tauberian conditions for the passage from summability by a method V 
to summability by a method V', as well as to more general methods of summability 
like absolute summability or summability in abstract spaces; the present paper how
ever confines itself to ordinary summability. 

1. Introduction. A classical theorem of Tauber states that an Abel-summable se
quence sn [or series T,an] is indeed convergent if (Tl):nan := n(sn — sn-\) — o(\). 
We describe this by saying that (71) is a "Tauberian condition" for the Abel method A. 
Tauber proved further that the weaker condition (72): 6n := (n + l)"1 EJL0 kak = o(l) 
is also a Tauberian condition for A. In 1967, Meyer-Kônig and Tietz [13] focused at
tention on the result that as a matter of fact for any regular and additive method V, if 
(71) is a Tauberian condition, so is (72). Indeed this result is only the special case of a 
(slightly more general!) Tauberian theorem for additive regular methods proved by me 
some years earlier ([18], special case of Theorem 1, with c = a — 0). Meyer-Konig 
and Tietz's announcement was followed by a series of papers devoted to proving that for 
any linear regular [or conservative] method V, if a certain condition 7 is Tauberian for 
V, so is a certain other condition T' ([12], [14], [15], [20] and others). The technique of 
proof in these papers depended on the following facts: (i) under the hypotheses [of any 
theorem considered], the conditions 7 and T' were in terms of certain transformations 
715- and 72 s of the sequence s\ and (ii) if T' was satisfied, then it was possible to obtain 
an expression for s — {sn} in terms of T2S and T\s. (See for instance Leviatan's theorem 
given as Corollary 3.3 below and also the remarks in ([15], p. 181). Thus this approach 
cannot yield proof of theorems like the following: 

The work presented here was supported in part by NSERC of Canada. 
Received by the editors July 20, 1992. 
AMS subject classification: 40E05, 40G10. 
Key words and phrases: Tauberian theorems. 
© Canadian Mathematical Society 1994. 

380 

https://doi.org/10.4153/CJM-1994-019-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-019-2
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THEOREM 1 (GOES [3]). IfT\\ Y,(—^)nnan converges is a Tauberian condition for a 

linear conservative method A, then the [weaker] condition T2: nan — o(\) is also Taube

rian for A. 

THEOREM 2. Let V be a linear conservative method with T\\ \fnan — o(Y) as a 

Tauberian condition. Then the condition 
n r . oo /  

T2:an = o(l) and e~^ £ eVkak + eVn+l X > ~ V n " % = o{\) 
k=0 n+l 

is also a Tauberian condition for V. 

We now present a new approach which is free of the shortcomings noted above; be

sides being very general and simple, it yields all the results in the papers quoted above, 

as well as several new results, even for well known methods. In particular, it yields a 

result (Theorem 14.1 below) which is more general than Theorem 1 and which can be 

proved neither by the approach used by Meyer-Kônig and Tietz and others nor by the 

method of proof adopted by Goes. 

2. The Main Theorem and its special form. 

THEOREM 3 [MAIN THEOREM]. Let M*, T\, T2 and K be classes of sequences (of 

numbers) and P a sequence-to-sequence transformation such that 

(3.1) (i) hi is additive: x,y E K => x + y E hi; 

(3.2) (ii) x, y G M* => x - y G M*; 

(3.3) (Hi) M * H T I G hi; 

(3.4) (iv) ^ M * n r 2 4 (a) Ps G n and(b) (I- P)s eM*Hhz. 

(3.5) Then M* H r 2 C «. 

REMARK. If we take M* to be the "summability field" (M) [in some sense] of a linear 

method M and take K to be the "summability field" of the identity transformation (= c, 

the space of convergent sequences if M is an ordinary summability method applicable 

to some sequences), then the hypothesis (3.3) says that T\ is a Tauberian class for the 

method M and the conclusion (3.5) says that r2 is also a Tauberian class for M. 

PROOF. Let (3.l)-(3.4) hold and let s G M* H r2. Then (/ -P)s (EM*HK by (3.4). 

Since s G M*, by (3.2) we get s - (/ - P)s = Ps G M*. But Ps G n by (3.4). Hence by 

(3.3), Ps G M* H n C «. Since (/ - P)s G n we see by (1) that s = Ps + (/ - P)s G K. 

This proves the theorem. 

COROLLARY 3.1. Let M*, K be linear spaces of sequences, T2 an operator, B a se

quence to sequence transformation and let f3, T\ be classes of sequences such that 

(i) M* D T\ C K and 

(ii) s£M* and T2s e (3 => B(T2s) eM*Hhz and (I - BT2)s G T{. 

Then s G M* and T2s G (5 => s G «. 

PROOF. This is immediate from Theorem 3 on setting P = I — BT2 and r2 = {s : 

T2s G P}. 
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COROLLARY 3.2. Let a, (3 be classes of sequences, M*, K classes of sequences sat

isfying (3.1) and (3.2) and let T\, T2, A and B be operators such that 

(i) T\s G a and s G M* imply that s G K; 

(ii) T2s G (3 and s G M* imply that 

(3.6) (a) Txs = A(T2s) + Tx [B(T2s)] and 

(3.7) (b) B(T2s) G M* H K andA(T2s) G a. 

(3.8) Then T2s G /3 and s G M* /m/?(y that s G K. 

PROOF. We apply Theorem 3 with T\ = {s : T\s e a } , r2 = {s : r 2 s G /?} and 

P = 7 - 5 . 72. Now, if j G M*nr2, then by (3.6) and (3.7), [Tx -Tx (B. T2)]s = A(T2s) G a; 

that is, Ti [ ( / - # r 2 ) s ] = TxPs G a; hence Ps G r i . But also by (3.7), (I-P)s = (BT2)s G 

M* H «;. Thus the hypotheses of Theorem 3 hold and hence M* DT2 C / Î ; that is, (3.8) 

holds. 

REMARK. Corollary 3.2 is stronger and more general than the following theorem 

due to Leviatan which describes in abstract terms the hypotheses and techniques used by 

Meyer-Kônig and Tietz and Stieglitz ([15], 20), so that their results are obtainable from 

that theorem. 

COROLLARY 3.3 (LEVIATAN [12]). Let V be a regular additive summability method 

with convergence field (V) and let a, j3 be any one ofco, c and m. Suppose that T\ is an 

operator which has a right inverse T^\ thatr\ — {s : T\a G a } , where an = sn — sn~\ 

and that 

(LI.I): T\(T^xa) — a for each a G a, 

(LI.2): r\ is a Tauberian class for V; that is, T\ D (V) C c. 

Suppose also that A and B are sequence to sequence transformations such that 

(L2): a G (3 => Ba G C and Aa G a 

and let T2 satisfy the relation 

(L3): sn = YJI=Q(T^[A(T2O)} + B(T2a)) Jor all s G (V)HT2, where T2 = {s : T2a G 

fi. 
Thenr2n(V) C c 

PROOF. This follows at once from Corollary 3.2 whose hypotheses (i), (ii)a and (ii)b 

are implied by the conditions (LI.2), (L3) and (L2) respectively. 

REMARK. Theorem 3 and Corollary 3.2 are strikingly more general. We note some 

of the significant differences: (1) Leviatan considers only Tauberian classes of the type 

r = {s : Ts G a} where a = CQ, c or m and where T is an operator; in Corollary 3.2, 

the Tauberian class can be of much more general type (for instance r can be the class 

of slowly decreasing sequences), and in Theorem 3 it need not also correspond to any 

operator T\ (2) Leviatan takes the known Tauberian class as given by an operator which 

has a right inverse; no such assumption is made in Corollary 3.2; (3) The possibility of 

solving for s G (V) H r2 in terms of T2s (making use of Tfl etc.) is an essential part of 

the technique used by Meyer-Kônig and Tietz and by Leviatan as well; (4) Leviatan's 

proof makes use of the fact that (V) is the convergence field of a conservative method, 
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whereas in Corollary 3.2 it need not be convergence field of any method, whether con

servative or not; (5) K, is not restricted to be c (see for instance Theorem 7 below); and 

(6) it is important to note that Theorem 3 can be applied to situations other than ordinary 

summability of number sequences: to absolute, or strong summability and to summabil-

ity of sequences in groups or topological vector spaces. (In the present paper we confine 

ourselves to ordinary summability.) 

A practical difficulty in attempting to use Corollary 3.2 is in finding the operators A 

and B which will satisfy the hypotheses; similarly the difficulty in trying to use Theorem 3 

is in finding the sequence-to-sequence transformation P of the theorem, and sometimes 

in verifying that Ps G T\. It is therefore remarkable that the following special case of 

Theorem 3, with P = I — T2, not only covers the most familiar and interesting cases in 

an elegant manner but also enables us to prove some new theorems, including V —> V' 

Tauberian theorems (where one passes from summability by a method V to summability 

by a method V'), where V is not equal to convergence. 

THEOREM 4. (a) Let (M) be the convergence field of a linear conservative method 

M and E a subset of(M) and F a set of sequences. Let T\, T2 be sequence to sequence 

transformations such that 

(4.1) (i) Txs eE,s G (M) imply that s G F; 

(4.2) (ii) T2s GF,se (M) imply that TX(I - T2)s G E. 

(4.3) Then T2s e F, s E (M) imply that s G F. 

(b) In (4.2) above we may replace T2s by T^s where 7^ is any transformation such 

that T2s G F implies that T^s G F. 

{In the most common examples, E = CQ or c, and F — co, c or m. } 

PROOF. Part (a): We apply Theorem 3 with T\ = {s : T\s G £ } , K = F, r2 — {s : 

T2s G F} and P = I - T2. Part (b): This follows from part (a). 

3. Examples, applications and new Tauberian theorems. 

NOTATION. Throughout this section, let V denote a linear conservative method for 

sequences and (V) the summability field of V. (However, sometimes we may not need the 

full hypotheses on V.) The symbols sn and an are related by the equations an — sn — sn-\ 

(s-\ = 0) for n = 0 ,1 , The symbols {/?„}, {qn} will always denote sequences of 

positive numbers. (We assume this property in order to avoid the phraseology required to 

deal with the case where finitely many pn or qn may be 0.) When the symbol u represents 

a sequence given by a complicated expression, we shall write u\„ or (u)n or [u]n for the 

ft-thterm un of u = {un}. We shall also find it convenient to write u = o(\) [0(1), 0^(1)] 

for un = o{\) [0(1), Oi(l)]; the symbols u = o(fn) etc. for a function/„ are also to be 

interpreted similarly. The symbol S will always denote the sequence {6n} where 6n := 

(n + I ) - 1 £2=o kak\ we also define Ln := E£=o 1 /(k + 1) for n = 0 , 1 , . . . . We say that 

a condition Ts G E is a TC (= Tauberian condition) for a method V if s G c whenever 

s e(V) and Ts G E. 
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Unless otherwise stated, the transformations T\, T2, T\ are defined by the relations 
T\s\n = pnan, T2s\n = q~X ELo akak a n d ^ U = anl\ £*=o akak for n = 0 , 1 , . . . . We 
also have then 

r n n—\ 

Dn := Tx(I-T2)s\n = pnan -Pn\qn}\ J2akak~qnl J2akak 
1 k=o k=\ 

= /?„<?„ —pn Y,<lkak)(qn+\ ~<ln ) + an 

(4.4) 
yk=0 

: Pn(qn+\ - qn)[Yjqkak) /(qnqn+\) 
k=0 

Equally, 

(4.5) 

= (Pn(qn+l -qn)/qn+\)(T2s\n) 

= F(n)(T2s\n) (say). 

Dn = (pn(qn+\ - qn)/qn)(T^s\n) 

= F*(n)(T*2s\n) (say). 

THEOREM 5. (a) Let E, F be (not necessarily linear) classes of sequences. Let T\ s G 
Ebea TC for V and let s G (V) be such that T2s G F. If (I ~ T^)s G (V) and {Dn} G E, 
then (I - T*2)s G c. 

In particular, ifT^s G c and {Dn} G £, then s G c. 
(Z?) 7/Y/j {gn} /s nondecreasing, (ii) F(n) = 0(1) and (Hi) T\s = o(\) is a TC for V, 

then the condition T2s = o(\) is also a TC for V. 
(c) If(i) F(n) = 0(1) and (ii) T\s = o(l) is a TC for V, then the condition T^s = o(\) 

is also a TC for V. 
(d) If{F(n)} G c and T\s G c is a TC for V, then the condition T^s G c is also a TC 

forV. 

PROOF, (a): {Dn} G E means that T\[(I - T%)s] G £. Applying Theorem 4 with 
(M) = (V) and with 7^ instead of 72, we get the required result. 

(b), (c): The hypotheses in each case ensure that T^s = o(\) and that {Dn} G Co- The 
results then follow from part (a), with E = CQ. 

(d): Now {Dn} = T\[(I- T%)s] G c, since T2s G c; hence (I-T£)s G c and the result 
follows. 

COROLLARY 5.1. Let E—c^or c. If{nan} G Eisa TC for V, then so is the condition 
{6n} G F, provided that (i) E = F = CQ, or (ii) E = F = c or (Hi) E = Co, F = c and 
V-limS = 0. 

PROOF. Let T\s\n = nan and T^s\n = èn and apply Theorem 5(d) with/?n = qn — n. 
{Parameswaran [18] proved cases (i) and (iii); Meyer-Kônig and Tietz [13] proved 

case (i). The further special case V = Abel's method and E — F — CQ correspond to 
Tauber's classical Tauberian theorems.} 
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We note also that case (i) of Corollary 5.1 can be expressed in either of the following 
[equivalent] forms: If nan = o(l) is a TC for V, then for any sequence s in (V), 

(5.1) s G c if and only if n(tn — tn-\) = <?(1), where t = C\s\ 

(5.2) sec if and only if (/ - Cx )s = o( 1 ). 

(5.3) s G c if and only if C\({nan}) = o(l). 

COROLLARY 5.2. IfT\s\n: = nl/2an = o{\) is a TC for V, then so is the condition 
T*2s G c, where r2s\n = (n + l)-{/2

 E « = ] k1/2^. 

PROOF. Let/?„ = qn = n
xl2 and 7 ^ G c. Then the relations (4.4), (4.5) give 

Ti(I - T^)s\n = Dn = [(n + l)1/2 - nll2]Tls\n = o(l). The result then follows from 
Theorem 5(a) with E = CQ. 

{Corollary 5.2 is sharper than each of two similar results given by Meyer-Kônig and 
Tietz([15],p. 182).} 

COROLLARY 5.3. IfT\s:= {nxl2an} e Eis a TC for V, where E = c0 or c, then so 
is the condition T2S G E, where T2s\n — e~v" E£=0

 e &h 

PROOF. Apply Theorem 5 with pn = qn — e^n. (Or, we could appeal directly to 
Theorem 4, with E — E.) A little calculation shows that if T2S G E, then T\(I — T2)s = 
{rnT2s\n} G E (since lim rn = 1). 

{Meyer-Konig and Tietz ([15], p. 182, Satz 2.10 et seq.) proved this for E = CQ. The 
result for V — the Borel method is due to Karamata [6].} 

COROLLARY 5.4. Let E — co or m, andpn — 0(n\ogn). Let T\s\n := pnan G E be a 
TC for V. Then the condition {èn logn} G E is also a TC for V. 

PROOF. We apply Theorem 5(a) with T^s\n = 6n and F = E. Since {6n} = 
(I — C\)s G c, the result follows. 

{We remark that the typical methods with nan log n — 0(1) as TC are the logarithmic 
methods / and L (19). The special case of Corollary 5.4 where V — L was proved in 
([17], Theorem 2).} 

COROLLARY 5.5. Theorem 2 stated above. 

{This will follow by a straightforward application of Theorem 4. We omit the details.} 

THEOREM 6. Let T\s = {nan logn} G E be a TC for V, where E — CQ or c and let 
T2s\n '-= ( 1 / log«) T!k=oakl°S(k + !)• Then for any squence s G (V) we have: s G c if 
and only ifT2S G E. [Indeed then T2S — o(\).] 

PROOF (SUFFICIENCY). We apply Theorem 5(a) with F = E, pn = n logn and qn = 
log(n + 1). Then Dn — T\(l — T^)s\n = rnT2s\n where rn = n/(n + h) for some h — h(n) 
between 0 and 1. Hence {Dn} G E and the result follows from Theorem 5(a). 

(NECESSITY). Let s G C. Then t = Is G c, and, following Ishiguro ([4], p. 157), we 
see that (/ — l)s\n — sn — tn — lu\n + o(l) = T2s\n+o(l), where uk = (k+ l)aklog(k+ 1). 
But (/ — l)s\n — o(l), by regularity of the logarithmic method / and hence T2S = o(l). 
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{The case when E = CQ was proved by Meyer-Konig and Tietz ([14], p. 211); the case 

when E = co and V = L was proved by Kaufman ([7], Theorem 2b).} 

We now show how Theorem 3 enables us to obtain V —-> V' Tauberian theorems also. 

THEOREM 7. Let pn = 0(n), T\s\n — pnan and T2s\n = 8n. 

(a) Let V be linear (not necessarily conservative) with V C V. C\ and let T\ s\n G E = 

(9(1) [0^(1)] be aV —> C\ Tauberian condition. Then T2s\n = 6n G E is also a V —> C\ 

Tauberian condition. 

(b) Let V be linear and conservative and let T\s\n G E = CQ be a TC for V. Then the 

condition T2s\n = 8n G E is also a Tauberian condition for V. 

(c) Let V be linear and conservative, T\s\n G E = c a TC for V and {pn/n} £ E. 

Then the condition T2s\n = 5n G E is also a Tauberian condition for V. 

(d) Let V C V.C\ and let T\s\n — o(\) be a V —> C\ Tauberian condition. Then 

T2s\n — 8n G 0(1) is also aV' —> C\ Tauberian condition. 

PROOF, (a), (d): We apply Theorem 3 with n = (Ci), P = / - T2 and M* = (V). Let 

s e(V) and 8n G E. Then 

(7. 1) Dn = Tx(I-T2)s\n = [pn/(n+\)](T2s\n) G E, since/7, = 0(n). 

Hence it follows from Theorem 3 that s G K = (Ci). 

(b), (c): We apply Theorem 3 with K = c, P = I - T2 and M* = (V). Let s G (V) and 

8n G E. Then (7.1) holds if E = CQ or if E = c and {pn/n} G c. Also, ^ s G c implies, by 

the linearity of V that (/ - T2)s G (V). Then (/ - T2)s G c, by (7.1). It follows that s G c. 

{The result (b) was proved by Meyer-Kônig and Tietz ([14] Satz 2.1, Satz 2.3) under 

additional hypotheses. The result in the special case of (b) with V — B (Borel's method) 

and pn — n1 /2 was proved by Jakimovski ([5]; the result in the special case of (b) with 

V = Abel's method and pn — n is the classical Tauber's theorem; the special case of 

(a) with V — Abel's method was given by O. Szasz [21]. The results in Theorem 7 are 

closely related to Theorem 1 of [18].} 

Analogous to Tauber's second theorem for the Abel method and its generalization 

given above as Corollary 5.1, case (i) and (5.1), we have the following result applicable 

to the logarithmic methods in particular. 

THEOREM 8. (a) Let I be the logarithmic method and V a linear conservative method 

with V C V. I and let E = CQ or c. Let 

(8.1) Txs\n:=(n+l)\oë(n+\)aneE 

be a TC for V. Then for any sequence s G (V): 

(8.2) sec ifandonlyifT2s\n := (n + l ) log(n+ l)(tn - tn-\) G E 

[and then 7V = o( 1 )7-

(b) In part (a) we may take E — m and replace (8.2) by 

(8.3) t G c ifandonlyifT2s\n := (n + l)log(w + \)(tn — tn-\) G E. 
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PROOF. Let T'2s\n :={n+\)\ogn(tn- tn-\). Then T2s G E & T2s G E. Also, 
(8.4) 

d-T'2)s\n 

= ̂ -(n + i)iogn{(i/iog(/i + i))f:v(*+i)-a/iog«)EW(*+i)} 
1 k=0 k=0 ] 

= sn-(n + \)lognl(itsk/(k+l))({l/\og(n+l))-(l/\ogn)) 

+ sn/[(n+l)\ogn]]i 

= (n+l)[log(n+\)-\ogn]ls\n 

= (n + l)tn/(n + /zn) = r„£n where limrn = 1. 

Suppose now that s £ c. Then by the regularity of /, l im^ = l i m ^ exists; hence by 

(8.4), (/ — T'2)s G c and therefore \\mT2s\n = l i m T ^ ^ = \imsn — \imrntn — 0; that is, 

(8.2) holds with £ = c0. 

Conversely, suppose that s G (V) and T2s G £, so that also T'2s G £. From (8.2), 

T2s = Ti(ls) and Is = t G (V), since V C V./. Hence r G c. By (8.4), (/ - T'2)s G c 

and therefore (/ — T2)s G c. But ^ s G c by (8.2) and hence s G c. This proves part (a). 

Part (b) follows from the fact that Is = t G (V), since r is given to satisfy the TC for V. 

COROLLARY 8.1. For the logarithmic method L, the relation (8.2) holds with E = Co 

or c and the relation (8.3) holds with E = m. 

PROOF. For LcL.l (by [10], Lemma 3) and (8.1) is a TC for L. 

{The result appears to be new even in this particular case.} 

THEOREM 9. Let V C V. C\ and let Txs\n: = nan \ogn = <9L(1) be a TC for V. Then 

(9.1) r2s\n := Sn = (7i+ I )" 1 X > * = 0 L ( l / l o g / i ) 

is aV —> C\ Tauberian condition. 

PROOF. Let s G (V) satisfy (9.1). We shall apply Theorem 5(a) with/?„ = nlogn, 

qn — n and E = {s : nan\ogn — Oi(\)}. Then Dn = T\.(I — T\)s\n — 

(n\ogn)(\In)0L(\ j \ogn) = OL(\). Hence by Theorem 5(a), ( / - T2)s = Cxs G c. 

{In particular, (9.1) is an L —* C\ Tauberian condition, where L is the logarithmic 

method, as proved in ([17], Theorem 2(a)).} 

THEOREM 10. Let pn, mn, qn be positive sequences such that {qn} is nondecreasing 

and let 
(10.1) (i) mn = 0(qn) 

and 

(10.2) (ii) Dn =pn(qn+i -qn)/qn+\ is either 0(qn/mn) or 0(\). 

Let T\s\n \— pnan = o(l) be a TC for V. Then the condition 

(10.3) r2s\n := (l/mn) £ qkak = o(\) 
k=0 
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is also a TC for V. 

PROOF. Let s e (V) satisfy (10.3). Then T2s\n = (l/g„)E£=o<7^ = 
(mn/qn)T2s\n = 0(l)o(l) = o(l), and7^|„ := (l/qn+\) £ L o < ^ = (mn/qn+\)T2s\n = 
0(l)o(l) = o(l). Since V is conservative, it follows that (/ - T$)s G (V). Now TX(I -
T$)s\n = Dn(T2s\n) = (mn/qn). (T'2s\n).pn(qn+x - qn)/qn+i = 0(1), by (10.1) and (10.2). 
Hence (/ — T%)s G c. But 7 ^ = o(l) and hence s G c . 

{The special case where mn — n and /?„ = gn was given by Meyer-Kônig and Tietz 
([14],Satz2.3).} 

COROLLARY 10.1. Let E — c^orm and let T\s\n := nan logrc G E be a TC for V. 
Then 

(10.4) T'2s\n := (*+ I)"1 £ ( * + l)fl*log(fc + 1) = o(l) 
Jk=0 

/s a/so a TC for V. 

PROOF. Apply Theorem 10 withpn — n logrc, mn = n+\ and qn — (n+1) log(« +1). 
{This result has been given also by Tietz ([23], p. 74). Kaufman's result that (10.4) 

is a TC for the method L ([7]) is, by Corollary 10.1, deducible from Rangachari and 
Sitaraman's result that T\s = 0(1) is a TC for L ([19], Theorem I(L)). It is to be noted 
that (10.4) is sufficient, but not necessary for the convergence of s, as is seen from the 
example where an = (—1)"/ logn. Our next two theorems give necessary and sufficient 
conditions for a V-summable sequence to be convergent, where V is as in Corollary 10.1.} 

THEOREM 11. Let E = CQ or c, and let T\s\n := nan \ogn G E be a TC for V. Let M 
be the regular transformation defined by t — Ms where tn := L~{ EjJ=o

 sk/(k+ 1) and 
Ln = 1 + 1/2+ • • • + l / (n+ 1). Let T2s\n := (n+ l)Ln(tn — tn-\\ Then for any sequence 
s G (V); 

(il. 1) s ec&T2s eE&(i-M)seE 

[and then T2s = o{\) and (I — M)s = 0(1)7-

PROOF. Let 7^s|n := (n + \)Ln^x(tn - tn-\\ Then T2s G E & T$s G E. For n > 1 
we have 

(11.2) 

7!j|B = ( « + l ) L B _ , [ z ^ 1 t e j t / ( t + l ) ) - L - i 1 t e * t / ( f c + l ) ) l 
L V l t=0 7 V / t=0 / J 

= ( B + i ) / , . J ( t j t / ( i+ i))(j;1 - ^ 1 ) + J „ / ( ( « + i)f,.,) 
L V £=0 7 

= j„ + (n+ l )L B _ i ( è s t / (*+ l ) ) ( - l ) / [ ( i i+ l )L„L„_ , ] 

= •*„-*,,= ( / -M)* | n . 

Suppose now that s £ c. Then sn — tn = o(l) by the regularity of M; hence, s £ c 
T^s G Co <=» T2s G c 0 ^ ( 7 - M)s G c0. 
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Conversely, suppose that s G (V) and T2s G E. Then T^s £ E, and hence (7 — T^)s G 
(V). Also T2s G E implies that TX(I - T$)s\n = T\t\n = (n\ogn)(tn - tn_x) G E. Hence 
(/ - T%)s G c. But T^s G c, so that also s £ c. 

{Theorem 11 may be called Tauber 's second theorem for the method V; note the simi
larity in form between this theorem and the classical Tauber's second theorem expressed 
in the form of Corollary 5.1 above, as expressed by (5.1) and (5.2).} 

COROLLARY 11.1 (KWEE [10], THEOREM 2). lfV = L, the logarithmic method, then 
(11.1) holds. 

COROLLARY 11.2. Let E = 0(1) or 0L(\\ and let Txs\n : = nan logn G E be a TC 
for V. Suppose also that V C V.M. Then each of the conditions 

(11.3) (i) T2s\n := nLn(tn - tn-{) G E 
and 
(11.4) (ii) T2s := (/ - M)s G E 

is aV —> M Tauberian condition. 

PROOF. AS in the proof of Theorem 11, T2s G E & T2s = (I - M)s G E. Now if 
s G (V), then so are Ms and (/ — M)s. Suppose that one of (11.3), (li.4) holds. Then 
T{ (I - T^)s = Tx (Ms) = T^s G £ and it follows that Ms G c. 

{For the special case where V = L, part (ii) of Corollary 11.2 was proved by Kwee 
([10], Theorem 5).} 

THEOREM 12. Let E — CQ or c, and let T\s\n := nan \ogn G E be a TC for V. Then 
for any sequence s G (V): s G c & T2s\n := L~l EJJL0

 ak^k £ E. (Then T2s G CQ.) 

PROOF (SUFFICIENCY). We note that T\s G E & Tls\n := nLnan G £ and also 

r n n~-l 

T\(l - T2)s\n = rcL„a„ - ftL„ Z^1 X] Û^L* - L~_l, XI ^ A 
L * = 0 ife=0 

(12.1) 
nLn [J2akLkJ^Ln

l -Lnl{j + anj 
v£=0 

H - l 

= rc(L„ - Ln-\)L~l J2 akLk 
k=0 

= n(n + l)~lT2s\n-\ G E if and only if T2s G £. 

So,ifr2s G £ands G (V), then (7-72 > G ( V) and from (12.1) it follows that (I- T2)s G c 
and hence also that s G c. 

(NECESSITY). Suppose that s G c. Then by the regularity of the linear method M, 

(12.2) sn-Ms\n = o(l) and M({^}) = o(l). 
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But 

sn -Ms\n 

n 

= L;l[sn{l + l/2+... + l/(n+l)}-{s0 + (l/2)sl + .-- + sn/(n+\)}] 

= L-{[(sn ~ s0) + ( l / 2 ) 0 „ - s{) + • • • + (l/n)(sn - sn^{)] 

= L~][a\ + a2 + • - • + an + (l/2)(fl2 + «3 + ••• + ««) + ••• + (\/ri)an] 

= L-l[a\+a2(l + 1 / 2 ) + Û 3 (1 + 1 /2+ 1/3) + - • • +a w ( l + 1/2 + • • •+ 1/n)] 

= L"1 [(aiLi + «2L2 + a3L3 + • • • + anL„) - ( a i / 2 + a 2 / 3 + • • • + an/(n + 1 ))] 

k=\ k=\ 

= L-n
xY,akLk + o{\) + L-n

xY,akl{k^\) + o{\) 
k=0 k=0 

= T2s\n+o(l) + M({ak})\n + o(l) 

= T2s\n + o(l), by (12.2). 

That is, T2s\n = sn — Ms\n + o(l) . It follows from (12.2) that T2s\n — o(\). 

This completes the proof of the theorem. 

{We note that T2s in Theorem 12 is the /-transform of the sequence {(n + \)anLn}, 

parallel to the situation where {èn} in Tauber's second theorem for the Abel method A is 

the C\ -transform of the sequence {nan}; and that nan = o(\) and (n + \)anLn = o(l) are 

Tauberian conditions for A and V respectively. Thus Theorem 12 may be considered to 

be one form of "Tauber's second theorem" for the method V. } 

THEOREM 13. (a) Let E^ be a regular Euler method and let V be such that 

(13.1) Tis\n:=nl/2aneE isaTCforV 

where E — CQ, and let E$ be a regular Euler method. Then for any sequence s G (V): 

(13.2) T2s := (I-E5)sec0^sec^(I- E6)s G c0. 

(b) If (13.1) holds with E = m and ifV(Z V.Es, then for any sequence s G ( V): 

(13. 3) T2s := (I — E$)s G m => s G m and Es G c 

where E is any regular Euler method or other method that is equivalent to E$ for bounded 

sequences. 

PROOF. We apply Theorem 4 with T2 = I - E6. Then 

(13.4) Tx(I-T2)s=Tx.Ebs£E 

by Lemma 2 of [8], directly in case E — m and by a slight modification of the proof 

in case E = CQ. Let s G (V) and T2s G E; then E$s G (V), whether we are considering 
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part (a) or part (b) of the theorem. Hence by (13.1) and (13.4), Eès e c. This yields (13.2) 
if E — co and (13.3) if E = m. 

{Part (a) of the theorem may be viewed as a form of "Tauber's second theorem" for V 
and other Borel-like methods, since (13.2) is the exact analogue of the classical Tauber's 
second theorem which is given by (5.2). The special case of part (a) with V — B, the 
Borel method was proved in [8]; the particular case of part (b) stated in the theorem was 
proved in [16].} 

THEOREM 14.1 (GENERALIZATION OF THEOREM 1). Let V be a linear conservative 
method and {pn} a sequence of numbers such that 

(14.1) pn+{ = 0(pn+pn+\) and inf\pn+pn+\\ > 0. 

Let the condition 
oo 

(14.2) £ ( - l ) V * = 0 
k=\ 

be a TC for V. Then the condition 

(14.3) pnan = o{\) 

is also a TC for V. 

PROOF. We shall apply Theorem 3 withM* = (V), K = C,T{ = {s : Y%Lx(-\)
kpkak 

— 0}, T~2 — {s : pnan — o(l)} and P, the transformation defined by the equation Ps\n — 
En

k=l(ak + bk) for n = 1,2,..., where bk = pk-iak-\/(pk-\ + pk) - pkak/(pk + pk+]) 
for k > 1 (and with «0 = 0)- The the conditions (3.1)—(3.3) of Theorem 3 are satisfied. 
Now suppose that s G (V) and let (14.3) hold. Then (/ - P)s\n = - ££=1 bk = pnanj 
(pn + Pn+\) £ co, by (14.1). Thus, part (b) of condition (iv) of Theorem 3 is satisfied. 
Also, 

n n 

ZX-i)Wtf* + &*) = X^(-i)*[p*-i0*-i/(p*-i +P*)+P*+I«* / (P*+P*+I ) ] 
*=1 k=\ 

= (-l)nPnPn+ian/(Pn + Pn+\) 

= 0(1), by (14.1) and (14.3). 

This means that Ps G T\, and all the conditions of Theorem 3 are satisfied. Hence, 
(V) n r2 C K = c and the present theorem is proved. 

REMARKS. The theorem of Goes given as Theorem 1 above is the case pn = n of 
Theorem 14.1. His method of proof makes use of a relation of the type 

oo oo 

(14.4) ]T pkxk converges =̂> J ] xk converges 
k=\ k=\ 

(which holds for the case pk — k (k > 1) considered by him). But if we take p2n-\ = 1 
and/?2« = 2andx2„-i = l/n,X2n = (—1/2) (l/n) for n > 1, or take/?2n_i = \fn and 
Pin — 2AA an(^ ixn} a s above, then in each of these instances Theorem 14.1 will apply 
but not Goes' method of proof, since (14.4) fails. Thus Theorem 14.1 is a significantly 
distinct result which contains Goes' theorem as a special case. 
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THEOREM 14.2. Let {pn} be a nondecreasing sequence with pn —> oo, with m = 
0(pm) and Pn(Pn+\ — Pn) — 0(pn+\). Then the following are equivalent for any linear 
method V: 

(a) pnan — oil) is a TC for V; 
(b) un:= p~x I%=QPkak = oil) is a TC for V; 

(c) vn := E £ = o ( - l ) W = oil) is a TC for V; 
(d) wn := Hn

k=0(-\)
kuk = o(\) is a TC for V. 

PROOF. It is trivial that (b) => (d) and that (a) => (c). By Theorem 14.1, (c) =̂> (a); 
and taking qn = pn in Theorem 5, we see that (a) =4> (b). It is then enough to prove that 
(d) =4> (c) and hence enough to prove that vn — o(\) implies that wn = oil). This can be 
shown to be the case, by a slight adaptation of the proof given by Tietz ([22], p. 49) for 
the special case of the theorem where pn = n. 

THEOREM 15. Let V be such that 

(15.1) T\s\n \— sn — 0(nx'2\ogn) is aV —> l Tauberian condition. 

Then the condition 

(15.2) T2s:= (J-M)s = 0(n{/2 log n) 

is also aV —> I Tauberian condition. 

PROOF. Let s e (V) and let (15.2) hold. By (15.1) it is enough to prove that sn = 
0{nxl2 log n), or, equivalently (in view of (15.2)), that Ms = 0(nxl2logn). 

Now Ms\n = L~x ELo sk/(k + 1). If we set Vn = E^o akh, then 

(15.3) Ms\n = sn-L-Wn 

and 

(15.4) Vn = 0(n{/2 log2 n). 

Since an = (Vn — Vn-\)jLn-\ for n — 1,2,... we have 
(15.5) 

Ms\n = flo+^-i im±x(yk - vk-i)f: i/(*+1) 
i = l k=i 

= a0 + Vn/[LnLn^(n^l)]^L-lJ2Vi(L^f2U(k+l)-L7l £ !/(*+!)) 

= 0{l) + 0[nxI2log2 nj/((log2 n)(n+1))]+L"1 £ VK^-L I-) / (L I-_1L I-( /+1)) 
/=i 

- Oil) + Oinl/2logn) = Oinl/2logn). 

It follows from (15.2) and (15.5) that sn = Oinxl2 logn). Then s G (/), by (15.1). 
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THEOREM 16. Let V be such that V C V.Mand let T\s\n := nxl2an = 0(1) [0L(l) 

respectively] be a TC for V. Then the condition 

(16.1) T2s := (I - M)s = 0(nx/2 logri) [0L(nxl2 logn) respectively] 

is aV —> I Tauberian condition. 

PROOF. Let s E (V) [so that also t = Ms e (V)] and let (16.1) hold. By (11.2) we 

have then (n + l)Ln^\(tn - tn-\) = (/ - M)s = 0(nlI2 logn) [0L(nxl2logn)} and hence 

nxl2(tn — tn-\) = 0(1) [OL(1)]. Hence t = Ms G c, but M and / are equivalent. 

COROLLARY 16.1. If V is a regular Euler method E$, or more generally, a Borel-

type method B(a, (3), then the condition (I — M)s = Oi(nxl2 log n) is aV —> / Tauberian 

condition. 

PROOF. For, E6cE6.Mby [9], and B(a, /3) C B(a, (5). M by ([1], Lemma 5). Since 

nxl2an = Oi(l) is a TC for E^ (a classical result) and also for B(a,(3) ([2], Theorem 1), 

the required result follows from Theorem 16. 

REMARK. The result in Corollary 16.1 is a significant improvement on results of 

earlier authors who proved the stronger condition sn = 0(n]/2logn) to be a V —> / 

Tauberian condition when V — E&, or B (Borel's method), or B(a,(3) (see [9], [111 and 

[1] respecitvely). 

Now let the iterations M^k) of the method M be defined as usual by the equations 

M(1) = M, M{k+X) = M.Mik) for k = 1,2, . . . . Then for the particular case where V = 

B(a, /3) we have the following result which is a generalization of both Theorem 15 above 

and a theorem of Borwein ([1], Theorem). 

THEOREM 17. Let s e(V) where V = B(a, ji) and let 

(17.1) (I-M)s\n = 0((nl'2lognY)9 

where p is a positive integer. Then s is summable by the method yR, log(n + 1),/?) [and 

hence by the method M^ equivalent to it]. 

PROOF. First we note that the methods / and (R, log(n + 1), l ) are the same and the 

theorem for/? = 1 is covered by Corollary 16.1. Let/? > 1 and let s satisfy the conditions 

of the theorem. Then M{k)s e (V) for k - 1 , 2 , . . . , / ? - 1 by [1] and since (/ - M)s G (V) 

by (17.1), we see from Lemma 5 of [1] that M ^ 1 } ( 7 - M)s\n = 0(nxl2logn). Then 

by Corollary 16.1, M(p~X)s G / = (M) and hence M^s G c. But the methods M{k) and 

(R, log(n + 1), k) are known to be equivalent for k = 1,2,... ([11 ], Lemma 4) and this 

proves the theorem. 

{Borwein [1] proved the result under the stronger hypothesis that sn = 

0{(nxl2lognf).} 
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