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Abstract

This work aims to classify catchments through the lens of causal inference and cluster analysis. In particular, it uses
causal effects (CEs) of meteorological variables on river discharge while only relying on easily obtainable
observational data. The proposed method combines time series causal discovery with CE estimation to develop
features for a subsequent clustering step. Several ways to customize and adapt the features to the problem at hand are
discussed. In an application example, the method is evaluated on 358 European river catchments. The found clusters
are analyzed using the causal mechanisms that drive them and their environmental attributes.

Impact Statement

This paper discusses how one can classify river catchments based on causal effects between temperature,
precipitation, and discharge, that is, the volume of water that leaves the given area over a certain time. The
proposed method is applied to 358 European catchments.

1. Motivation

In hydrological research, the basic classification of catchments, that is an area where all water drains to a
single outlet, is done through analyzing the response of discharge to precipitation input.Here, discharge refers
to the volume of water flowing through a river channel per time unit (Turnipseed and Sauer, 2010). However,
discharge characteristics are highly heterogeneous, as they depend on catchment characteristics like area,
slope, and land cover. Furthermore, catchment behavior is also driven by regional climate and the interaction
of hydrometeorological processes, for instance, snow melt, soil moisture, and precipitation events. Histor-
ically, such classification or clustering of catchments has been done using a carefully selected subset of their
attributes (Wagener et al., 2007). However,many of these attributes are correlated,making it difficult to select
a minimal predictive set. Hydrological signatures have also been used as a basis for clustering, leading to
clusters that are partially close to ones based on climate behavior (Kuentz et al., 2017; Jehn et al., 2020).

In recent years, the importance of data-driven analysis has been recognized (Peters-Lidard et al., 2017)
and catchment classification has also been done using machine learning techniques (Jiang et al., 2022).
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However, we note that the tools of causal inference seem to be under-explored to derive relationships
between meteorological variables that can serve as a foundation for classifying river catchments. Causal
inference algorithms allow, under specific assumptions, to discover and quantify causal relationships from
observational data.Moreover, their outputs are inherently explainable by design. Thismakes them especially
suitable for the domain of Earth sciences, since here it is often infeasible to conduct controlled experiments to
arrive at causal conclusions (Gnecco et al., 2019; Runge et al., 2019; Samarasinghe et al., 2020).

In our analysis, we investigate the impact of temperature and precipitation on observed discharge in
European catchments. See Figure 1 for an overview of the considered catchments and their environmental
characteristics.We assume linear relationships between the variables, and employ the PCMCI framework by
Runge et al. (2019), in combination with expert knowledge, to identify causal relationships. Based on the
found causal graphs, we also quantify the causal effect (CE) between the variables based on the pathmethod
(Wright, 1934) and Pearl’s causal framework (Pearl, 2000) following Runge et al. (2015). Subsequently, we
use the estimated CEs as features for clustering using the k-means algorithm (Lloyd, 1982).

In doing so, we show howmethods from causal inference can improve our understanding of discharge-
generating mechanisms.

2. Method

Wewant to explore differences in the causal structure of discharge and its drivers acrossEurope.Ourmethod
relies on observations frommultiple data sets that have been collected at different locations, that is, on data
that is heterogeneouswith respect to the environment bywhich it is influenced. In our application setting, the
considered data sets correspond to the catchments, where we observed temperature, precipitation, and
discharge.Within each of theM data sets (i.e., catchments), we haveN observational time series, denoted by
the vectorXm wherem is the data set index, for variables that are the same across data sets. An observation of
variable i at time point t within data setm is then denoted by Xi,m

t . To ease notation, we suppress the data set
index in the following. Our analysis comprises three main steps, that is,

1. Estimate a causal graph for each data set (i.e., catchment) separately using the PCMCI algorithm.
2. Extract features of the causal graphs that will be used in the subsequent clustering step. Here, one is

rather free in the choice of features, and we will discuss a few different options below. In this work,
we focus on features based on linear CE estimation. This step can also be seen as selecting a
mapping from the space of graphs into V ⊂Rd with d the dimension of the feature space. For
instance, d could be the number of lagged CEs between specific variablesXi andXj. In this spaceV ,
we can use the Euclidean distance for clustering in the next step.

Figure 1. Geographic overview and distribution of European catchments characteristics. (a) Area,
(b) average elevation, (c) average slope, and (d) forest cover.
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3. Finally, employ the k-means clustering algorithm to find graphs (that correspond to catchments)
with similar causal patterns.

2.1. Causal discovery

Interdependencies within a system of variables can be conveniently represented by graphical models,
where the variables are represented by the nodes of the graph and edges indicate dependence between the
respective nodes. Of specific interest to us are causal graphs, where an edge indicates a causal relationship
between two nodes. Here, we consider them to be directed acyclic graphs.

To be able to learn such causal graphs from observational data alone, we have to impose some
assumptions. In particular, we assume that the causal Markov condition, that is, the independence of error
terms driving each subprocess holds, as well as faithfulness which ensures that the graph includes all
conditional independencies that hold in the true underlying process. We also assume that all relevant
variables are included in the model. This is known as causal sufficiency. We also make the stationarity
assumption, that is, that the causal relationships do not change over time. Furthermore, we assume that
there are no contemporaneous effects.

In this setting, we apply the PCMCI algorithm to learn the time series graph within each data set.
PCMCI is a two-stage causal discovery algorithm based on the framework of constraint-based causal
discovery (Spirtes et al., 2000) that is suitable for time series. Its first stage, called PC1 is based on the
PC-stable algorithm that discovers relevant conditions for each of the N variables by iterative independ-
ence testing. These conditions are a superset of the true causal parents with high probability. In stage two,
the momentary conditional independence (MCI) test uses the conditions found in stage one to infer a
causal link Xi

t�τ !Xj
t, that is, it tests X

i
t�τ⊥Yt∣pa Ytð Þ,pa Xi

t�τ

� �
where pa Xi

t

� �
denotes the parent superset

of Xi
t found in the first step. Conditioning on the parents of the target pa Xi

t

� �
increases the effect size, and

conditioning on pa Xi
t�τ

� �
helps to control for false positives in the highly autocorrelated time series case.

For further details on PCMCI, refer to Runge et al. (2019).

2.2. Feature extraction based on CE estimation

Now,wewill give further detail on the feature extraction procedurewithin step 2. TheCE of settingXi
t�τ to

x∗ onXj
t is given byΨji τð Þ≔ ∂

∂x∗
E Xj

tjdo Xi
t�τ

� �¼ x∗
� �

. Note that the do-operator refers to a hard intervention

on the system of forcing the value of Xi
t�τ to be x

∗. Following Runge et al. (2015), to estimate the CE from
observational data, we fit a linear model of the following form, where we only estimate the coefficientsΦij

that correspond to links in our causal graph (see step 1):

Xj
t ¼

XN�1

i¼0

Xτmax

τ¼1

Φji τð ÞXi
t�τ þ εt withΦji τð Þ≠0only  if Xi

t�τ isaparent of X
j
t: (1)

One straightforward way of using this approximation of the causal process for clustering, is to directly
consider the vector of path coefficients Φij τð Þ� �

τ¼1,…,τmax,i∈V ,j∈W for subsets of variables V ,W ⊂X as

features. The path coefficient Φji τð Þ is a standardized version of the corresponding Φji τð Þ in (1) and
represents the change in the expectation ofXj

t (in units of its standard deviation) induced by raisingX
i
t�τ by

1 standard deviation, while keeping all other parents constant. It, therefore, quantifies the direct effect of
Xi
t�τ on X

j
t. One potential problem with this approach could be that the frequently (for every not directly

linked pair of nodes) appearing zero-values could dominate or skew the clustering results. Graphswith the
same nonparental relationships would be in the same cluster even though they exhibit very different
behavior in the present links.

Therefore, it might be preferable to use the lagged CEs of the variables in V onto the variables in W
instead. The matrix Ψ τð Þ of the standardized CEs between all variables for time lag τ can be iteratively
computed based on the standardized path coefficientsΦ τð Þ, as the entryΨji τð Þ corresponds to the sum over
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the products of path coefficients along all path betweenXi
t�τ andX

j
t, see also Figure 2. If wewant to consider

a large maximal time lag τmax, using Ψ τð Þð Þτ¼1,…,τmax
will give us a high-dimensional feature space.

However, we can reduce its dimension by using aggregated measures. Here, there are various ways in
which aggregation is possible. The lagged CEs could be aggregated over the number of variables, or by
aggregating in the direction of the lags, for example, by averaging

1
τmax

Xτmax

τ¼1

Ψ τð Þ,

or both, as is done in calculating the average causal effect (ACE) or average causal susceptibility (ACS).
Please refer to Runge et al. (2015) for the formulas. Note that many different ways of aggregation besides
averaging are possible and have to be carefully evaluated within each application context. Additional to
averaging, we have included results for maximal lagged CEs, that is, using the features
max τ Ψij τð Þ� �� �

i,j¼1,…,N , in Figure 3.

Figure 2. Illustration of total causal effect estimation in a time series graph for τ¼ 2. The CE Ψji 2ð Þ
between X1

t�2≕X and X2
t≕Y is computed by summing over the products of path coefficients (link labels)

along each path, that is, Ψ21 2ð Þ¼Φ1,1 1ð ÞΦ2,1 1ð ÞþΦ2,1 1ð ÞΦ2,2 1ð Þ.

Figure 3. Cluster results for different choices of features. For a brief explanation of these, and other,
feature extraction methods see Section 2.2. In the following X1 denotes temperature, X2 precipitation and
X3 discharge. The features correspond to (a) average lagged CE ofX1 onX3, (b) average lagged CE ofX2

onX3, (c) average lagged CE ofXi onXj for all i≠ j, (d) maximal lagged CE ofXi onXj for all i≠ j, (e) path
coefficients, and (f) ACE of Xi on the system for all i.
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3. Application

Now, we apply our method to the problem of classifying European catchments in terms of their causal
interactions between temperature, precipitation, and discharge.

3.1. Data and setup

In this study, we consider 358 gauged catchments across Europe selected based on data availability of
daily observational discharge, meteorological observations, watershed boundaries, and morphological
catchment characteristics for the study period from 1950 to 2021. Daily observational discharge and
watershed boundaries were used from the Global Runoff Data Centre (GRDC) dataset (https://www.
bafg.de/GRDC, accessed: 21 July 2022). Using the observational 0.1° daily gridded E-OBS dataset
(version 26e, Cornes et al., 2018), catchment averaged precipitation and mean surface temperature time
series were derived using area-weighted averages of the gird cells within the catchments’ boundary. For
analysis of the clusters, catchment averaged slope and altitude were derived from the USGS digital
elevation model (Earth Resources Observation And Science (EROS) Center, 2017), land cover
(impervious, forest, pervious) from the European Space Agency GlobCover (Arino et al., 2012).
Deriving the morphological variables from gridded data products was done to allow for comparison
to future studies including process-based hydrological models, therefore we restricted our study to
catchments where this data is available. We furthermore limit our study to catchments with a minimum
of 30 years of continuous discharge records within the study period to ensure sufficient data for our
causal inference approach. The catchment areas range between 16 and 10,000km2

—larger catchments,
with the increasing importance of spatial heterogeneity on discharge generation, were omitted. Overall,
the selected catchments encompass a large variety of locations, areas, average altitudes, and morph-
ologies, with a cumulation inGreat Britain and Ireland due to the availability of watershed boundaries in
those regions (Figure 1).

The implementation of ourmethod is based on the Tigramite-package (https://github.com/jakobrunge/
tigramite/tree/master). For the causal discovery step (step 1 above), we use the PCMCI algorithm. We
assume a linear relationship between the variables and therefore use the partial correlation conditional
independence test with a 0.05 significance level in the PCMCI algorithm. We also provide the general
knowledge that discharge cannot cause either temperature nor precipitation to the causal discovery
method.We look for causal relationships up to 30 time steps in the past, that is, τmax ¼ 30. Any time slices
of samples with missing values are discarded. For step 2, we use the functionality provided in the
LinearMediation class of Tigramite. Within step 3, we use the scipy-implementation of the k-means
algorithm with four cluster centers. Results for three and five cluster centers are provided in the
Supplementary Material. The choice of this hyperparameter was based on a combination of the Elbow
method and the silhouette score (Kaufman and Rousseeuw, 2009). The elbow method corresponds to
finding the point after which the sudden drop in average distance from the centroid slows down, see Teoh
andRong (2022) for details. The silhouette score provides amore quantitativemeasure of how similar and
separated the found clusters are. We plotted the average distance from the centroid, the silhouette score,
and its average, respectively, over the number of cluster centers. These plots can be found in the
Supplementary Material. The results vary slightly over the different features that we used as a basis for
the clustering. However, generally speaking, four cluster centers seem to be a good choice that also leads
to clusters that are informative and of roughly the same size.

3.2. Results

As one would expect, we find slightly different clusters depending on the causal aspect of the system we
are focusing on during the feature extraction phase of our method. We present results for a few different
feature choices in Figure 3, more can be found in Supplementary Figure S10. However, somemetrics also
yield very similar results. We find only minor variation between the clusters for ACE and ACS. Only
considering the CE of precipitation on discharge gives us very similar clusters to considering the
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relationships between all variables. Moreover, clusters based on joint CE are almost identical to only
considering the maximal CE overall lags for each variable pair.

Supplementary Figure S10 also illustrates the results for an increasing number of clusters. We observe
that the clusters tend to become regionally very scattered as the number of clusters grows. This effect is
especially apparent in Middle and Western Europe. This is possibly due to the high spatial variability in
the European climate and topography.

3.3. Distinct causal behavior

The time series graphs that are discovered in step 1 of our method do not differ much across catchments in
terms of skeleton, that is, the graph without orientations, and link direction, see Supplementary
Figure S10. This is to be expected, since we provided the causal discovery algorithm with substantial
expert knowledge. Therefore, we get more regionally varying clusters if we take the variations in strength
of the links, or, in other words, of the value of the path coefficients, into account. This behavior is visible in
Supplementary Figure S10. In this section, we want to investigate the features that we used for clustering
further by having a closer look at the distribution of each component of the feature vectors within each
cluster. This will allow us to associate the observed clusters with a specific causal pattern. As an example,
we will focus on the average joint CE and some variants of it.

In Figure 4, we observe that for one-dimensional feature spaces, we can directly see that the clusters
correspond to a specific range of the feature values. This is shown in the right column of Figure 4 for the
one-dimensional features average lagged CE of temperature on discharge, and average lagged effect of
precipitation on discharge, respectively. For instance, in the yellow cluster, we see a strong average CE of
temperature on discharge. As can be expected, this cluster has the lowest CE of precipitation on discharge.
Interestingly, we find that this cluster is also associated with a specific European region, see Figure 3.

Figure 4. Histogram of one-dimensional CE-based features (right column) in comparison to clustering
based on feature vectors that include the average joint CE of temperature on precipitation, temperature
on discharge, precipitation on temperature, and precipitation on discharge (left and middle column). For
instance, the plot in the right upper corner shows the frequency of values of the average lagged CE of
temperature on discharge within the different clusters. One can see that in the catchments of cluster
1 (blue), the average lagged CE of temperature on discharge is relatively low in comparison to the other
clusters. Colors correspond to the clusters illustrated in Figure 3.
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Now, we look at similar plots for the case where we used the four-dimensional feature vector of the
average joint CE of temperature on precipitation, temperature on discharge, precipitation on temperature,
and precipitation on discharge for clustering (left and middle column in Figure 4). Here, we see that the
fourth component almost exactly separates according to the clusters. We suspect that it is dominating the
clustering, since the CEs between precipitation and temperature are very low in comparison. More plots
can be found in the Supplementary Material.

3.4. Distribution of catchment attributes within clusters

We are also interested in analyzing the distribution of environmental variables within each of the found
clusters. We illustrate this using boxplots in Figure 5. Also, note that the environmental attributes tend to
be strongly correlated. For instance, steeper slope generally corresponds to higher altitude. In Figures 3
and 5, general patterns are also visible across all different choices of features, for example, strong
differences in mean altitude between one or two of the found clusters and the remaining ones. We can
summarize the differences and similarities with respect to the attributes in the following way:

1. cluster: low altitude, small catchments, western/middle Europe,
2. cluster: low to medium altitude, small, western/middle Europe,
3. cluster: low to medium altitude, larger area, western/middle Europe, and
4. cluster: high altitude, with larger area: seems to be alps, Scandinavian mountains.

Figure 5. Distribution of catchment attributes within each cluster. The attributes are slope in degrees
times 10, average altitude in m above sea level, area in km2, proportion of basin covered by forest,
proportion of basin covered by impervious surfaces, and mean annual rain volume in 100km3. Colors
correspond to the clusters illustrated in Figure 3. In the following X1 denotes temperature, X2

precipitation, and X3 discharge. The features correspond to (a) average lagged CE of X1 on X3,
(b) average lagged CE of X2 on X3, (c) average lagged CE of Xi on Xj for all i≠ j, (d) maximal lagged CE
of Xi on Xj for all i≠ j, (e) path coefficients, and (f) ACE of Xi on the system for all i.
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Some of the clusters seem to be strongly related to a specific region, for example, in terms of effect of
precipitation on discharge we observe a very clear regional cluster in Ireland. However, it is hard to
interpret without further domain knowledge. Moreover, the results could be skewed by the choice of
catchments. A large proportion of the catchments are located in Great Britain and Ireland since here
watershed boundaries are readily available. This was a limiting factor in our catchment selection because
we wanted to be able to infer the catchment size. How this problem can be alleviated in future work is
further discussed in the next section.

4. Discussion

In principle, our method is applicable in any situation where there are multiple data sets containing
observations of the same variables. This makes our method applicable to a wide range of problems and
research areas, not even limited to the domain of Earth science.

Of course, in practice, the availability and quality of data are limiting factors. Therefore, an analogous
analysis can be conducted in regions with good public data availability, like North America, whereas it
would be more challenging in regions with a lower converage by weather and gauging stations.

Also, the construction of geographically averaged timeseries and associated environmental attributes
might not be as clean-cut as in our application, where the catchment boundaries provide a natural
distinction between different data regions. In other questions relevant to the field of Earth Science, the
regions to average over might be more arbitrary. This essentially introduces more hyperparameters into
the problem. Another potential problem is an insufficient amount of data. For instance, if one is interested
in extreme events, like the flood-generating process instead of the discharge-generating process, then
there are probably too few events to obtain stable causal discovery and clustering results.

There are still many avenues open for future work. The main next step that we want to take is to only
focus on peak discharge events and to see how the drivers of extreme events differ from the baseline
behavior of normal fluctuations in discharge. Another major point that we want to explore further is the
influence of climate change on the system. So far we have assumed stationarity of the time series but this
assumption is violated in a warming climate.

Furthermore, the effect of including more variables into our model has to be investigated. In other
words, effects of the possible violation of the underlying causal sufficiency assumptionwithin the PCMCI
algorithm has to be explored.

Also, further analysis has to be done to distinguish the clusters more, especially clusters 1 and 2. In
particular, the imbalance in the dataset of most clusters being located in Great Britain or Ireland has to be
addressed. The reason for this is that here a lot of clusterswithwatershed boundaries are available.However,
following the approach presented by Xie et al. (2022), it is possible to infer the watershed boundaries for
many more clusters across Europe making them suitable for our analysis. Moreover, the European climate
has a high spatial variation that depends on far more factors than have been analyzed by us so far.

5. Conclusion

In this work, we presented how tools from causal discovery and effect estimation can be combined with
clustering techniques. The presented approach is very customizable and thus suitable for a wide variety of
problems and domains. In an application example, we have explored how causal drivers of discharge,
specifically the strengths of their CEs, differ across Europe. We saw how the causal inference methods
allow us to find clusters of catchments that can guide domain experts in developing and evaluating
hypothesis based on observational data, and how these clusters are affected by different choices in
designing the features.
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