
13

Challenges and extensions

In this final chapter we look to the future of ACSV, discussing the most im-
portant challenges and extensions of current results. Work attacking several of
these problems is ongoing. The breadth of behavior exhibited by multivariate
generating functions is vast, and new applications arise constantly that require
additional techniques.

13.1 Contributing singularities and diagonals

Let F(z) be the generating function of a sequence (ar). Theorems 7.20 and 7.35
represent ar as an integer sum of saddle point integrals near critical points of
F, which can be analyzed to determine asymptotics of ar. Unfortunately, iden-
tifying the integer coefficients in this sum seems to be extremely difficult, if
not undecidable. Even identifying the contributing singularities of F, which
are the critical points of highest height with non-zero coefficients, is currently
only possible in general for minimal critical points, in two dimensions, or when
F is the product of linear factors.

Being able to identify the contributing singularities of a general rational
function would be an important theoretical breakthrough for ACSV. One (topo-
logical) approach is to generalize the two-dimensional algorithm discussed in
Section 9.3 to higher dimensions. Another (computational) approach is to use
software for D-finite functions. Recall from Section 8.4.2 that for any fixed
r ∈ Zd the r-diagonal of a multivariate rational function is D-finite, and the
methods of creative telescoping produce a D-finite equation satisfied by the
diagonal. Thus, it is possible to study rational diagonals using both ACSV and
techniques for D-finite functions. In fact, these methods are complementary:
ACSV often determines asymptotics up to unknown integers that are diffi-
cult to determine, while D-finite techniques often determine asymptotics up

424

https://doi.org/10.1017/9781108874144.018 Published online by Cambridge University Press

https://doi.org/10.1017/9781108874144.018


13.1 Contributing singularities and diagonals 425

to unknown complex numbers that can be rigorously approximated. The com-
bination of these two representations was used in Example 11.50 to determine
asymptotics for a multivariate generating function with cone singularities, and
it is natural to ask how far this combined method can be pushed – both to
characterize the behavior of multivariate rational diagonals, and to attack the
connection problem for the asymptotics of sequences with D-finite generating
functions.

Problem 13.1. Classify the types of rational functions for which this hybrid
ACSV and D-finite numeric method applies.

Remark 13.1. The diagonal of any bivariate rational function is algebraic,
so asymptotics in any fixed direction can always be decided by computing the
minimal polynomial for the diagonal and applying univariate techniques. How-
ever, the complexity of the computation to reduce to the one-dimensional case
can increase with the size of the integers representing a direction of interest,
and does not work for general direction. Thus, it is interesting to study even
bivariate rational diagonals using multivariate methods.

Example 13.2. The (a, b)-diagonal of the bivariate generating function

F(x, y) =
1

1 − x − y − xy

for the Delannoy numbers has the representation

G(x) =
[
t0
]

F
(
x1/a/tb, ta

)
=

1
2πi

∫
γx

F
(
x1/a/tb, ta

)
t

dt

=
1

2πi

∫
γx

tb−1

tb − x1/a − ta+b − x1/ata dt ,

for x sufficiently close to the origin and γx a circle around the origin that ap-
proaches the origin as x→ 0. This integrand has a single pole t = s(x) satisfy-
ing limx→0 s(x) = 0, which is a pole of order b, so

G(x) = Res
t=s(x)

F
(
x1/a/tb, ta

)
/t

= lim
t→s(x)

1
(b − 1)!

∂b−1
t

(
(t − s(x))bF

(
x1/a/tb, ta

)
/t
)
.

The product rule gives this limit as an algebraic expression in s(x), which can
be combined with the defining algebraic equation for s(x) to give an algebraic
equation satisfied by G, however this expression is extremely unwieldy for
large a and b, and the complexity of the operations grows with a and b. In
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contrast, asymptotics of the Delannoy numbers in all diagonal directions was
given in Example 9.11 using ACSV. /

13.2 Phase transitions

Our asymptotic approximations typically hold uniformly as r → ∞ with r̂
staying in certain cones of directions, corresponding to contributing points at
which the local geometry ofV does not change. When the local geometry ofV
does change, asymptotic behavior is no longer uniform. For instance, consider
the situation of Example 9.39 in Chapter 9: asymptotic behavior grows like a
constant times r−1/2 and is uniform in any direction bounded away from the
main diagonal, while asymptotic behavior on the main diagonal grows like a
constant times r−1/3. Without some kind of result to bridge the gap we cannot,
for instance, conclude that

lim sup
log ar
log |r|

= −1/3 . (13.1)

A similar issue for trivariate functions arises in the analysis of spacetime
generating functions for two-dimensional quantum random walks, where the
logarithmic Gauss map maps a 2-torus to a simply connected subset Ξ of the
plane. Such a map must have entire curves on which it folds over itself, and
some points of greater degeneracy where such curves meet or fold on them-
selves.

There is some work in this area. A combinatorial generating function with
the behavior of Example 9.39 was discussed in [Ban+01] under the name Airy
phenomena (in the rescaled window s = λr + O(r1/3), the leading term con-
verges to an Airy function). A start on a general formulation of such asymp-
totics in dimension d = 2 was made by Lladser [Lla03], and (13.1) follows
from [Lla03, Corollary 6.12]. Lladser [Lla06] also shows that if there is a
change of degree of the amplitude and the phase does not change degree, then
we can derive a uniform formula for the coefficients in the expansion.

Problem 13.2. Characterize asymptotic transitions in more than two variables.

13.3 Degenerate phase

Most of our results in previous chapters have relied on reduction to a stationary
phase integral for which the phase is quadratically nondegenerate at an isolated
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critical point, and hence amenable to a Complex Morse Lemma argument, but
more complicated situations can arise.

Example 13.3. Recall from Example 10.69 the generating function

F(x, y) =
∑
r,s

arsxrys =
1

(1 − xy)(1 − x/2 − y/2)

with main diagonal terms arr =
∑r

j=0 4− j
(

2 j
j

)
.

The critical point equations for the factor H1 = 1− x/2−y/2 in the direction
(1, 1) have a unique solution (1, 1), while every point on the torus |x| = |y| = 1
satisfies the critical point equations for the factor H2 = 1 − xy. The point
(1, 1) is therefore a minimal, but not strictly minimal, critical point which is a
double point of the singular variety. In addition to a torus of singularities with
the same coordinate-wise modulus, the varieties V(H1) and V(H2) intersect
tangentially at (1, 1).

A systematic application of the surgery approach reduces the problem of
finding asymptotics of arr as r → ∞ to finding asymptotics of

1
2π

∫
D

A(θ, t) exp (−λφ(θ, t)) dµ

as λ→ ∞, where

A(θ, t) =
2

2 − eiθ

φ(θ, t) = − log
(
1 − t

(
1 −

e−iθ

2 − eiθ

))
,

the domain of integration D = [−π, π] × [0, 1] ⊂ R2, and µ is the Lebesgue
measure. Note that Re φ is nonnegative on D, with minimum value 0. The
stationary points of φ on D are (0, t) for 0 ≤ t ≤ 1, and (θ, 0) for −π ≤ θ ≤ π.
Not only is the phase not equivalent via a smooth change of variables to t2 + θ2

(it looks more like tθ2), the stationary phase set consists of more than a single
point, being a 1-dimensional T-shaped subset of the rectangle. /

Example 10.69 derived asymptotics for Example 13.3 using an ad hoc ap-
proach.

Example 13.4. Develop a systematic theory for such degenerate integrals. /

Example 13.5. If S denotes the set of n×n Hermitian matrices with Frobenius
norm 1, and E denotes the subset of S containing matrices with repeated eigen-
values, then E has positive codimension in S but has a volume with respect to
the Riemannian metric inherited from S . It turns out1 that this volume is, up
1 K. Kozhasov (personal communication)
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to an easily computed constant, the coefficient of (z1z2z3z4)n in the generating
function

M(z1, z2, z3, z4) =

∏
1≤i< j≤4

(zi − z j)

1 − e1(z)2 + 4e2(z)
,

where e j is the jth elementary symmetric function in the variables z1, z2, z3, z4.
While symmetry initially makes the problem tractable, the stationary phase
set is a union of curves rather than points and, to make things worse, the nu-
merator vanishes to different orders on these curves and their intersections. By
computing a D-finite equation satisfied by the main diagonal of M, and using
the numeric methods discussed in Section 8.4.2 and Section 13.1 above, it can
be shown that the coefficient of interest has asymptotic behavior Cn−5/264n as
n → ∞ for a constant C ≈ 0.4527. It would be interesting to derive this result
using multivariate techniques. /

In the case of real phase, it is possible to compute a degenerate integral as
a Laplace integral by determining volumes of level sets. Suppose we wish to
compute an integral of the form∫

D
exp(−λφ(x))A(x) dx,

where D = [0, 1]d ⊂ Rd in some dimension d ≥ 1, the parameter λ is large,
and φ and A are analytic functions on D. Fubini’s Theorem tells us that for a
nonnegative measurable function f defined on a measure space (X, µ) we have∫

X
f (x) dµ(x) =

∫ ∞

0
µ ({x : f (x) ≥ z}) dz,

and the change of variable z = exp(−u) converts this integral to∫ ∞

−∞

e−uµ
(
{x : − log f (x) ≤ u}

)
du.

Let Vu denote the measure of the sub-level set µ
(
{x : − log f (x) ≤ u}

)
. Letting

f (x) = e−λφ(x), we obtain

Vu =

∫
D

1φ(x)≤u/λdµ(x)

and, for simple enough φ, it may be possible to compute Vu explicitly. Propo-
sition 4.7 can then be applied to determine asymptotics.

Exercise 13.1. Compute asymptotics as λ→ ∞ for∫ 1

0

∫ 1

0
e−λxy2

xy dx dy.
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Degeneracies of phase can also, in principle, be handled by resolving singu-
larities to obtain a normal crossing, using a change of coordinates mapping the
phase function into a monomial, expanding the resulting amplitude function
into a power series, and then applying known exact asymptotics to each term.
Resolution of singularities, together with the methods of [Var77], implies that
the possible asymptotic behaviors for any rational asymptotics fall in a limited
set of leading terms.

13.4 Critical points at infinity

Let T = T (x), where x is in some component B of the complement of the
amoeba of the denominator Q of some rational function. As seen in Chapter 7,
non-existence of CPAI in the direction r̂ is a sufficient condition for [T ] to be
representable as the sum of cycles corresponding to attachments at affine criti-
cal points in direction r̂. However, this non-existence is by no means necessary.
For instance,

• The trajectories flowing to a CPAI may not be trajectories of any stratified
gradient-like flow.

• A trajectory flowing to a CPAI may be a gradient-like flow, but the particular
torus [T ] may flow down to an affine critical point and not be pulled down a
path leading to this CPAI.

• [T ] may not flow down without being pulled to infinity, but there may be a
cobordism between T and a cycle lower than any CVAI.

• Even if [T ] is pulled to infinity by some gradient-like vector field, the CPAI
there may not alter the topology and it might be possible to deform [T ] to
“come back from infinity.”

Problem 13.3. a) Can there be unreachable CPAI, meaning that there is a
downward gradient-like field that has no flows reaching a CPAI?

b) If so, how can we compute which CPAI are like this?
c) Do all CPAI alter the topology of V∗? Is there an attachment theory for

CPAI, giving a way to compute the topological effect of each CPAI?
d) If there is a local attachment, can we find a cycle α representing it and

determine
∫
α
z−r−1F(z) dz?

Another useful tool would be the capability to rule out the existence of CPAI
in some direction without an overly long computer algebra computation. An
early conjecture, which turned out not to be true, was that all CPAI must be
parallel to some face of the Newton polytope of Q. Some ongoing work proves
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that this conjecture is true when the polytope is schön, a property defined in
terms of compactifications via toric varieties [Huh13, Definition 3.6]. The set
of directions parallel to a face of the Newton polytope is a small set (it has
positive codimension) so it is useful to know when CPAI are restricted to these
directions. Generally, we would like to find computable restrictions on the pos-
sible directions of CPAI.

13.5 Algebraic GFs

Section 12.6 showed how to study algebraic generating functions by embed-
ding them as diagonals of higher-dimensional rational functions. The simplest
embedding method, due to Furstenberg, is easy to apply when it works, but
does not apply to any algebraic generating function intersected by one of its
algebraic conjugates at the origin. There are several known methods for resolv-
ing singularities in such cases, for instance the algorithm of Safonov [Saf00]
mentioned in Theorem 2.41 and the less constructive procedure of Denef and
Lipshitz [DL87].

Example 13.6. Let f (x) = x/
√

1 − x be an algebraic function with minimal
polynomial P(x, y) = (1− x)y2− x2. Because f (x) = x +O(x2) and its algebraic
conjugate − f (x) = −x+O(x2) intersect at the origin, the embedding method of
Furstenberg does not apply. Safonov’s procedure subtracts some initial terms
via the substitution y = xz+x, yielding a minimal polynomial (1−x)(z+1)2−1 to
which Proposition 2.34 now applies. Converting back to the original variables
then gives f as the main diagonal of

F(x, y) =

(
2 y3x + 3 y2x − 2 y2 + 2 yx − 3 y + x − 2

)
yx

y2x + 2 yx − y + x − 2
.

We remark that F has no affine critical points in the main diagonal direction,
so it admits critical points at infinity which determine asymptotic behavior,
making the analysis difficult. An alternative embedding, following the method
of [DL87], is obtained through the much less obvious substitution y = x/(1−z),
expressing f (x) as the main diagonal of

G(x, y) =
2xy

1 − x − y
.

In contrast to the difficult behavior of F, the function G is combinatorial and
has a smooth contributing critical point at (1/2, 1/2), allowing for an easy
asymptotic analysis. /
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Problem 13.4. Give a complete analysis of algebraic generating functions f (x)
with quadratic minimal polynomials.

Problem 13.5. Can an algebraic series f (x) with nonnegative coefficients al-
ways be embedded as the diagonal of a combinatorial rational function? Find
an efficient algorithm that converts coefficient extraction for algebraic func-
tions to coefficient extraction for rational functions in a way that preserves the
combinatorial nature of the problem.

Recent work [Gre+22] develops software to analyze a variety of algebraic
generating functions, ultimately cataloguing 20 combinatorial examples. An
alternative approach being developed [BJP23] integrates algebraic generating
functions directly. If f is an algebraic function defined by P(z, f ) = 0 and
f (0) = c, with y = c a simple zero of P(0, y), coefficients of the power series
expansion of f at the origin are given by

ar =
1

(2πi)d

∫
T

f (z)z−r−1 dz , (13.2)

where T is a torus about the origin, sufficiently small so the polydisk with the
same radii contains no singularities of f . Because (0, c) is a simple zero of P,
there is a neighborhoodN of (0, c) in Cd+1 such that projection π onto the first
d coordinates of the hypersurface VP in Cd+1 restricted to this neighborhood
is a bi-analytic map to a neighborhood of the origin in Cd. Choosing T smaller
if necessary so as to be contained in this neighborhood of the origin, the set
C = π−1(T ) is a small torus inVP and (13.2) becomes

ar =
1

(2πi)d

∫
C

yz−r−1 dz. (13.3)

Aside from the high negative powers of z1, . . . , zd, the integrand y has no
denominator, however the coefficients ar may be recovered the same way as
one recovers coefficients of rational functions. In the absence of critical points
at infinity, the d-dimensional complex varietyV∗ = VP ∩C

d
∗ has a Morse the-

oretic decomposition into cycles attaining their maximum height near critical
points of the height function h(r̂,0)(z) =

∑d
j=1 r j log |z j|. One then resolves the

chain C in this basis. For instance, if the surface VP is smooth and there are
no CPAI for P in the direction (r̂, 0) then the asymptotics of ar are given by
some linear combination of Φw from (9.4) over critical points w of P in the
direction (r̂, 0).

Example 13.7. Let f (x) = 1−
√

1−4x
2x be the Catalan generating function, with

minimal polynomial P(x, y) = xy2 − y + 1 = 0. The point (0, f (0)) = (0, 1) is
a smooth point of VP, and a small circle about (0, 1) in V∗ projects by π to a
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small circle about the origin in C1. The smooth surface VP has precisely one
critical point p = (1/4, 2) in the direction (1, 0), defined by the simultaneous
vanishing of P and Py. There is a critical point at infinity because the value
of Py goes to zero as x → 0, however the height function goes to infinity as
x → 0 so Morse theory tells us that the initial curve C can be deformed in
V∗ to a smooth contour γ in P passing through p so that the minimum of
log |x| on γ occurs at p. A standard stationary phase integral for

∫
γ

x−n−1ydx
leads to an asymptotic series for the Catalan numbers. Because the amplitude
y is stationary at p, there will be one more negative power of n than the usual
n−1/2 obtained from a univariate saddle point integral. This recovers without
computation the fact that the nth Catalan number is Θ

(
n−3/24n

)
. /

Exercise 13.6 below explores what happens when (0, c) is not a simple pole
of P. We conclude with an exercise illustrating a multivariate algebraic func-
tion.

Exercise 13.2. Let

f (x, y) =
1 + x(y − 1) −

√
1 − 2x(y + 1) + x2(y − 1)2

2
be the Narayana bivariate generating function from Example 2.37, defined by
the minimal polynomial

P(x, y,w) = w2 − w
[
1 + x(y − 1)

]
+ xy

and the fact that f (0, 0) = 0.

(a) Show that P is smooth.
(b) Find c = f (0, 0) and determine whether (0, 0, c) is a simple zero of P.
(c) Find the critical points for P in the direction (2, 1, 0).
(d) Among the critical points, which have finite height?
(e) Are there critical points at infinity in the direction (2, 1, 0)?
(f) What asymptotics for a2n,n do you get from integrating

∫
γ

wx−2n−1y−n−1 dxdy
over an appropriate contour γ?

13.6 Asymptotic formulae

In Section 9.4.2 we presented a geometric interpretation, in terms of Gaussian
curvature, of the first term in our basic smooth point formula.

Problem 13.6. Give a coordinate-free formula for the next term in the basic
smooth point asymptotic expansion. Give similar formulae for arrangement
points.
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Theorem 10.38 and Corollary 10.41 in Chapter 10 imply that the asymptotic
contribution of a minimal arrangement point is unchanged when the factors in
the denominator are replaced by their first-order terms.

Problem 13.7. Let Q(z) be any polynomial in d variables and let p be a zero
of Q such that the homogeneous part H(z) of Q at p (in the sense of Defini-
tion 6.46) factors into k < d linearly independent factors. Under what condi-
tions is the dominant asymptotic contribution of p to the series coefficients of
1/Q(z) the same as the dominant asymptotic contribution of p to the series
coefficients of 1/H(z)?

An approach to Problem 13.7 is provided by a series of results in [BP11].
Lemma 2.24 of that paper shows that in the interior of the normal cone at
p, the function 1/Q(z) can be expanded in negative powers of H(z), while
Lemma 6.3 there shows that the Cauchy integral for the leading negative power
is the inverse Fourier transform. These results are stated for points with specific
types of local factorizations, but in fact appear to be much more general. As
summarized in Chapter 11 of this text, the construction of a conical contour,
and the error estimates that follow, rely only on the direction r̂ being non-
obstructed. In fact the types of local divisors allowed are Lorentzian quadratics
and smooth divisors, which as a degenerate case (having no quadratics) include
arrangement points. Thus, solving Problem 13.7 for a large class of functions
should be possible by an application of the results in [BP11].

Some caution is indicated due to the asymptotics for two smooth tangential
divisors, worked out in a special case in Proposition 10.68, and the fact that
asymptotics for the square of a single smooth divisor are a special case but do
not capture the results of Proposition 10.68 in general. The difficulty here may
be traced back to the fact that the expansion in [BP11, Lemma 2.24] only holds
in the interior of a cone where the homogeneous part does not vanish; because
two tangential curves cannot be separated by a cone, the expansion does not
hold near where Q vanishes.

13.7 Symmetric functions

Multivariate generating functions often possess some degree of symmetry. For
example, the denominators in the Delannoy generating function, the cube grove
generating function, the Friedrichs–Lewy–Szegő generating function, and the
Gillis–Reznick–Zeilberger generating functions are all symmetric polynomi-
als. The denominator in the Aztec Diamond generating function is symmetric
in two of its variables.
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A symmetric function Q always has critical points in the main diagonal
direction, since ∇log Q(z) ‖ 1 whenever z = (w, . . . ,w) and w is a root of
the univariate polynomial Q(z, . . . , z). When Q is symmetric and multi-affine,
meaning Q has degree 1 in each variable, then there must be a minimal critical
point.

Theorem 13.8 ([Bar+18, Lemma 15]). Let Q be a multi-affine elementary
symmetric function and let δQ denote the univariate diagonalization δQ(z) :=
Q(z, . . . , z). If w is a root of δQ of minimal modulus then (w, . . . ,w) is a minimal
point for Q in the main diagonal direction.

Proof Denote the roots of δQ by α1, . . . , αk, where |α1| is a root of least mod-
ulus, and let

M(z) =

k∏
j=1

(z j − α j) .

For any ε > 0, the polynomial M has no zeros in the polydisk D centered at
the origin whose radii are all |α1| − ε. For any d-variable polynomial P, denote
its symmetrization by

P∗(z) :=
1
d!

∑
π∈Sd

P
(
zπ(1), . . . , zπ(d)

)
.

Then M∗ = Q and the Borcea–Brändén symmetrization lemma [BB09, The-
orem 2.1] implies that Q has no zeros in the polydisk D. Because ε > 0 was
arbitrary, we conclude that (α1, . . . , α1) is a minimal point of Q. �

Exercise 13.3. In d variables, the jth elementary symmetric function is the
polynomial

e j(z) =
∑
S∈E j

∏
i∈S

zi,

where E j consists of all subsets of {1, . . . , d}with j elements. Use Theorem 13.8
to find minimal points for the following denominators without resorting to ge-
ometric arguments.

(a) In 2 variables, Q(x, y) = 1 − e1(x, y) − e2(x, y) (the Delannoy generating
function).

(b) In 3 variables, Q(x, y, z) = 3− e1(x, y, z)− e2(x, y, z) + 3e3(x, y, z) (the cube
grove generating function).

(c) In 4 variables, Q(z) = 1 − e1(z) + 27e4(z) (the GRZ generating function
with critical parameter).
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Problem 13.8. Find a way analogous to Theorem 13.8 to conclude minimal-
ity in some off-diagonal direction for some class of multi-affine polynomials.
Replace the multi-affine hypothesis in Theorem 13.8 by something weaker so
that the conclusion still holds.

Naively applying Gröbner basis methods typically breaks symmetry, but
recent research in computer algebra has given effective methods for solving
polynomial systems with symmetric polynomials, including critical point sys-
tems [HL16; Fau+23].

Problem 13.9. Incorporate software for symmetric polynomial solving into
packages for ACSV computations.

Exercise 13.4. In four variables, let G = 1 − e1 + 27e4 be the Gillis–Reznick–
Zeilberger denominator, let K = 1 − e1 + 2e3 + 4e4 be the Kauers–Zeilberger
denominator, let S = e3(1 − x, 1 − y, 1 − z, 1 − w) be the Szegő denominator,
and let L = e2(1 − x, 1 − y, 1 − z, 1 − w) be the Lewy–Askey denominator.

(a) Express G,K, S , and L as polynomials P1, . . . , P4 in the elementary sym-
metric functions e1, . . . , e4.

(b) Compute a Gröbner basis for 〈P1, . . . , P4〉 as polynomials in the variables
e1, . . . , ed and describe the variety Ve defined by the points (e1, . . . , ed)
where the P j simultaneously vanish.

(c) Use this computation to find the elements ofV(G,K, S , L).

13.8 Conclusion

This book aims to illustrate effective methods for computing asymptotic ap-
proximations to the coefficients of multivariate generating functions. Such meth-
ods have many applications, and have already been used to study problems
arising in, among other areas, dynamical systems, bioinformatics, number the-
ory, statistical physics, algebraic statistics, string theory, information theory,
and queueing theory. We expect the number of applications to grow steadily.
While many (most?) applied problems can be tackled by a smooth point anal-
ysis, there are many interesting problems that involve much more complicated
local geometry, such as the tiling models discussed in Section 11.4.

From the standpoint of mathematical analysis, many of the tools required
to extend the basic ACSV results already exist. Problems for which mini-
mal points control asymptotics usually sidestep complicated topology, and the
Morse-theoretic intuition behind our results can often be ignored in such cases
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by casual users seeking to solve a specific problem. However, substantial topo-
logical difficulties can arise when dealing with contributing points that are not
necessarily minimal. We believe that to make further progress in this area, sub-
stantial work in the Morse-theoretic framework will be required.

This book is certainly not the last word on the subject, but rather an invita-
tion to the reader to join in further development of this research area, which
combines beauty, utility, and tractability, and which has given the current au-
thors considerable challenge and enjoyment over many years.

Notes

ACSV was the subject of an AMS-sponsored Mathematical Research Commu-
nity in 2020–2022, and a 2022 workshop at the American Institute of Math-
ematics. Among the topics discussed at these events, which still have active
research collaborations, are characterizations of CPAI [Gil22], software for
ACSV [LMS22], rational embeddings of algebraic functions [Gre+22], and
work in progress by Drmota and Pak on multivariate characterizations of so-
called N-algebraic functions. The methodology for algebraic functions given
at the end of Section 13.5 is contemporaneous to this edition and appears in
the preprint [BJP23], along with a new formula for coefficient asymptotics in
terms of the defining algebraic function.

Proving minimality by conventional means in Exercise 13.3 (c) above is
quite challenging; it is the basis of Problem B5 on the 2020 Putnam examina-
tion. The approach of Exercise 13.4 was suggested by Brendan Rhoades, and
Example 13.2 is adapted from [Sta99, Section 6.3].

Additional exercises

Exercise 13.5. (binomial transition) Consider the binomial coefficient gener-
ating function (1 − x − y)−1, and compute first-order asymptotics for the coef-
ficient ars, where s/r → 0 as r, s → ∞. How many different cases are there in
the analysis?

Exercise 13.6. Let P(x, y) = (1 − x)y2 − x2 as in Example 13.6.

(a) Show that for sufficiently small ε > 0 there are two liftings by π−1 of the
centered circle of radius ε in C∗ to a contour in V∗ and that one of them
describes the positive square root y = x/

√
1 − x.

(b) Find all affine critical points ofV∗ in direction (1, 0).
(c) Find all critical points at infinity ofV∗ in direction (1, 0).
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(d) Which of these critical points are at finite height?
(e) Which is more of a problem for computation, the double zero of P or the

existence of a critical point at infinity?

Exercise 13.7. Find a general formula for det ΓΨ in terms of the partial deriva-
tives of Q when Q vanishes to degree 3 and is locally the product of three
transversely intersecting smooth divisors.
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