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Abstract. A semantics for quantified modal logic is presented that is based on Kleene’s notion
of realizability. This semantics generalizes Flagg’s 1985 construction of a model of a modal version
of Church’s Thesis and first-order arithmetic. While the bulk of the paper is devoted to developing
the details of the semantics, to illustrate the scope of this approach, we show that the construction
produces (i) a model of a modal version of Church’s Thesis and a variant of a modal set theory due to
Goodman and Scedrov, (ii) a model of a modal version of Troelstra’s generalized continuity principle
together with a fragment of second-order arithmetic, and (iii) a model based on Scott’s graph model
(for the untyped lambda calculus) which witnesses the failure of the stability of nonidentity.

§1. Introduction. Realizability is the method devised by Kleene (1945) to provide a
semantics for intuitionistic first-order number theory. In the course of its long history (cf.
van Oosten (2002)), realizability was subsequently generalized to fragments of second-
order number theory and set theory by Troelstra (1998), McCarty (1984, 1986), and oth-
ers. The primary aim of this paper is to present a systematic way of transforming these
semantics into an associated semantics for systems of classical modal logic, so that we
obtain modal systems of first-order arithmetic, fragments of second-order arithmetic, and
set theory. The resulting systems validate not intuitionistic logic but rather classical logic,
so that while intuitionistic logic is used in the construction of these modal systems, the
logic of these modal systems is thoroughly classical.

The resulting semantics generalize the important but little-understood construction of
Flagg (1985), whose goal was to provide a consistency proof of Epistemic Church’s Thesis
together with epistemic arithmetic, a modal rendition of first-order arithmetic. Epistemic
Church’s Thesis (ECT) is the following statement:

[�(∀ n ∃ m �ϕ(n,m))]

⇒ [∃ e � ∀ n ∃ m ∃ q (T (e, n, q) ∧ U (q,m) ∧�ϕ(n,m))]. (1.1)

In this, the quantifiers are understood to range over natural numbers, and T (e, n, q) is
Kleene’s T -predicate, which says that program e on input n halts and outputs a code for
the halting computation q, while U (q,m) says that the computation q has output value m.
The modal operator takes on an epistemic interpretation due to Shapiro (1985a), whereby
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�ϕ represents that “ϕ is knowable”. ECT then expresses the computability of any number-
theoretic function which can be known to be total in the admittedly strong sense that it’s
knowable that the value of this function is knowable for each input.1

The extension of Flagg’s construction sits well with some of the original philosophi-
cal motivations for ECT and epistemic arithmetic. Shapiro’s motivation was to have an
object-language in which certain “pragmatic” properties of computable functions could be
expressed, where a property is “pragmatic” if an object has it or lacks it “in virtue of human
abilities, achievements, or knowledge, often idealized” (Shapiro (1985a, p. 41), Shapiro
(1993, pp. 61–62)). Reinhardt’s interest stemmed from the observation that ECT together
with � ∀ n (� θ(n) ∨ � ¬θ(n)) implies that θ(n) is recursive, thereby expressing the
idea that epistemically decidable predicates are as rare as recursive predicates (Reinhardt,
1985, p. 185). Given either of these motivations, one would obviously want to know what
happens when the mathematical background is changed from arithmetic to other domains,
and thus it’s natural to seek to understand the extent to which Flagg’s construction may be
generalized.

Our semantics generalizes Flagg’s work by distinguishing between two roles played by
arithmetic in his original construction: on the one hand, arithmetic is used to formalize the
standard notion of computation on the natural numbers, and on the other hand arithmetic is
used to provide the domain and the interpretation of the nonlogical arithmetic primitives.
On our approach, the notion of computation is generalized to the setting of partial com-
binatory algebras (cf. § 3), which roughly are algebraic structures capable of formalizing
the elementary parts of computability theory such as the s-m-n theorem, the enumeration
theorem, the recursion theorem, etc. These algebras are used to construct a space of truth-
values, and our semantics then maps modal sentences to elements of this space. Thus the
order of explanation in our work is the reverse of that found in earlier work on ECT and
epistemic arithmetic: whereas the earlier work attempted to use modal logic to explicate
the notion of computability, our work uses certain notions from computability to aid in the
explication of modality, at least in the minimal sense of providing a semantics for it.

While there are a number of different axiomatic systems for quantified modal logic, in
what follows we only need to work with a small number of them. Let’s define Q◦.K to
be the Hilbert-style deductive system for the basic modal predicate system K, as set out in
Fitting & Mendelsohn (1998, pp. 133 and 134) and Corsi (2002, p. 1487). See the proof of
Theorem 6.12 below for an explicit listing of the axioms of Q◦.K. The system Q◦.K+CBF
is then simply Q◦.K plus the Converse Barcan Formula CBF:

� ∀ x ϕ(x) ⇒ ∀ x � ϕ(x). (1.2)

The system Q.K (with no ◦ superscript) results from the system Q◦.K by replacing the
UNIVERSAL INSTANTIATION AXIOM

∀ y ((∀ x ϕ(x)) ⇒ ϕ(y)) (1.3)

with its free-variable variant:

(∀ x ϕ(x))⇒ ϕ(y). (1.4)

1 There is some regrettable clash in terminology which ought to be mentioned at the outset. The
modal principle ECT as defined in (1.1) ought not be confused with the nonmodal principle
known as extended Church’s Thesis sometimes abbreviated similarly. For a statement of extended
Church’s Thesis, see Troelstra & van Dalen (1988, Volume 1, p. 199).
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As is well known, Q◦.K does not prove CBF, but Q.K does (Hughes & Cresswell, 1996,
pp. 245–246). Finally, if L is any set of propositional modal axioms, then let Q◦.L be
the system Q◦.K plus the L-axioms, and similarly for Q.L. In what follows, we’ll work
almost exclusively with Q◦.S4+CBF and Q.S4, where S4 refers as usual to the T-axiom
�ϕ ⇒ ϕ and the 4-axiom �ϕ ⇒ ��ϕ. In particular, we appeal repeatedly to the common
theorem of Q◦.S4 + CBF and Q.S4 that � ∀ x ϕ(x) and � ∀ x � ϕ(x) are equivalent.

The final modal notation that we need pertains to identity, existence, and stability. We
expand the system Q◦.K (resp. Q.K ) to the system Q◦

eq .K (resp. Qeq .K ) by adding the
following axioms, which respectively express the reflexivity of identity and the indiscerni-
bility of identicals, and wherein s, t range over terms in the signature:

t = t (1.5)

s = t ⇒ (ϕ(t)⇒ ϕ(s)). (1.6)

Further, if x is a variable, then let the existence predicate E(x) be defined by ∃ y y = x ,
where y is a variable chosen distinct from x . Finally, if � is a class of formulas, then
�-stability is the following schema, wherein ϕ is from �:

� [∀ x (ϕ(x)⇒ � ϕ(x))]. (1.7)

Most often in what follows we’ll focus on the stability of atomic formulas and their
negations. Finally, it’s perhaps worth mentioning that our notation for the systems Q◦

eq .K
and Qeq .K is patterned after Corsi (2002), who additionally assumes the stability of the
negation of identity, which in general fails on our semantics. See the systems Q◦=.K and
Q=.K on Corsi (2002, p. 1498).

The systems of first-order arithmetic with which we shall work are Heyting arithmetic
HA, Peano arithmetic PA, and two versions of epistemic arithmetic which we call EA◦ and
EA. The first two are sufficiently well known from standard references such as Troelstra
& van Dalen (1988, Volume 1, p. 126) and Hájek & Pudlák (1998, p. 28), although it’s
perhaps useful to stipulate that in what follows the signature of both shall be taken to be
L0 = {0, S, f1, f2, . . .}, wherein 0 and S stand respectively for zero and successor and fi

is an enumeration of function symbols for the primitive recursive functions. Thus we take
x < y to be an abbreviation for f (x, y) = 0 for a suitable primitive recursive function
(Troelstra & van Dalen, 1988, Volume 1, p. 124, Definition 2.7). Then we define:

DEFINITION 1.1. The system EA◦ is Q◦
eq .S4 plus PA, and the system EA is Qeq .S4 plus

PA, where in both cases we include induction axioms for all formulas in the extended modal
language.

These definitions in place, we can now state what we take our generalization of Flagg’s
construction to establish in the setting of first-order arithmetic:

THEOREM 1.2. The theory consisting of EA◦, CBF, and ECT is consistent with both the
failure of EA and the failure of the Barcan Formula BF:

[∀ x � ϕ(x)] ⇒ [� ∀ x ϕ(x)]. (1.8)

The proof of this theorem is presented in §8, and follows immediately from Theorem 8.3
and Theorem 8.5 and Proposition 8.7. Further, as we note in Theorem 8.3, the existence
predicate is a counterexample to (1.4). This admittedly clashes with Flagg’s own statement
of his results, as he takes himself to be working with EA instead of EA◦. We discuss this
issue more extensively immediately following Theorem 8.5. Finally, despite the centrality
of the Barcan Formula BF (1.8) to quantified modal logic, to our knowledge neither Flagg
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nor any of the commentators on his results had indicated whether his model validated this
formula, and so it seems fitting to record this information in the statement of the above
theorem. However, see Shapiro (1985a, p. 20) for a discussion of the status of the Barcan
Formula BF in EA itself.

One distinctive feature of our Flagg-like construction is that it always produces the
stability of atomics (cf. Proposition 6.15 (i)). In the set-theoretic case, the membership
relation is atomic and so any set-theoretic construction à la Flagg will induce the stability
of the membership relation. This places strong constraints on the types of set theory that can
be shown to be consistent with ECT using these methods. For, consider any noncomputable
set of natural numbers such as the halting set X = ∅′, and let Y = ω \ X be its relative
complement in the natural numbers. Then of course we have ∀ n ∈ ω (n ∈ X ∨ n ∈ Y ).
Then the stability of the membership relation implies that ∀ n ∈ ω ∃ y ∈ ω � ((n ∈
X ∧ y = 1) ∨ (n ∈ Y ∧ y = 0)). But then ECT implies that X ’s characteristic function
is computable. The moral of this elementary observation is that if one wants to show the
consistency of ECT with a modal set theory, and one proceeds by a construction which
forces atomics to be stable, then the modal set theory has to be something far different
from just the usual set-theoretic axioms placed on top of the quantified modal logic.

In what follows, we rather focus on a variant eZF of Goodman’s epistemic theory EZF
(Goodman, 1990, pp. 155 and 156). Goodman’s theory includes a version of the axiom of
choice, and without this axiom, it is equivalent to Scedrov’s epistemic set theory ZFEC

(Scedrov, 1986, pp. 749 and 750). This system is the successor to other versions of in-
tensional or epistemic set theories proposed by Myhill, Goodman, and Scedrov in their
contributions to the volume Shapiro (1985b) which also contains Flagg’s original paper.
Since EZF is less familiar, let’s begin by briefly reviewing this system. This system is built
from Qeq .S4 by the addition of the following axioms:

I. Modal Extensionality: ∀x ∀ y (�(∀ z (z ∈ x ⇔ z ∈ y))⇒ x = y)

II. Induction Schema: [∀ x ((∀ y ∈ x ϕ(y))⇒ ϕ(x))] ⇒ [∀ x ϕ(x)]

III. Scedrov’s Modal Foundation: [� ∀ x (�(∀ y ∈ x ϕ(y))⇒ ϕ(x))] ⇒ [� ∀ x ϕ(x)]

IV. Pairing: ∀ x, y ∃ z � (∀ u (u ∈ z ⇔ (u = x ∨ u = y)))

V. Unions: ∀ x ∃ y � (∀ z (z ∈ y ⇔ ∃ v (v ∈ x ∧ z ∈ v)))
VI. Comprehension: ∀ x ∃ y �(∀ z (z ∈ y ⇔ (z ∈ x ∧ ϕ(z)))

VII. Modal Power Set: ∀ x ∃ y � ∀ z (z ∈ y ⇔ � (∀ u (u ∈ z ⇒ u ∈ x)))

VIII. Infinity: ∃ u � [∃ y ∈ u � (∀ z z /∈ y)
∧(∀ y ∈ u ∃ z ∈ u � ∀ v (v ∈ z ⇔ (v ∈ y ∨ v = y)))]

IX. Modal Collection:
[� (∀ y ∈ u ∃ z ϕ(y, z))] ⇒ [∃ x � ∀ y ∈ u ∃ z (�(z ∈ x ∧ ϕ(y, z)))]

X. Collection: [∀ y ∈ u ∃ z ϕ(y, z)] ⇒ [∃ x ∀ y ∈ u ∃ z ∈ x ϕ(y, x)].

In Goodman’s earlier paper, “A Genuinely Intensional Set Theory” (see Goodman, 1985,
p. 63), the Modal Extensionality Axiom (Axiom I) is explained by noting that the objects
in the theory’s intended domain of discourse are not sets in the conventional sense, but
should be understood rather as “properties.” Accordingly, one identifies x and y not when
they have the same elements, but when they knowably have the same elements. In the
schemas II, III, VI, IX, X, the formulas can be any modal formulas in the signature of
the membership relation, which may contain free parameter variables. Further, in this
enumeration of the axioms, we’ve omitted Goodman’s version of the axiom of choice,
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since its statement is complicated in the absence of full extensionality and since Scedrov’s
axiomatization contains no similar such axiom.

The only atomic in EZF besides identity is the membership relation, and one can check
that Goodman’s construction does not in general satisfy the stability of the membership
relation. However, in this system there is the following entailment:

PROPOSITION 1.3. EZF plus the stability of the membership relation implies the stabil-
ity of the negation of the membership relation.

Proof. Consider the following instance of the Comprehension Axiom VI of EZF:

∀ p ∀ x ∃ y � (∀ z (z ∈ y ⇔ (z ∈ x ∧ z /∈ p)). (1.9)

We may argue that this implies the following:

∀ p, x, z ((z ∈ x ∧ z /∈ p)⇒ �(z /∈ p)). (1.10)

For, let p, x, z satisfy the antecedent. Let y be the witness from (1.9) with respect to this
x and p. From z ∈ x ∧ z /∈ p we can infer to z ∈ y, and from this and the stability of
the membership relation we can infer to �(z ∈ y). But then from (1.9) we have �(z /∈ p).
So indeed (1.10) holds. But since EZF proves ∀ z ∃ x z ∈ x (for instance by the Pairing
Axiom IV), we then have that EZF proves

∀ p, z ((z /∈ p)⇒ �(z /∈ p)). (1.11)

Then by necessitation, we obtain the stability of the negation of the membership relation. �
As we will see in §9, Flagg’s construction applied to the set-theoretic case satisfies the

stability of atomics but not the stability of negated atomics (cf. Proposition 9.6). Thus the
previous proposition implies that the type of set theory modeled by this construction will
be slightly different from EZF. Hence, we introduce the following modification:

DEFINITION 1.4. The theory eZF consists of Qeq .S4 plus (i) the following axioms of
EZF: Axiom I (Modal Extensionality), Axiom III (Scedrov’s Modal Foundation), Axiom IV
(Pairing), Axiom V (Unions), Axiom VII (Modal Power set), Axiom VIII (Infinity), and
(ii) the following axioms:

VI�. Comprehension�: ∀ x ∃ y �(∀ z (z ∈ y ⇔ (z ∈ x ∧ � ϕ(z))))

X�. Collection�: [∀ y ∈ u ∃ z � ϕ(y, z)] ⇒ [∃ x ∀ y ∈ u ∃ z ∈ x � ϕ(y, x)].

Hence, outside of the comprehension schema, the primary difference between the two sys-
tems is that eZF lacks Axiom II (Induction Schema) and Axioms IX–X (Modal Collection
and Collection) of the system EZF. It compensates by including versions of comprehension
and collection for formulas which begin with a box. Our result is that when we apply
Flagg’s construction to a set-theoretic setting, we obtain the following:

THEOREM 1.5. The theory consisting of eZF, ECT, and the stability of atomics is consis-
tent with the failure of the stability of negated atomics.

This theorem is proven in §9 below, and in particular is an immediate consequence of
Proposition 9.3, Proposition 9.6, and Proposition 9.8. In Theorem 1.5, like in all set-
theoretic formalizations of Epistemic Church’s Thesis, one understands ECT to be ren-
dered by binding all the variables to the set-theoretic surrogate for the natural numbers
guaranteed by the Infinity Axiom (Axiom VIII).
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The bulk of this paper is devoted to developing the details of our realizability semantics
for quantified modal logic. In §2 we describe a general class of prealgebras, called Heyting
prealgebras, which serve as the basis for the truth-values of the many-valued structures
which we shall build in later sections. Further, in this section we emphasize a generalized
double-negation operator which in our view is critical to the overall construction. In §3 we
describe how to build Heyting prealgebras out of partial combinatory algebras. We there
describe three important examples of partial combinatory algebras: Kleene’s first model
(the model used in ordinary computation on the natural numbers), Kleene’s second model
(related to oracle computations), and Scott’s graph model (used to build models of the
untyped lambda calculus).

Then in §4 we describe how to transform Heyting prealgebras based on partial com-
binatory algebras into Boolean prealgebras with a modal operator, where the relevant
distinction is that Boolean prealgebras validate the law of the excluded middle whereas
Heyting prealgebras do not in general. Prior to proceeding with the construction proper,
in §5 we focus on delimiting the scope of the modal propositional logic validated in these
modal Boolean prealgebras. Then, in §6, we show how to associate a modal Boolean-
valued structure to certain kinds of Heyting-valued structures. In §7 we describe two
general results on this semantics, namely the Gödel translation and Flagg’s Change of
Basis Theorem.

In §8 we apply this construction to the arithmetic case and obtain Theorem 1.2 and in
§9 we apply the construction to the set-theoretic case and establish Theorem 1.5. These
two constructions use the partial combinatory algebra associated to Kleene’s first model,
namely the model used in ordinary computation on the natural numbers. To illustrate
the generality of the semantics constructed here, in §10 we build a model of a fragment
of second-order arithmetic which employs Kleene’s second model and which validates a
modal version of Troelstra’s generalized continuity scheme. This modal version then stands
to second-order arithmetic with low levels of comprehension roughly as ECT stands to
first-order arithmetic (cf. Theorem 10.4). Finally, in §11, we employ Scott’s graph model
and use it to build a simple example wherein the stability of the negation of identity fails
(cf. Proposition 11.4).

Before proceeding, it ought to be explicitly mentioned that ours is not the first attempt
to revisit Flagg’s important construction. In particular, Flagg’s advisor Goodman did so
in 1986, remarking that Flagg’s original presentation was “not very perspicuous” (cf.
Goodman (1986, p. 387)). In addition to generalizing from the arithmetic to the set-
theoretic realm, one difference between our approach and that of Goodman is that he
worked only over a single partial combinatory algebra, namely that of the ordinary model
of computation on the natural numbers. Further, Goodman’s proof proceeds via a series of
syntactic translations between intuitionsitic arithmetic, epistemic arithmetic, and a modal
intuitionistic system. By contrast, our methods are entirely semantic in nature, and carry
with it all the benefits and limitations of a semantic approach. For instance, while we get
lots of information about independence from the axioms, we get little information about
the strength of the axioms. See the concluding Section 12 for some more specific questions
about deductive features of the axiom systems modeled in this paper.

§2. Heyting Prealgebras and the Generalized Double-Negation Operator. In this
section, we focus on Heyting prealgebras and a certain operator  which is formally
analogous to double negation. A Heyting prealgebra H is given by a reflexive, transitive
order ≤ on H such that there is an infimum x ∧ y and supremum x ∨ y of any two element
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subset {x, y} ⊆ H, and a bottom element ⊥, a top element �, and such that there is a
binary map ⇒ satisfying x ∧ y ≤ z iff y ≤ x ⇒ z for all x, y, z ∈ H. Hence, overall,
a Heyting prealgebra is given by the signature (H,≤,∧,∨,⊥,�,⇒). Hereafter, we will
use the notation ¬x to denote x ⇒ ⊥, and x ≡ y as an abbreviation for x ≤ y and y ≤ x .
If t (x), s(x) are terms in the signature of Heyting prealgebras, then atomic formulas of the
form t (x) ≤ s(x) will be called reductions or sometimes inequalities, while atomics of the
form t (x) ≡ s(x) will be called equivalences. Further, given the close connection between
reductions and the conditional, in the context t (x) ≤ s(x), the term t (x) will be called the
antecedent and the term s(x) will be called the consequent. As one can easily verify, the
following are true on any Heyting prealgebra (cf. Proposition B.1 in Appendix B):

x ∧ (x ⇒ z) ≤ z (2.1)

x ≤ y implies y ⇒ z ≤ x ⇒ z (2.2)

(x ⇒ y) ∧ (y ⇒ z) ≤ x ⇒ z. (2.3)

Suppose that H is a Heyting prealgebra and d is in H. Then we define the map d :
H → H by d(x) = (x ⇒ d) ⇒ d. Obviously if d = ⊥, then d(x) = ¬¬x , and so
we can think of d as a kind of generalization of the double-negation operator. This map
d : H → H then has the following properties (cf. Proposition B.2 in Appendix B):

x ≤ y implies d (x) ≤ d(y) (2.4)

x ≤ d(x) (2.5)

d (d(x)) ≤ d(x) (2.6)

d (d(x)) ≡ d(x) (2.7)

d (x ∧ y) ≡ d(x) ∧ d(y) (2.8)

d (x ⇒ y) ≤ d(x)⇒ d(y) (2.9)

d (x ∨ y) ≥ d(x) ∨ d(y) (2.10)

d (d) ≤ d (2.11)

d ≤ d(x) (2.12)

d (�) ≡ � (2.13)

d (x)⇒ d ≡ x ⇒ d (2.14)

Notationally, we may write d x for d(x). Further, we stipulate that d binds tightly, so
that, e.g., writing d x ∨ y will refer not to d(x ∨ y) but to (d x) ∨ y. The map d is
denoted by �d in Flagg (1985, Example 8.3 p. 133), but we avoid this terminology due to
the received use of the diamond symbol for the modal operator.

There is a strong connection between Heyting prealgebras and intuitionistic logic. Fol-
lowing the tradition in many-valued logics, let’s say that a formula ϕ of propositional
logic is valid in a Heyting prealgebra if the homophonic translation of this formula into
an element of the prealgebra is equivalent to the top element of the prealgebra. Further,
let IPC designate the intuitionistic propositional calculus (Troelstra & van Dalen, 1988,
Definition 2.1.9, Volume 1, p. 48). One can then show that if IPC � ϕ, then ϕ is valid in
any Heyting prealgebra (Troelstra & van Dalen, 1988, Theorem 13.5.3, Volume 2, p. 705).
Intuitionistic logic is also a natural logic to reason about Heyting prealgebras, and in
Appendix B we verify that equations (2.4)–(2.14) are provable in a weak intuitionsitic
logic, a fact which will prove useful in the subsequent sections (cf. in particular Proposi-
tion B.3, as well as the discussion of uniformity in §3).

There is similarly a natural connection between Boolean prealgebras and classical logic.
If a Heyting prealgebra satisfies x ∨ ¬x ≡ � (equivalently, x ≡ ¬¬x) for all elements
x , then it is called a Boolean prealgebra. Since the classical propositional calculus CPC
simply extends the intuitionistic propositional calculus IPC by the law of the excluded
middle, CPC � ϕ implies that ϕ is valid in any Boolean prealgebra. The purpose of the
operator d is to map a Heyting prealgebra H with element d to a Boolean prealgebra
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Hd wherein d is equivalent to the bottom element. This is the substance of the following
proposition with which we close the section. This proposition is stated and a proof of it is
sketched in Flagg (1985, Theorem 8.4, p. 134).

PROPOSITION 2.1. Suppose that H is a Heyting prealgebra and d ∈ H. Define the set

Hd = {x ∈ H : d x ≡ x}. (2.15)

Then Hd has the structure of a Heyting prealgebra, where the operations are defined by
restriction from H, except in the case of join and falsum, which we define as follows:

f ∨d g = d( f ∨ g), ⊥d = d(⊥) (2.16)

Further, Hd is a Boolean prealgebra and ⊥d ≡ d and ¬d¬d x ≡ d x.

Proof. For the proof, let us explicitly name the components of the structure on Hd :

(Hd ,≤d ,∧d ,∨d ,⊥d ,�d ,⇒d), (2.17)

where these are defined by restriction of H to Hd , except in the case of join and falsum
which are defined as in equation (2.16). Since ≤d is the restriction of the preorder ≤ on H
to Hd , of course ≤d is a preorder on Hd . Since they are defined by restriction, technically
we have ∧d ,∨d ,⇒d : Hd ×Hd → H. Let us argue that the codomain of these operations
is in fact Hd . So suppose that x, y ∈ Hd . First note that x ∧d y ∈ Hd . For, it follows from
equation (2.8) that d(x ∧ y) ≡ d x ∧ d y ≡ x ∧ y. Second note that

d(x ⇒ y) ≡ d x ⇒ d y. (2.18)

For, one half of this follows from equation (2.9). For the other half, note that since x, y ∈
Hd , we can appeal to equation (2.5) to obtain d x ⇒ d y ≡ x ⇒ y ≤ d(x ⇒ y).
From equation (2.18), it follows that x ⇒d y is in Hd , since x ⇒ y ≡ d x ⇒ d y ≡
d(x ⇒ y). Third, note that x∨d y ∈ Hd . For equation (2.7) yields the second equivalence
in the following: d(x ∨d y) ≡ d(d(x ∨ y)) ≡ d(x ∨ y) ≡ x ∨d y.

Since ∧d is defined by restriction, it follows immediately that x ∧d y is the infimum of
{x, y} in Hd . To see that x ∨d y is the supremum of {x, y} in Hd , note that x ≡ d x ≤
d(x ∨ y) ≡ x ∨d y and y ≡ d y ≤ d(x ∨ y) ≡ x ∨d y, where the inequality
comes from equation (2.4) applied to x ≤ x ∨ y and y ≤ x ∨ y. Suppose now that
z ∈ Hd with x, y ≤ z. Then x ∨ y ≤ z. Then by applying equation (2.4), we obtain
x ∨d y ≡ d(x ∨ y) ≤ d z ≡ z. Hence, this is why x ∨d y is the supremum of {x, y} in
Hd . Since we have that ∧d and ⇒d are the restrictions of ∧ and ⇒ to Hd , it follows that
we automatically have the axiom for the ⇒-map. Finally, since ≤d is defined by restriction
and � is in Hd by equation (2.13), we have that � is the top element of Hd . As for the
bottom element of Hd , suppose that x is an arbitrary element of Hd . Then ⊥ ≤ x , and so
d⊥ ≤ d x ≡ x by equation (2.4). Thus it follows that Hd is a Heyting prealgebra.

To see that ⊥d = d(⊥) ≡ d, first note that ⊥ ≤ d and so d⊥ ≤ dd ≤ d, where the
first inequality comes from (2.4) and the second from (2.11). On the other hand, one has
that d ≤ d(⊥) by equation (2.12). So in fact we have ⊥d ≡ d(⊥) ≡ d.

Now we argue that Hd is a Boolean prealgebra. In our Heyting prealgebra Hd , negation
¬d is defined by ¬d x ≡ (x ⇒ ⊥d) ≡ (x ⇒ d⊥) ≡ (x ⇒ d). Note that it follows
from this that ¬d¬d x ≡ d x . To establish that Hd is a Boolean prealgebra, we must show
that if x ∈ Hd then ¬d¬d x ≡ x , or what is the same we must show d x ≡ x . But this is
precisely the condition to be an element of Hd in the first place. �
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§3. Heyting Prealgebras from Partial Combinatory Algebras. The goal of this
section is to recall the definition of a partial combinatory algebra and to describe some
examples which will be relevant for our subsequent work. Our treatment relies heavily
on van Oosten (2008, Chapter 1). The only way in which this differs from his treatment
is that we need to pay attention to certain uniformity properties delivered by the standard
construction of a Heyting prealgebra from a partial combinatory algebra. So without further
ado, here is the definition of a partial combinatory algebra (cf. van Oosten (2008, p. 3),
Beeson (1985, p. 100)):

DEFINITION 3.1. A partial combinatory algebra, or pca, is a set A with a partial binary
function (a, b) �→ ab and distinguished elements k and s such that (i) sab↓ for all a, b
from A, and (ii) kab = a for all a, b from A, and (iii) sabc = ac(bc) for all a, b, c
from A.

The convention in pca’s is that one associates to the left, so that abc = (ab)c. Further,
“downarrow” notation in condition (i) of pca’s is borrowed from computability theory, so
that in general in a pca, ab↓ indicates that the partial binary function is defined on input
(a, b). In any pca A, there are some elements beyond k and s to which it is useful to call
attention. First, the element skk serves as an identity element, in that one has skka = a
for all a from A. Second, there is the pairing function p and the two projection functions
p0, p1 such that p0(pab) = a and p1(pab) = b. Third, there is an element k̆ such that
k̆ab = b. Sometimes we use k and k̆ to code case splits, much like we might use 0 and
1 in other contexts. It’s worth noting that van Oosten (2008, p. 5) uses the notation k
instead of k̆, but we opt for the latter because the former potentially clashes with notation
for the numerals introduced in equation (9.7). Finally, one has the following very helpful
proposition, which is sometimes used as an alternative characterization of a pca (cf. van
Oosten (2008, p. 3), Beeson (1985, p. 101)):

PROPOSITION 3.2. Let A be a pca and let t (x1, . . . , xn) be a term. Then there is an
element f of A such that for all a1, . . . , an from A one has f a1 · · · an ↓= t (a1, . . . , an).

Sometimes in what follows we’ll have occasion to treat a pca as a first-order structure, and
there arises then the question of the appropriate signature. It’s helpful then to distinguish
between a few different options. The sparse signature takes merely s, k as constants,
while the expansive signature invokes the above proposition to recursively introduce a new
constant ft for any term t . Further, sometimes we’ll work with pca’s in which the binary
operation is total. The relational signature then takes the binary operation to be rendered
as a ternary relation, while the functional signature takes the binary operation as a binary
function symbol.

The paradigmatic example of a pca is Kleene’s first model K1, which has as its underly-
ing set the natural numbers and its operator (e, n) �→ {e}(n), where this denotes the output,
if any, of the e-th partial recursive function run on input n. In Kleene’s first model K1, the
element k from condition (ii) is given by a program k which on input a calls up a program
for the constant function a. For the element s from conditions (i) and (iii), choose a total
recursive function s′′ such that s′′(a, b, c) is an index for the program which first runs input
c on index a to obtain e and second runs input c on index b to obtain index n, and then runs
input n on index e. Then choose total recursive function s′ such that s′(a, b) is an index for
a function which on input c returns s′′(a, b, c); and finally choose s to be a total recursive
function such that s(a) is an index for a function which on input b returns s′(a, b). The
functions k, s′′, s′, s all come from the s-m-n Theorem and so may be chosen to be total,
thus ensuring that condition (i) holds.
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Two further pcas which will be of use in §10 and 11 are Kleene’s second model K2 and
Scott’s graph model, and before describing these pcas it’s perhaps worth stressing that the
reader who is uninterested in these specific sections can safely skip our treatment of these
other pcas. Kleene’s second model K2 (cf. van Oosten (2008, pp. 15 ff) §1.4.3, Beeson
(1985, §VI.7.4, p. 132)) has Baire space ωω = {α : ω → ω} as its underlying set. Recall
that the topology on Baire space has the basis of clopens [σ ] = {α : ∀ i < |σ | α(i) =
σ(i)} wherein σ is an element of ω<ω, namely, the set of all strings σ : [0, �) → ω
where � ≥ 0 and we define length of σ as |σ | = �. Strings of small length are sometimes
explicitly written out as, e.g., (0, 5, 3) or (57, 3, 25, 100), and a degenerate case is length 1
strings written out as, e.g., (0) or (57). Each σ from ω<ω is assumed to be identified with
a natural number so that all the basic operations on strings such as length σ �→ |σ | and
concatenation (σ, τ ) �→ σ
τ are computable. Finally, each α from Baire space and each
length � ≥ 0 naturally determines an element α � � of ω<ω of length � by restriction.
Likewise, the concatenation (σ, α) �→ σ
α is naturally defined to be the element of Baire
space which begins with σ along its length and then followed by α. Baire space is of
course a basic object of descriptive set theory, but the only part of that theory that we need
to recall is that the Gδ subsets are the countable intersections of open sets, and that the
subsets of Baire space whose relative topology is completely metrizable are precisely the
Gδ sets (Kechris (1995, p. 17)). This hopefully motivates the attention paid to Gδ sets in
the context of Kleene’s second model, since it is these on which the relative topology is
most similar to that of the usual topology on Baire space.

In Kleene’s second model K2, the application function is defined in terms of oracle
computations. The relevant notation here is: {e}γ (n) denotes the e-th Turing program run
on input n and with the graph of the function γ on the oracle tape, and α⊕β is the effective
union of α and β which follows α on the evens and β on the odds. Then the application
function in K2 is defined as follows:

(αβ)(n) = {e0}α⊕β(n), (3.1)

where program e0 on input n, searches for the least � such that α(((n)
β) � �) has
nonzero value m + 1, and return m if such is found. It is very difficult to work directly
with this characterization of the application function, and so practically one proceeds by
using the following proposition, whose proof we relegate to Appendix A since while we
use it frequently in §10, we only use it in that section:

PROPOSITION 3.3. (I) For every continuous function G : D → ωω with Gδ domain
D ⊆ (ωω)n there is γ such that G(α1, . . . αn) = γα1 · · ·αn for all (α1, . . . , αn) in D.
(II) For every γ and each n ∈ {1, 2}, the partial map (α1, . . . , αn) �→ γα1 · · ·αn has Gδ

domain and is continuous on this domain.

Applying the Proposition 3.3.I to the first projection allows one to satisfy condition (ii) of
a pca, and with a little further ingenuity one can likewise obtain conditions (i) and (iii) of a
pca (cf. (van Oosten, 2008, pp. 17 and 18)). Further, Proposition 3.3.I implies that for every
index e ≥ 0 there is αe such that (αeβ)(n) = {e}β(n). Hence, Kleene’s second model K2
can be understood as an “oracle computation” version of Kleene’s first model.

The final pca which is used in this paper is Scott’s graph model S (cf. van Oosten (2008,
§1.4.6, pp. 20 and 21), Scott (1975, pp. 157–165)). The pca S has domain P(ω), namely
all subsets of natural numbers. Often the pca is itself denoted as P(ω), but we will use S
instead since the semantics we develop involves us using a good deal of powerset notation.
In the context of Scott’s graph model S , the lower case Roman letters a, b, c, x, y, z and
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subscripted versions thereof are reserved for elements of S , while we reserve n,m, �, and
subscripted versions thereof for natural numbers. Further, the letters d1, d2, . . . are reserved
for a standard and fixed enumeration of finite subsets of the natural numbers. For any
x ∈ S , we define [x] = {y ∈ S : x ⊆ y}. Then the topology on S has basis [dn], and
the topology on Sk is the product topology. When the exponent k ≥ 1 is understood from
context, we abbreviate e.g., x = (x1, . . . , xk) and y = (y1, . . . , yk) and n = (n1, . . . , nk)
and dn = (dn1 , . . . , dnk ) and [dn] = [dn1 ] × · · · × [dnk ]. Finally, we say that x ⊆ y if
x1 ⊆ y1, . . . , xk ⊆ yk , and we say that a function f : Sk → S is monotonic if x ⊆ y
implies f (x) ⊆ f (y).

Scott then proved the following helpful characterizations of the open and closed sets
and the continuous functions (Scott, 1975, pp. 158 and 159), from which it immediately
follows that all continuous functions are monotonic:

PROPOSITION 3.4. Suppose that U , C ⊆ Sk . Then (i) U is open iff for all x ∈ Sk , one
has x ∈ U iff ∃ n (dn ⊆ x ∧ dn ∈ U). Further, (ii) C is closed iff for all x ∈ Sk , one has
x ∈ C iff ∀ n (dn ⊆ x implies dn ∈ C).

PROPOSITION 3.5. Suppose that f : Sk → S . Then the following conditions are
equivalent:

(i) For all x ∈ Sk , one has f (x) = ⋃
dn⊆x f (dn).

(ii) The function f : Sk → S is continuous.

(iii) For all x ∈ Sk , one has m ∈ f (x) iff ∃ n (dn ⊆ x ∧ m ∈ f (dn)).

(iv) For all x ∈ Sk , one has dm ⊆ f (x) iff ∃ n (dn ⊆ x ∧ dm ⊆ f (dn)).

Using these propositions, we can define the application function and show that the
axioms of a pca are satisfied. In this, we fix a computable bijection 〈·, ·〉 : ω×ω→ ω, and
we iterate in the natural way, e.g., 〈n,m, �〉 = 〈〈n,m〉, �〉. Then we define the application
function as follows:

ab = {m : ∃ n ≥ 0 (〈n,m〉 ∈ a ∧ dn ⊆ b)}. (3.2)

When a is recursively enumerable, the thought behind this operation is that ab = c
means that “we can effectively enumerate c whenever we are given any enumeration of
b” (Odifreddi, 1999, p. 827), with the variables changed in the quotation to match (3.2),
cf. also Rogers (1987, §9.7, pp. 145 ff), Scott (1975, pp. 155 and 160). From (3.2), an
induction on k ≥ 1 shows that for all b = (b1, . . . , bk) ∈ Sk one has

ab1 · · · bk = {m : ∃ n (〈n,m〉 ∈ a ∧ dn ⊆ b)}. (3.3)

Note that unlike the other paradigmatic examples of pcas, the application operation (3.2)
here is total.

Like with Proposition 3.3, it’s helpful to articulate the connection between the contin-
uous functions and the application operation. However, in this setting the connection is
much tighter, due to the fact that the application operation (3.2) is total. In particular, we
have the following proposition due to (Scott, 1975, p. 160).

PROPOSITION 3.6. (I) For any continuous function f : Sk → S there is a = graph( f ) =
{〈n,m〉 : m ∈ f (dn)} such that for all b = (b1, . . . , bk) ∈ Sk , one has f (b) = ab1 · · · bk.
(II) For any a ∈ S , the function fun(a) : Sk → S given by fun(a)(b) = ab1 · · · bk is
continuous. (III) For any continuous function f : S → S , one has fun(graph( f )) = f .
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(IV) The function graph ◦ fun : S → S is continuous and for all a ∈ S one has

〈n,m〉 ∈ graph(fun(a)) iff ∃ � (〈�,m〉 ∈ a ∧ d� ⊆ dn). (3.4)

This proposition allows us to quickly see that S is a pca. For k, simply apply the Propo-
sition 3.6.I to the continuous map (a, b) �→ a. For s, the function G(a, b) = a · b
is continuous by Proposition 3.6.II. Then the map H(a, b, c) = G(G(a, c),G(b, c)) is
continuous and so by Proposition 3.6.I there is s such that sabc = (ac)(bc). Hence,
S is a pca.

However, the original interest in S is related to the untyped lambda calculus, and Scott
and Meyer produced a series of axioms describing when a pca yields a model of the
untyped lambda-calculus. These are the axioms at issue in the following proposition, where
in a pca we define 1 = 11 = s(k(skk)) and 1n+1 = s(k11)(s(k1n)):

PROPOSITION 3.7. The pca S satisfies the axioms ∀ x, y kxy = x and ∀ x, y, z sxyz =
(xz)(yz) and 12k = k and 13s = s and the Meyer-Scott axiom (∀ x ax = bx)⇒ 1a = 1b.

For a proof of this proposition and the result that this constitutes a characterization of
models of the untyped lambda calculus, see Barendregt (1981, Corollary 18.1.8, p. 473)
and Barendregt (1981, Theorem 5.6.3, p. 117). In our context, it will be useful to have a
simpler description of the action of 1 = s(k(skk)). By Proposition 3.6.I & III, there is
c such that cx = graph(fun(x)). It can then be shown that 1x = cx (Barendregt, 1981,
Proposition 18.1.9.i, p. 473, Lemma 5.2.8.ii, p. 95), and so on S , the consequent of the
Meyer–Scott axiom can be expressed as graph(fun(a)) = graph(fun(b)). By considering
the case of a = ∅ and b = ω, one can deduce from this and (3.4) the following elementary
observation, which we shall use later in §11 to provide an example of the nonstability of
negated atomics (cf. Proposition 11.4):

PROPOSITION 3.8. There are a, b ∈ S such that 1a �= 1b and for all x ∈ S one has
ax �= bx.

Before turning to a discussion of how pca’s give rise to Heyting prealgebras, let’s adopt
the following abbreviation: if e is from A and X, Y ⊆ A, then we say that

e : X � Y iff ∀ a ∈ X ea↓∈ Y. (3.5)

In other standard treatments of pca’s, this is sometimes described simply by saying that
e realizes X ≤ Y (van Oosten, 2008, p. 6). But since this notion will figure heavily in
the modal semantics in §6, it is useful to have some explicit notation for it. With this in
place, we can state two variations of the well-known result that pca’s allow one to generate
Heyting algebras. In the case of A = K1, the first of these is denoted by R in Flagg’s
original paper (cf. (Flagg, 1985, Theorem 9.1, p. 135)).

DEFINITION 3.9. Let A be a pca. Then the Heyting prealgebra structure on the powerset
P(A) of A is given by the following:

X ≤ Y iff ∃ e ∈ A e : X � Y

X ∧ Y = {pab : a ∈ X ∧ b ∈ Y }
X ∨ Y = {pka : a ∈ X} ∪ {pk̆b : b ∈ Y }
⊥ = ∅
� = A
X ⇒ Y = {e ∈ A : e : X � Y }.

https://doi.org/10.1017/S1755020316000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020316000095


764 BENJAMIN G. RIN AND SEAN WALSH

In this, recall from the discussion at the outset of this section that k, k̆ code case breaks
and that p is the pairing function with inverses p0 and p1. Finally, note that for every
X ∈ P(A), one has that X ≡ ⊥ or X ≡ �. Indeed, if X is empty, then of course X = ⊥.
So suppose that X is nonempty with element a. By Proposition 3.2, choose e in A such that
ex = a for all x from A, so that e : � � X and hence � ≤ X . And of course the identity
function witnesses X ≤ �. Hence, up to equivalence, the Heyting prealgebra P(A) is
only two-valued, and if one took its quotient one would then obtain a Boolean algebra.
But the Heyting prealgebra P(A) is still interesting because in §6 we will assign formulas
ϕ(y) to elements ‖ϕ(y)‖ of this Heyting prealgebra, and we will often be looking at how
‖ϕ(y)‖ varies with y uniformly, where y comes from some domain N (cf. Definition 6.3).
And just because for all X ∈ P(A) one has that X ≡ ⊥ or X ≡ �, does not mean that
for all sequences {X y ∈ P(A) : y ∈ N } it is the case that (∀ y ∈ N X y ≡ ⊥) or
(∀ y ∈ N X y ≡ �).

By consulting the proof of Proposition 1.2.1 from (van Oosten, 2008, p. 6), which
verifies that P(A) is actually a Heyting prealgebra, one can see that the Heyting prealgebra
structure on P(A) is highly uniform, in that there are ek from A for 1 ≤ k ≤ 12 such that
for all X, Y, Z ⊆ A and all a, a′ from A one has

e1 : X � X ∨ Y, e2 : Y � X ∨ Y

a : X � Z ∧ a′ : Y � Z implies e3(paa′) : X ∨ Y � Z

a : Z � X ∧ a′ : Z � Y implies e4(paa′) : Z � X ∧ Y

e5 : X ∧ Y � X, e6 : X ∧ Y � Y

e7 : X � �, e8 : ⊥ � X, e9 : X � X

a : X � Y ∧ a′ : Y � Z implies e10(paa′) : X � Z

a′ : X ∧ Y � Z implies e11a′ : Y � (X ⇒ Z)

a′ : Y � (X ⇒ Z) implies e12a′ : X ∧ Y � Z .

Further, all of e1, . . . , e12 can be taken to be terms in the ample relational signature of pcas
(cf. immediately after Proposition 3.2) and indeed the same terms will work for any pca.

From this uniformity, we also obtain the following associated Heyting prealgebra
structure. In Flagg’s original paper, this was denoted by R(X ) (cf. Flagg (1985, p. 122,
Theorem 9.3, p. 136)).

DEFINITION 3.10. Let A be a pca and let X be a nonempty set. Let F(X ) or the Flagg
Heyting prelagebra over X be the set of functions { f : X → P(A)}. Then the Heyting
prealgebra structure on F(X ) is given by the following:

f ≤ g iff ∃ e ∈ A ∀ x ∈ X e : f (x)� g(x)

( f ∧ g)(x) = f (x) ∧ g(x)

( f ∨ g)(x) = f (x) ∨ g(x)

⊥(x) = ⊥ = ∅
�(x) = � = A
( f ⇒ g)(x) = f (x)⇒ g(x)

Usually in what follows, the pca A will be clear from context, and so failing to display
the dependence of F(X ) on A will not cause any confusion. As another natural piece of
notation, we extend the notation e : X � Y where X, Y ⊆ A to e : f � g where f, g
from F(X ) by stipulating that this happens iff for all x from X one has e : f (x) � g(x).
With this notation, we have f ≤ g iff there is e from A such that e : f � g.

In what follows, considerations pertaining to uniformity will play an important role in
the proofs. The equivalences and reductions (2.4)–(2.11) can all be done in weak intuition-
istic theory, and this implies that there are uniform witnesses to these equivalences and
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reductions in F(X ). For example, line (2.5) not only gives us f ≤ g f for all f, g ∈ F(X ),
but also gives us that there is a single witness e from A such that e : f � g f for
all f, g ∈ F(X ). For a formal justification of this, see Appendix B and in particular
Proposition B.3.

In what follows, we’ll say that an equivalence or inequality in F(X ) holds uniformly
when there are such uniform witnesses. A similar locution is used when we have sequences
of elements from F(X ). For instance, suppose we know that fi ≤ g uniformly in i ∈ I ,
in that there is a single witness e from A with e : fi � g for all i ∈ I . Then we likewise
know by (2.4) that there is a single witness e′ such that e′ : D fi � Dg uniformly
in i ∈ I and D ∈ P(A), and we express this more compactly by saying that D fi ≤
Dg holds uniformly in i ∈ I and D ∈ P(A). Finally, given a sequence of elements
{ fi : i ∈ I } of F(X ), we define its union and intersection pointwise by (

⋃
i∈I fi )(x) =⋃

i∈I fi (x) and (
⋂

i∈I fi )(x) = ⋂
i∈I fi (x). Then uniform reductions on sequences are

sufficient for reductions concerning their intersection and union. In particular, supposing
that fi ≤ h uniformly, then one has

⋂
i∈I fi ≤ ⋃

i∈I fi ≤ h. Similarly, supposing that
h ≤ fi uniformly, then one has h ≤ ⋂

i∈I fi ≤ ⋃
i∈I fi .

We close this section with two elementary propositions on F(X ) that will prove useful
in what follows, and that illustrate these uniformity considerations:

PROPOSITION 3.11. For any two sequences {gi ∈ F(X ) : i ∈ I } and { fi ∈ F(X ) :
i ∈ I } one has uniformly in D ∈ P(A) that D

⋃
i∈I (gi ∧ fi ) ≡ D

⋃
i∈I (gi ∧ D fi ).

Proof. The identity function witnesses that (gi ∧ fi ) ≤ ⋃
i (gi ∧ fi ) uniformly in

i ∈ I . Then (gi ∧ D fi ) ≤ D(gi ∧ fi ) ≤ D
⋃

i∈I (gi ∧ fi ) uniformly in i ∈ I, D ∈
P(A) by (2.5) in conjunction with (2.8), and then by (2.4). Then

⋃
i∈I (gi ∧ D fi ) ≤

D
⋃

i∈I (gi ∧ fi ) uniformly in D ∈ P(A). Then uniformly in D ∈ P(A) we have
D

⋃
i∈I (gi ∧ D fi ) ≤ D D

⋃
i∈I (gi ∧ fi ) ≡ D

⋃
i∈I (gi ∧ fi ) by (2.4) and (2.7).

Conversely, uniformly in i ∈ I and D ∈ P(A) we have (gi ∧ fi ) ≤ (gi ∧D fi ) by (2.5).
Then

⋃
i∈I (gi ∧ fi ) ≤ ⋃

i∈I (gi ∧ D fi ) uniformly in D ∈ P(A). Then uniformly in
D ∈ P(A) we have D

⋃
i∈I (gi ∧ fi ) ≤ D

⋃
i∈I (gi ∧ D fi ). �

PROPOSITION 3.12. For any sequence { fi ∈ F(X ) : i ∈ I }, one has
⋂

i∈I fi ≡⋂
D∈P(A)

⋂
i∈I D fi .

Proof. To see that
⋂

i∈I fi ≤ ⋂
D∈P(A)

⋂
i∈I D fi , simply note that we have fi (x) ≤

D fi (x) uniformly in D ∈ P(A) and x ∈ X by line (2.5). Conversely, let e be a witness
to (2.11) in P(A), so that e : Z Z � Z for all Z ∈ P(A). Then suppose that n is in
the intersection

⋂
D∈P(A)

⋂
i∈I D fi (x). To see that en is in intersection

⋂
i∈I fi (x), let

i ∈ I be given and consider D = fi (x). Then since n is in D fi (x) = D D, we then
have that en is in D = fi (x), which is what we wanted to show. �

§4. Construction of Boolean Algebras with Modal Operator. In this section, we fix
a pca A and present a general construction of a series of Boolean prealgebras associated to
arbitrary nonempty sets X using Proposition 2.1. In what follows, we adopt the convention
introduced in the last section that if X is an nonempty set, then F(X ) denotes the set of
functions { f : X → P(A)}, and we suppress the dependence of F(X ) on the underlying
pca A. To get a sense of the notation, note that if X ,Y are two nonempty sets, then under
our conventions F(X × Y) denotes the set of functions { f : X × Y → P(A)}. Often in
what follows, we will be taking Y = P(A), and so it is important to take explicit note of
the relevant conventions, since we’re proceeding by suppressing the role P(A) plays as the

https://doi.org/10.1017/S1755020316000095 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020316000095


766 BENJAMIN G. RIN AND SEAN WALSH

codomain of all the functions in F(X × P(A)), but we’re explicitly displaying the role that
P(A) plays as a component of the domain of the functions in F(X × P(A)).

So let X be given and let π : X × P(A)→ P(A) be the projection map π(x, Z) = Z ,
so that π is a member of F(X × P(A)). Then π : F(X × P(A))→ F(X × P(A)) is the
map defined by π ( f ) = ( f ⇒ π)⇒ π . Then define as in line (2.15) the set

B(X ) = { f ∈ F(X × P(A)) : π f ≡ f }. (4.1)

Then as a consequence of Proposition 2.1, one has that B(X ) possesses the structure of
a Boolean prealgebra. In Flagg’s original paper, this was denoted by B(X ) and presented
only in the proof but not the statement of Flagg (1985, Theorem 10.1, p. 138). See in
particular the discussion of the projection map as the “preferred element” on the top of
Flagg (1985, p. 139).

Often in what follows we will focus on a special case of the above construction wherein
X is a singleton. Since it will be the subject of special focus, and since choosing a specific
singleton with which to work would be awkward, we present the following definition. Let
id : P(A)→ P(A) be the identity map id(Z) = Z , which is an element of F(P(A)). Then
recall that id : F(P(A)) → F(P(A)) is the map defined by id( f ) = ( f ⇒ id) ⇒ id.
Then define as in line (2.15) the set

B = { f ∈ F(P(A)) : id f ≡ f }. (4.2)

Then B too has the structure of a Boolean prealgebra.
Before proceeding to the construction on the modal operator, let’s briefly note two

elementary propositions pertaining to closure conditions in these Boolean prealgebras:

PROPOSITION 4.1 (Proposition on B(X ) being closed under uniform intersections).
Suppose that a sequence {gi ∈ B(X ) : i ∈ I } is in B(X ) uniformly, in that there is e from A
such that all for all i ∈ I and D ∈ P(A) and x ∈ X one has e : Dgi (x, D)� gi (x, D).
Then the intersection

⋂
i∈I gi is also in B(X ).

Proof. Let h(x, D) = ⋂
i∈I gi (x, D). Then the identity map is a witness to h(x, D) ≤

gi (x, D) for all i ∈ I and D ∈ P(A) and x ∈ X . Then by (2.4) there is a witness e′
such that e′ : Dh(x, D) � Dgi (x, D) for all i ∈ I and D ∈ P(A) and x ∈ X .
Then composing e′ with the postulated witness e yields a uniform witness e′′ such that
e′′ : Dh(x, D) � gi (x, D) for all i ∈ I and D ∈ P(A) and x ∈ X . Then since
h(x, D) = ⋂

i∈I gi (x, D), we also have that e′′ : Dh(x, D)� h(x, D) for all D ∈ P(A)
and x ∈ X . �

The following proposition provides a closure condition which we appeal to repeatedly
in what follows. The name we give to this proposition reflects the fact that it’s not assumed
that the antecedent is a member of the Boolean prealgebra:

PROPOSITION 4.2 (Proposition on Freedom in the Antecedent). Suppose that f ∈ B(X )
and Q : X × P(A) → P(A). Let h : X × P(A) → P(A) be defined by h(x, D) =
(Q(x, D)⇒ f (x, D)). Then h ∈ B(X ).

Proof. We must show Dh(x, D) ≤ h(x, D) uniformly in x and D. By (2.9) and (2.5),

(Dh(x, D)) ∧ Q(x, D)

≤ ((D Q(x, D))⇒ D f (x, D)) ∧ D Q(x, D) ≤ D f (x, D), (4.3)

which is ≤ f (x, D) since f ∈ B(X ). Then we have that Dh(x, D) ≤ (Q(x, D) ⇒
f (x, D)) and so we are done. �
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Now we proceed to the construction of the � operator. This is defined in terms of the
following embedding, which we dub “μ” since it’s a helpful mnemonic in this context for
“modal” and since it’s unlikely to be confused with any of our other notation. In Flagg’s
original paper, this map was denoted by j∗X and mentioned in the proof of Theorem 10.1
on Flagg (1985, p. 139).

DEFINITION 4.3. Let μ : F(X )→ B(X ) be defined by (μ( f ))(x, D) = D( f (x)).

Sometimes we also write the action of μ as f �→ μ f instead of f �→ μ( f ). Note that
μ varies with X , but since μ’s definition is uniform in the underlying set X , we don’t
mark this dependence explicitly in the notation for the map. Further, for any f ∈ F(X ), let
f ∈ F(X × P(A)) be given by f (x, D) = f (x). This allows us to present an equivalent
definition of μ as μ( f ) = π f . The map f �→ f also helps to keep track of the typing, as
one can see by consulting Figure 1 which records the relation between these various maps.
Finally, before proceeding, let’s note that μ does indeed have codomain B(X ). It suffices
to show that π(μ( f )) ≤ μ( f ). But we may calculate that

π(μ( f ))(x, D) = [(μ( f ))(x, D)⇒ π(x, D)] ⇒ π(x, D) = D D f (x), (4.4)

which is ≤ (μ( f ))(x, D) uniformly in D by (2.6).
The following proposition records some elementary properties of the μ map. In this,

recall that the join and falsum on the codomain B(X ) of μ are described in line (2.16) of
Proposition 2.1.

PROPOSITION 4.4. Let f, g ∈ F(X ). Then we have:

f ≤ g iff μ( f ) ≤ μ(g) (4.5)

μ( f ∧ g) ≡ μ( f ) ∧ μ(g) (4.6)

μ( f ∨ g) ≡ μ( f ) ∨π μ(g) (4.7)

μ(�) ≡ � (4.8)

μ(⊥) ≡ ⊥π ≡ π (4.9)

Proof. For (4.5), first suppose that f ≤ g. Then uniformly in x ∈ X we have that
f (x) ≤ g(x). Then by (2.4), uniformly in x ∈ X and D ∈ P(A), we have that D f (x) ≤
Dg(x), which is just to say that μ( f ) ≤ μ(g).

B(X ) = { f ∈ F(X × P(A)) | π f ≡ f }
inf
��

�

��

F(X )
μ

��

·
�����

����
����

����
����

�

B(X ) F(X × P(A))π ·��

The inf function: (inf f )(x) = ⋂
Z∈P(A) f (x, Z)

The overline function f (x, D) = f (x)

The minus-sub-π function: (π ( f ))(x, D) = D f (x, D)

The μ function: μ( f ) = π f or (μ( f ))(x, D) = D f (x)

The box operator: � = μ ◦ inf or � f = π inf f or (� f )(x, D) = D(
⋂

Z∈P(A) f (x, Z))

Fig. 1. The Diagram of Maps Used to Define the Box Operator.
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For the other direction, suppose μ( f ) ≤ μ(g). Then uniformly for x ∈ X and D ∈
P(A), we have D f (x) ≤ Dg(x). In particular, let D = g(x). So g(x) f (x) ≤
g(x)g(x). Hence by line (2.5) and (2.11), we have f (x) ≤ g(x) f (x) ≤ g(x)g(x) ≤
g(x).

For conjunction, we want to show for all (x, D) ∈ X × P(A) that μ( f ∧ g)(x, D) =
μ( f )(x, D)∧μ(g)(x, D). But this holds because by (2.8), we have that μ( f ∧g)(x, D) =
D(( f ∧ g)(x)) = D( f (x) ∧ g(x)) ≡ D f (x) ∧ Dg(x).

For disjunction, first note by line (2.5) and the basic properties of join that f (x)∨g(x) ≤
D f (x)∨Dg(x), so by line (2.4) we have D( f (x)∨g(x)) ≤ D(D f (x)∨Dg(x)),
which is just to say that μ( f ∨ g) ≤ μ( f ) ∨π μ(g). For the other direction, begin by
observing that f, g ≤ f ∨ g implies that μ( f ), μ(g) ≤ μ( f ∨ g) by (4.5), so that since
∨π denotes the join in B(X ) we have that μ( f ) ∨π μ(g) ≤ μ( f ∨ g).

For top and bottom, simply note that μ(�)(x, D) = D� ≡ � uniformly in D
by (2.13), and μ(⊥)(x, D) = D⊥ = (⊥π)(x, D), since ⊥π = π⊥. �

For the definition of the � operator, we need only one further preliminary definition,
namely the inf map. This map is designated as jX ∗ in the proof of Theorem 10.1 on Flagg
(1985, p. 139).

DEFINITION 4.5. Let f ∈ B(X ) and let x ∈ X . Define the map inf : B(X ) → F(X ) by
(inf( f ))(x) = ⋂

Z∈P(A) f (x, Z).

Finally, we define the � operator as follows (cf. the definition in Theorem 10.2 of Flagg
(1985, p. 140)):

DEFINITION 4.6. Define the mapping � : B(X )→ B(X ) by � = μ ◦ inf, or equivalently
(� f )(x, D) = (π inf f )(x, D) = D(

⋂
Z∈P(A) f (x, Z)).

Again, one might consider consulting Figure 1 to aid in keeping track of the relations
between these various maps.

The following proposition gives us some formal indication that the � operator acts like a
modal operator. Recall that valid is a synonym for having top value in the relevant prealge-
bra. A schema of propositional modal logic can be represented by a formula ϕ( f1, . . . , fn)
of propositional modal logic wherein f1, . . . , fn are the basic propositional letters. Let’s
then say that a formula ϕ( f1, . . . , fn) is uniformly valid in B(X ) if there is a single element
e of A such that for all f1, . . . , fn from B(X ), one has that e is a witness to ϕ( f1, . . . , fn)
having top value.

PROPOSITION 4.7. All of the axioms and theorems of the propositional modal system
S4 are uniformly valid on B(X ). Further, (i) one has f ≤ g implies � f ≤ �g uniformly
in f, g. Finally, (ii) one has g ≡ �g iff there is h ∈ F(X ) such that g ≡ μ(h).

Proof. First we show that the modal axioms K,T, 4 are uniformly valid, and then we
verify (i) and (ii), and then we finish the proof by showing that all the theorems of the
propositional modal system S4 are uniformly valid on B(X ). For K, it suffices to show
that � f ∧ �( f ⇒ g) ≤ �g. First note that

⋂
Z∈P(A)( f (x, Z) ∧ ( f ⇒ g)(x, Z)) ≤⋂

Z∈P(A) g(x, Z). Thus one has the following, where the equivalence follows from
line (2.8) and the inequality follows from line (2.4):

� f ∧�( f ⇒ g) ≡ π(inf f ∧ inf( f ⇒ g)) ≤ π inf g = �g. (4.10)

For the T-axiom, it suffices to show � f ≤ f . So suppose f ∈ B(X ) and note that
inf f ≤ f by means of the identity function. Then by lines (2.4) and (4.1) we have
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� f = π inf f ≤ π f ≡ f . Finally, for the 4-axiom, it suffice to show that � f ≤ �� f .
By (2.5), choose a uniform witness e for all I ≤ Z I when I, Z ∈ P(A). Then by setting
I = (inf f )(x), we have that e is also a uniform witness over all Z ∈ P(A) and x ∈ X for
inf f (x) ≤ Z inf f (x). Hence we have:

(inf f )(x) ≤
⋂

Z∈P(A)
Z (inf f )(x) =

⋂
Z∈P(A)

(� f )(x, Z) = (inf� f )(x). (4.11)

Thus by line (2.4) one has � f = π inf f ≤ π inf� f = �� f .
Turning to (i), suppose first that f ≤ g. Then f (x, Z) ≤ g(x, Z) uniformly in x, Z , so

that inf( f ) ≤ inf(g) and hence inf f ≤ inf g. From this it follows by line (2.4) that we
uniformly have π inf f ≤ π inf g, hence � f ≤ �g.

For (ii), the first direction is trivial: if �g ≡ g, then let h = inf(g). For the converse,
suppose that g ≡ μh for some h ∈ F(X ). Then it suffices to show �μh ≡ μh . By the
T-axiom we may focus on showing that μh ≤ �μh , which by definition is the claim
that πh ≤ π infμh . For this it suffices by (2.4) to show that h(x) ≤ (infμh)(x) =⋂

Z∈P(A)Z h(x) for all x ∈ X . But this follows from the fact that (2.5) holds uniformly.
Finally, we show by induction on length of proof that all of the theorems of the propo-

sitional modal system S4 are uniformly valid on B(X ). The base cases correspond to
the K,T, 4 axioms and the classical propositional tautologies; the earlier parts of this
proof handle the former and the prealgebra being Boolean takes care of the latter. The
induction steps amount to showing that the inference rules, namely modus ponens and ne-
cessitation, preserve uniform validity. The case of modus ponens follows from the axioms
governing the conditional in a Heyting prealgebra. For the necessitation rule, suppose that
ϕ( f1, . . . , fn) has top value in B(X ) uniformly in f1, . . . , fn . We must then show that
�ϕ( f1, . . . , fn) has top value uniformly in f1, . . . , fn . But since ϕ( f1, . . . , fn) has top
value, � ≤ ϕ( f1, . . . , fn). Then by (i), one has �� ≤ �ϕ( f1, . . . , fn) uniformly in
f1, . . . , fn . But by (ii), one has that �� ≡ � since � ≡ μ(�) by (4.8). �

Finally, we close this section by noting how the �-operator permits us to describe the
behavior of the μ-embedding on conditionals and intersections.

PROPOSITION 4.8 (Proposition on Action of Embedding on Conditionals).

μ( f ⇒ g) ≡ �(μ( f )⇒ μ(g)) (4.12)

Proof. Since f ∧ ( f ⇒ g) ≤ g, we have that f ∧ f ⇒ g ≤ g. By an applica-
tion of lines (2.4) and (2.8) we have π f ∧ π f ⇒ g ≤ πg, i.e., μ f ∧ μ f ⇒g ≤
μg , which amounts to μ f ⇒g ≤ μ f ⇒ μg . Then by parts (i) and (ii) of the previ-
ous proposition we have μ f ⇒g ≡ �μ f ⇒g ≤ �(μ f ⇒ μg). For the converse, note
that f (x) ≤ g(x) f (x) by line (2.5), and that this holds uniformly, which implies that
(g(x) f (x)⇒ g(x)) ≤ ( f (x)⇒ g(x)). Since g(x) ≡ g(x)g(x) uniformly by (2.11), we
have by substitution that (g(x) f (x) ⇒ g(x)g(x)) ≤ ( f (x) ⇒ g(x)). By considering
Z = g(x), we thus see that

⋂
Z∈P(A)(Z f (x) ⇒ Z g(x)) ≤ ( f (x) ⇒ g(x)), i.e.,⋂

Z∈P(A)(π f (x, Z)⇒ πg(x, Z)) ≤ ( f (x)⇒ g(x)). So inf(π f (x)⇒ πg(x)) ≤
( f (x) ⇒ g(x)). From this it follows that inf(μ f ⇒ μg) ≤ ( f ⇒ g) and hence that
�(μ f ⇒ μg) = π inf(μ f ⇒ μg) ≤ π f ⇒ g = μ f ⇒g . �

PROPOSITION 4.9 (Proposition on Action of Embedding on Intersections). Suppose that
the sequence { fi ∈ F(X ) : i ∈ I } is such that

⋂
i∈I μ( fi ) is in B(X ). Then μ(

⋂
i∈I fi ) ≡

�
⋂

i∈I μ( fi ).
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Proof. First note that by the monotonicity of μ (cf. line (4.5)) and the definition of � =
μ◦inf, the desired equivalence follows from the equivalence

⋂
i∈I fi ≡ inf(

⋂
i∈I μ( fi )) in

F(X ). But this equivalence just is
⋂

i∈I fi ≡ ⋂
D∈P(A)

⋂
i∈I D fi , which follows directly

from Proposition 3.12. �

§5. The Status of S5. In Proposition 4.7, we showed that S4 was uniformly valid on
the structure B(X ). In this section, we show that S5 is not uniformly valid on B(X ), but
that there is a special case in which it is valid in a nonuniform sense. Recall in general that
in the setting of S4, the S5 schema is equivalent to ϕ ⇒ ��ϕ. Before beginning, let us
define the following element of P(A):

Q =
⋂

Z∈P(A)
[(� ⇒ Z)⇒ (� ⇒ Z)]. (5.1)

Note that Q is nonempty (e.g., it contains at least the identity element skk).

PROPOSITION 5.1. Given a function f ∈ B(X ), let us define M f : X → P(A) to be
inf( f ⇒ ⊥π ). Then one has that M f (x) = ⋂

Z∈P(A)( f (x, Z)⇒ (� ⇒ Z)) and

(�� f )(x, D) =
{ D Q : M f (x) = ⊥

D⊥ : M f (x) �= ⊥ (5.2)

Proof. That the two definitions of M f are equivalent uses the fact that ⊥π (x, D) =
D⊥ = ((⊥ ⇒ D) ⇒ D) = (� ⇒ D). We will use this fact again repeatedly in what
follows. Recall that in general, the symbol � is short for ¬�¬ and that ¬ f in the structure
B(X ) is shorthand for f ⇒ ⊥π . Thus one has �� f = �[�( f ⇒ ⊥π )⇒ ⊥π ] and hence

�� f = π inf(π inf( f ⇒ ⊥π)⇒ ⊥π ) = π inf(πM f .⇒ ⊥π) (5.3)

Now fix x ∈ X . Then �� f (x, D) = D
⋂

Z∈P(A)(Z M f (x) ⇒ (� ⇒ Z)) for all D.
If M f (x) = ⊥, then �� f (x, D) = D

⋂
Z∈P(A)((� ⇒ Z) ⇒ (� ⇒ Z)) = D Q. If

M f (x) �= ⊥, then note that when Z = ⊥, we have

(Z M f (x)⇒ (� ⇒ Z)) = ((⊥ ⇒ ⊥)⇒ (� ⇒ ⊥)) = (� ⇒ (� ⇒ ⊥)) = ⊥ (5.4)

Hence, �� f (x, D) simplifies to D⊥. �
Then let’s show:

PROPOSITION 5.2. S5 is not uniformly valid in B(X ).
Proof. We define two distinct elements f0, f1 of B(X ), namely

f0(x, D) = �, f1(x, D) = (� ⇒ D). (5.5)

First note that f0, f1 ∈ B(X ). In the case of f0, any element of A trivially witnesses
D� ≤ �. For the case of f1, we have that

(π f1)(x, D) = D(� ⇒ D) = D((⊥ ⇒ D)⇒ D)

= D D ⊥ ≡ D⊥ = f1(x, D). (5.6)

Now, using the notation of Proposition 5.1, we have that

M f0(x) =
⋂

Z∈P(A)
(� ⇒ (� ⇒ Z)) = ⊥ (5.7)
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and

M f1(x) =
⋂

Z∈P(A)
((� ⇒ Z)⇒ (� ⇒ Z)) = Q �= ⊥, (5.8)

where Q is defined as in line (5.1). Hence by Proposition 5.1, we have �� f0(x, D) =
D Q and �� f1(x, D) = (� ⇒ D).

Now suppose for the sake of contradiction that S5 were uniformly valid in B(X ). Then
there would be an e from A such that both e : f0 � �� f0 and e : f1 � �� f1.
Thus for all D ∈ P(A) and all x ∈ X , we have both e : f0(x, D) � D Q and
e : f1(x, D) � (� ⇒ D). The first of these means we have e : � � D Q for every
D ∈ P(A). The second of these means that we have e : (� ⇒ D) � (� ⇒ D) for
every D ∈ P(A).

Now let a and b be two distinct members of A. By Proposition 3.2, choose e′ ∈ A
such that e′n = a for all n ∈ A. Then e′ is in (� ⇒ {a}), so by the above we have both
ee′ ∈ (� ⇒ {a}) and ee′ ∈ {b}Q = ((Q ⇒ {b})⇒ {b}). This is a contradiction, because
for any m ∈ (Q ⇒ {b}) we obtain both ee′m = b and ee′m = a. �

Now, there’s a natural enough nonuniform version of validity for S5, and it turns out
that it holds when X has exactly one element and fails whenever X has more than one
element:

PROPOSITION 5.3. (I) Suppose that X has more than one element. Then there is f ∈
B(X ) such that there is no e from A such that e : f � �� f .

(II) Suppose that X has only one element. Then for each f ∈ B(X ) there is e from A
such that e : f � �� f .

Proof. For (I), let x0, x1 be two distinct elements of X and define à la equation (5.5) the
following element f :

f (x, D) =
{
� if x = x0,

� ⇒ D otherwise.
(5.9)

Then the proof proceeds exactly as in the proof of the previous proposition.
For (II), X is a singleton set {x}. Let f ∈ B(X ). Using the notation of Proposition 5.1,

in case f ≡ ⊥π , we easily have M f (x) �= ⊥. So by Proposition 5.1, we then have
f (x, D) ≤ (�� f )(x, D). In the alternate case, wherein f �≡ ⊥π , there must be some
Z ∈ P(A) such that f (x, Z) �≤ ⊥π(Z). But then M f (x) = ⊥, so Proposition 5.1 gives
(�� f )(x, D) = D Q. Let j ′ be any uniform witness to line (2.5) and j be any member
of Q. By Proposition 3.2, choose j ′′ in A such that j ′′n = j ′ j . Hence j ′′ witnesses
f ≤ �� f . �

It’s worth emphasizing that case II of the above proposition is exactly the situation of
B from (4.2). As we will find in the next section, the semantics for closed sentences will
produce functions precisely in B. Hence, we will have that S5 is valid for sentences in the
nonuniform sense.

§6. The Modal Semantics. In this section, we provide a semantics for modal formulas
ϕ(x) by defining for each such formula a corresponding function ‖ϕ(x)‖μ from one of the
Boolean prealgebras B(X ). We begin with the following definition, which can be found
in (Troelstra & van Dalen, 1988, Volume 2, Definition 6.2-3, pp. 709–711), although they
work with Heyting algebras rather than Heyting prealgebras, and they do not include the
information about the quantifiers. The information about the quantifiers only comes into
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play in the last clauses of Definition 6.3 and constraints on the quantifiers are only put
in place later in the section (cf. Definition 6.11). In this section, we’ll be working with
arbitrary first-order signatures L , which as usual are just given by a collection of constant,
relation, and function symbols along with a specification of the arities of the relation and
function symbols.

DEFINITION 6.1. Let H be a Heyting prealgebra and let L be a signature. Then an H-
valued L-structure N with quantifier Q is given by an underlying set N , a map ‖· = ·‖ :
N 2 → H, a map Q : N → H, and a distinguished element of N for each constant symbol,
a map ‖R(·, . . . , ·)‖ : N n → H for each n-ary relation symbol R, and a map f : N n → N
for every n-ary function symbol f , such that for each n-ary relation symbol R and each
n-ary function symbol f , and all a, b, c, a1, . . . , an, b1, . . . , bn in N one has

‖a = a‖ = �, ‖a = b‖ = ‖b = a‖, ‖a = b‖ ∧ ‖b = c‖ ≤ ‖a = c‖
‖a1 = b1‖ ∧ · · · ∧ ‖an = bn‖ ∧ ‖R(a1, . . . , an)‖ ≤ ‖R(b1, . . . , bn)‖
‖a1 = b1‖ ∧ · · · ∧ ‖an = bn‖ ≤ ‖ f (a1, . . . , an) = f (b1, . . . , bn)‖.

Let A be a pca. We are interested in the case of H = P(A). In this setting, there is
a natural strengthening of the notion in Definition 6.1 wherein we require that there be
uniform witnesses to the above conditions. So we define:

DEFINITION 6.2. Let L be a signature and let A be a pca. A uniform P(A)-valued
L-structure N with quantifier Q is given by an underlying set N , a map ‖· = ·‖ :
N 2 → P(A), a map Q : N → P(A), and elements eref1, eref2, esym, etran from A, and a
distinguished element of N for each constant symbol, a map ‖R(·, . . . , ·)‖ : N n → P(A)
and an element eR from A for each n-ary relation symbol R, and a map f : N n → N and
element e f from A for every n-ary function symbol f , such that for each n-ary relation
symbol R and each n-ary function symbol f , and all a, b, c, a1, . . . , an, b1, . . . , bn in N
one has

eref1 : ‖a = a‖ � �, eref2 : � � ‖a = a‖
esym : ‖a = b‖ � ‖b = a‖, etran : ‖a = b‖ ∧ ‖b = c‖ � ‖a = c‖
eR : ‖a1 = b1‖ ∧ · · · ∧ ‖an = bn‖ ∧ ‖R(a1, . . . , an)‖ � ‖R(b1, . . . , bn)‖
e f : ‖a1 = b1‖ ∧ · · · ∧ ‖an = bn‖ � ‖ f (a1, . . . , an) = f (b1, . . . , bn)‖.

The following definition contains the semantics for uniform P(A)-valued structures. We
follow the usual conventions in assuming that each of our languages has a constant symbol
for each of the elements in the model under consideration. As one can see, the quantifier
Q is providing the semantics for the existential and universal quantifiers.

DEFINITION 6.3. Let N be a uniform P(A)-valued L-structure with quantifier Q. For
every L-formula ϕ(x) ≡ ϕ(x1, . . . , xn) with all free variables displayed, define the map
‖ϕ(x)‖ : N n → P(A), a member of F(N n), inductively as follows, wherein the base cases
for atomics come from Definition 6.2:

‖⊥‖ = ⊥
‖(ϕ ∧ ψ)(a)‖ = ‖ϕ(a)‖ ∧ ‖ψ(a)‖
‖(ϕ ∨ ψ)(a)‖ = ‖ϕ(a)‖ ∨ ‖ψ(a)‖

‖(ϕ ⇒ ψ)(a)‖ = ‖ϕ(a)‖ ⇒ ‖ψ(a)‖
‖∃z ϕ(a, z)‖ =

⋃
c∈N

(Q(c) ∧ ‖ϕ(a, c)‖)

‖∀z ϕ(a, z)‖ =
⋂
c∈N

(Q(c)⇒ ‖ϕ(a, z)‖)
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Then we argue that there are witnesses from the underlying pca for all the substitutions:

PROPOSITION 6.4. Let N be a uniform P(A)-valued L-structure with quantifier Q.
For every formula ϕ(x) ≡ ϕ(x1, . . . , xn) there is an element eϕ of A such that for all
a1, . . . , an, b1, . . . , bn from N one has

eϕ : ‖a1 = b1‖ ∧ · · · ∧ ‖an = bn‖ ∧ ‖ϕ(a1, . . . , an)‖ � ‖ϕ(b1, . . . , bn)‖. (6.1)

Proof. The base step for atomic formulas R(a) follows directly from eR in Defini-
tion 6.2. For ⊥ the assertion is trivial. For atomics t (x) = s(x), first by an induction on
complexity of terms, one shows that for each term t (x) one has a uniform witness

et : ‖a1 = b1‖ ∧ · · · ∧ ‖an = bn‖ � ‖t (a1, . . . , an) = t (b1, . . . , bn)‖.
For instance, if t (x) = f (g(x)), then one obtains et which witnesses the reduction ‖a =
b‖ ≤ ‖g(a) = g(b)‖ ≤ ‖ f (g(a)) = f (g(b))‖, by composing e f and eg from Defi-
nition 6.2 in the pca. Second, suppose that t (x), s(x) are terms. Then by using et , es in
conjunction with esym, etrans one obtains a uniform witness to the reduction

‖a = b‖ ∧ ‖t (a) = s(a)‖ ≤ ‖a = b‖ ∧ ‖t (a) = t (b)‖ ∧ ‖t (a) = s(a)‖ ∧ ‖s(a) = s(b)‖
≤ ‖a = b‖ ∧ ‖t (b) = t (a)‖ ∧ ‖t (a) = s(a)‖ ∧ ‖s(a) = s(b)‖ ≤ ‖t (b) = s(b)‖.

For the steps corresponding to the propositional connectives, let us first abbreviate
Ea,b = ‖a = b‖ and �a = ‖ϕ(a)‖, �b = ‖ϕ(b)‖, �a = ‖ψ(a)‖, and �b = ‖ψ(b)‖. For
conjunction, note that Ea,b ∧ �a ≤ �b and Ea,b ∧ �a ≤ �b implies Ea,b ∧�a ∧ �a ≤
�b ∧ �b. For disjunction, note that Ea,b ∧ �a ≤ �b and Ea,b ∧ �a ≤ �b implies the
following: Ea,b ∧ (�a ∨�a) ≤ (Ea,b ∧�a)∨ (Ea,b ∧�b) ≤ �b ∨�b. For the conditional,
one notes first that the inductive hypothesis also gives Ea,b ∧ �b ≤ �a . Then one has
Ea,b ∧ (�a ⇒ �a)∧�b ≤ Ea,b ∧ (�a ⇒ �a)∧�a ≤ Ea,b ∧�a ≤ �b, which of course
implies that Ea,b ∧ (�a ⇒ �a) ≤ (�b ⇒ �b).

For the quantifiers, first consider the existential quantifier, and suppose that the pair pmn
is in ‖a = b‖∧ ‖∃ x ϕ(a, x)‖. Then for some c ∈ N one has that n is in Q(c)∧‖ϕ(a, c)‖.
Then eϕ(pm(p1n)) is in ‖ϕ(b, c)‖ by induction hypothesis and so p((p0n)(eϕ(pm(p1n))))
is in ‖∃ x ϕ(b, x)‖. For the universal quantifier, suppose that pmn is in ‖a = b‖ ∧
‖∀ x ϕ(a, x)‖. Then for all c ∈ N one has that n is in (Q(c) ⇒ ‖ϕ(a, c)‖). Let
t (x1, x2, x3, x4) ≡ x1(px2(x3x4)), and by Proposition 3.2 choose f such that f x1x2x3x4 =
t (x1, x2, x3, x4). Then one has f eϕmn� = eϕ(pm(n�)), so that by induction hypothesis
for all c ∈ N one has that f eϕmn is in (Q(c)⇒ ‖ϕ(b, c)‖). �

Now we finally come to the modal semantics:

DEFINITION 6.5. Let N be a uniform P(A)-valued L-structure with quantifier Q and
underlying set N . Then we define the modal B-valued L-structure μ[N ] with quantifier Q
by defining a valuation map ‖ϕ(x1, . . . , xn)‖μ : N n × P(A) → P(A) for each modal L-
formula ϕ(x) ≡ ϕ(x1, . . . , xn) as follows, wherein t, s are L-terms and R is an L-relation
symbol, and where we write the action as (a, D) �→ ‖ϕ(a)‖μ(D):

‖t (a) = s(a)‖μ(D) = D(‖t (a) = s(a)‖)
‖R(a)‖μ(D) = D(‖R(a)‖), ‖⊥‖μ(D) = D⊥
‖(ϕ ∧ ψ)(a)‖μ(D) = (‖ϕ(a)‖μ(D) ∧ ‖ψ(a)‖μ(D))
‖(ϕ ∨ ψ)(a)‖μ(D) = (‖ϕ(a)‖μ(D) ∨π ‖ψ(a)‖μ(D))
‖(ϕ ⇒ ψ)(a)‖μ(D) = (‖ϕ(a)‖μ(D)⇒ ‖ψ(a)‖μ(D))
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‖∃z ϕ(a, z)‖μ(D) = D

⋃
c∈N

[Q(c) ∧ ‖ϕ(a, c)‖μ(D)]

‖∀z ϕ(a, z)‖μ(D) =
⋂
c∈N

[Q(c)⇒ ‖ϕ(a, c)‖μ(D)]

‖�ϕ(a)‖μ(D) = �(‖ϕ(a)‖μ(D)).
The following proposition says that, as the name suggests, the valuation maps lie in the

Boolean algebras B(X ) and B (defined in (4.1) and (4.2) from §4):

PROPOSITION 6.6. (I) For each modal L-formula ϕ(x1, . . . , xn) with all free variables
displayed, the function ‖ϕ(x1, . . . , xn)‖μ : N n × P(A) → P(A) is uniformly in B(N n),
in that for each ϕ(x) there is an element iϕ of A such that for all a from N and all D from
P(A) one has that iϕ : D‖ϕ(a)‖μ(D)� ‖ϕ(a)‖μ(D).

(II) For each modal L-sentence ϕ, one has that ‖ϕ‖μ is an element of B.

Proof. Let’s begin with (I). This is obvious in the case of the atomics, as well as
in the case of the disjunctions, existentials, and the box since the ‖ · ‖μ-valuations all
begin with D in these cases. For the universal quantifier, one simply appeals to the
induction hypothesis and the proposition on B(X ) being closed under uniform intersections
(Proposition 4.1) and the Proposition on Freedom in the Antecedent (Proposition 4.2). The
inductive steps for the conjunctions and conditionals follow easily from lines (2.8) and
(2.18) along with the induction hypothesis. This finishes the argument for (I).

For (II), any L-sentence ϕ can be written as ψ(c) for an L-formula ψ(x) and a constant
symbol c. By (I), ‖ψ(x)‖μ : N × P(A) → P(A) and is an element of B(N ), i.e., one
has D‖ψ(a)‖μ(D) ≤ ‖ψ(a)‖μ(D) uniformly in a from N and D from P(A). Then by
evaluating at constant c, we obtain ‖ϕ‖μ : P(A)→ P(A) with D‖ϕ‖μ(D) ≤ ‖ϕ‖μ(D)
uniformly in D from P(A). But this is precisely the condition to be an element of B, as
defined in (4.2). �

Note that Part (II) of this proposition, in conjunction with Proposition 5.3, implies that
if ϕ is a modal L-sentence, then ‖ϕ ⇒ ��ϕ‖μ has top value in B, so that S5 holds for
each sentence taken one by one.

Further, we can do substitution in the modal structure just as in the original structure:

PROPOSITION 6.7. For every modal L-formula ϕ(x) ≡ ϕ(x1, . . . , xn) there is an
element eϕ of A such that for all a, b from N and all D ∈ P(A), one has:

eϕ :
∧

1≤i≤n

‖ai = bi‖μ(D) ∧ ‖ϕ(a)‖μ(D)� ‖ϕ(b)‖μ(D) (6.2)

Proof. For atomic ϕ, the result follows from Proposition 6.4 and lines (2.4) and (2.8),
since for atomic ϕ one has that Definition 6.2 says that ‖ϕ(a)‖μ(D) = D‖ϕ(a)‖. The
conjunction, conditional, and universal quantifier cases follow as in the proof of Propo-
sition 6.4. Disjunctions and existentials are nearly as straightforward, keeping in mind
the monotonicity of π (line (2.4)). Thus we only need to verify the condition on �.
Without loss of generality, suppose that ϕ(x) has only one free variable. By the induction
hypothesis, there is an element eϕ of A such that for all a, b in N and D in P(A) one has

eϕ : ‖a = b‖μ(D) ∧ ‖ϕ(a)‖μ(D)� ‖ϕ(b)‖μ(D). (6.3)

Since infimums are intersections, we can keep this uniformity in the following:

eϕ : ‖a = b‖μ(D) ∧ inf ‖ϕ(a)‖μ(D)� inf ‖ϕ(b)‖μ(D). (6.4)
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Further this uniformity persists while applying the D-operator:

D‖a = b‖μ(D) ∧ Dinf ‖ϕ(a)‖μ(D) ≤ Dinf ‖ϕ(b)‖μ(D). (6.5)

But then this is also a uniform witness to

‖a = b‖μ(D) ∧ ‖�ϕ(a)‖μ(D) ≤ ‖�ϕ(b)‖μ(D). (6.6)

�
The following proposition is an indicator of the compatibility of the semantics for the

existential and universal quantifiers on the modal structures, given above in Definition 6.5.
For the nonmodal structures, see Proposition 6.13 below.

PROPOSITION 6.8. Let N be a uniform P(A)-valued L-structure with quantifier Q.
Let ϕ(x, y) be a modal L-formula. Then on the modal B-valued L-structure μ[N ], both
(∀ y ϕ(x, y))⇔ (¬∃ y ¬ϕ(x, y)) and (∃ y ϕ(x, y))⇔ (¬∀ y ¬ϕ(x, y)) are valid.

Proof. It suffices to prove the first since the second follows by replacing ϕ with its
negation in the first and by negating both sides of the biconditional. Further, to ease read-
ability, we consider the special case where the tuple x consists just of a single variable x .
By definition, one has ‖¬∃ y ¬ϕ(x, y))‖μ(D) = [D

⋃
y∈N (Q(y) ∧ (‖ϕ(x, y)‖μ(D)⇒

⊥π (D)))] ⇒ ⊥π (D). By ⊥π (D) ≡ D and (2.14), one then has the equivalence, uniform
in x and D:

‖¬∃ y ¬ϕ(x, y))‖μ(D) ≡ [
⋃
y∈N

(Q(y) ∧ (‖ϕ(x, y)‖μ(D)⇒ D))] ⇒ D. (6.7)

Since ‖∀ y ϕ(x, y)‖μ(D) is an element of B(N ), one has another equivalence uniform in
x and D:

‖∀ y ϕ(x, y)‖μ(D) ≡ [(
⋂
y∈N

(Q(y)⇒ ‖ϕ(x, y)‖μ(D)))⇒ D] ⇒ D (6.8)

By (2.2), to show ‖∀ y ϕ(x, y)‖μ(D) ≤ ‖¬∃ y ¬ϕ(x, y))‖μ(D), it suffices to show

[
⋃
y∈N

(Q(y) ∧ (‖ϕ(x, y)‖μ(D)⇒ D))] ≤ [
⋂
y∈N

(Q(y)⇒ ‖ϕ(x, y)‖μ(D))] ⇒ D. (6.9)

By Proposition 3.2, choose f such that f en = (p1e)(n(p0e)). Suppose that e is in the
antecedent of (6.9); we must show that f e is in the consequent. So suppose that n is in
[
⋂

y∈N (Q(y)⇒ ‖ϕ(x, y)‖μ(D))]; we must show that f en is in D. By hypothesis, p0e is
in Q(y0) and p1e is in (‖ϕ(x, y0)‖μ(D) ⇒ D) for some y0 from N . Then n(p0e) is in
‖ϕ(x, y0)‖μ(D), and so (p1e)(n(p0e)) is in D, which is just to say that f en is in D.

For the converse, since ‖ϕ(x, y)‖μ is a member of B(N × N ), one also has the equiva-
lence:

‖∀ y ϕ(x, y)‖μ(D) ≡
⋂
y∈N

(Q(y)⇒ [(‖ϕ(x, y)‖μ(D)⇒ D)⇒ D]). (6.10)

By Proposition 3.2, choose f such that f enm = epnm. Suppose that e is in the right-
hand side of (6.7); we show that f e is in the right-hand side of (6.10). So suppose that
y ∈ N is fixed and n is in Q(y) and m is in (‖ϕ(x, y)‖μ(D) ⇒ D); we must show
that f enm is in D. Then pnm is in (Q(y) ∧ (‖ϕ(x, y)‖μ(D) ⇒ D)), and so by the
hypothesis on e, we have epnm is in D, which is just to say that f enm is in D. So we have
‖¬∃ y ¬ϕ(x, y))‖μ(D) ≤ ‖∀ y ϕ(x, y)‖μ(D). �
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The following proposition tells us that validities are equivalent to their necessitations.

PROPOSITION 6.9. Let N be a uniform P(A)-valued L-structure with quantifier Q.
Suppose that ϕ(x) be a modal L-formula such that ‖ϕ(a)‖μ(D) ≡ � uniformly in D
and a. Then ‖�ϕ(a)‖μ(D) ≡ ‖ϕ(a)‖μ(D) ≡ � uniformly in D and a. In particular,
suppose that ϕ is a modal L-sentence such that ‖ϕ‖μ(D) ≡ � uniformly in D. Then
‖�ϕ‖μ(D) ≡ ‖ϕ‖μ(D) ≡ � uniformly in D.

Proof. This is an application of Proposition 4.7.ii, by setting g equal to the function
‖ϕ(x)‖μ : N n × P(A)→ P(A) and by setting h equal to �. �

The next proposition records that the Converse Barcan Formula CBF (1.2) is valid and
that the schema (∃ x � ϕ(x)) ⇒ (� ∃ x ϕ(x)) is valid. While we use the latter validity
less frequently, we do employ it in the proof of Theorem 9.2 and Proposition 11.4 below.
For a counterexample to the Barcan formula (1.8), see Proposition 8.7 below. It is unknown
to us whether the schema (∀ x � ϕ(x))⇒ (� ∀ x ϕ(x)) is valid.

PROPOSITION 6.10. Let N be a uniform P(A)-valued L-structure with quantifier Q.
Then Converse Barcan Formula CBF (1.2) and the schema (∃ x � ϕ(x))⇒ (� ∃ x ϕ(x))
are valid on the modal B-valued L-structure μ[N ].

Proof. Let’s first argue for the Converse Barcan Formula CBF (1.2). Let ϕ(x) be a
modal formula, perhaps with parameters, which we suppress for the sake of readability. So
we must show ‖� ∀ x ϕ(x)‖μ(D) ≤ ‖∀ x �ϕ(x)‖μ(D), uniformly in D from P(A). For
all c′ in N , by taking compositions we have the following:

[Q(c′) ∧
⋂

E∈P(A)

⋂
c∈N

(Q(c)⇒ ‖ϕ(c)‖μ(E))] ≤
⋂

E∈P(A)
‖ϕ(c′)‖μ(E). (6.11)

Then by (2.5) this is ≤ [D
⋂

E∈P(A) ‖ϕ(c′)‖μ(E)]. Then by moving the Q(c′) to the
antecedent, and then taking intersections over all c′ from N and then applying the D-
operator again, we obtain:

D [
⋂

E∈P(A)

⋂
c∈N

(Q(c)⇒ ‖ϕ(c)‖μ(E))]

≤ D[
⋂

c′∈N

(Q(c′)⇒ D

⋂
E∈P(A)

‖ϕ(c′)‖μ(E))] (6.12)

The antecedent is ‖� ∀ x ϕ(x)‖μ(D) and consequent is D‖∀ x �ϕ(x)‖μ(D), and the
latter is equivalent to ‖∀ x �ϕ(x)‖μ(D) since this is an element of B. (If ϕ(x) had n
parameters, then it would be an element of B(N n)).

Now let’s argue for the schema (∃ x � ϕ(x)) ⇒ (� ∃ x ϕ(x)). It suffices to find a
witness to the following reduction, uniformly in D and c:

Q(c) ∧ D

⋂
E∈P(A)

‖ϕ(c)‖μ(E) ≤ D

⋂
E∈P(A)

⋃
x∈N

(Q(x) ∧ ‖ϕ(x)‖μ(E)). (6.13)

But by (2.5) and (2.8), we have Q(c)∧D
⋂

E‖ϕ(c)‖μ(E)≤D(Q(c)∧⋂
E‖ϕ(c)‖μ(E)),

uniformly in D and c. Further, uniformly in c, the identity function is a witness to the
reductions (Q(c) ∧ ⋂

E ‖ϕ(c)‖μ(E)) ≤ ⋂
E (Q(c) ∧ ‖ϕ(c)‖μ(E)) ≤ ⋂

E
⋃

x∈N (Q(x) ∧‖ϕ(x)‖μ(E)), and hence these reductions persist when prefaced by the D-operator
by (2.4). �
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The following definition describes a series of constraints that one can put on the quan-
tifiers Q, and the idea of the subsequent theorem and proposition is that these constraints
have consequences for what schemas of modal predicate logic are valid on the structure.
There is no analogue of this definition in the original Flagg paper. See immediately after
the proof of Theorem 8.5 for a discussion of how this relates to what is in the original paper.

DEFINITION 6.11. Let N be a uniform P(A)-valued L-structure with quantifier Q. If one
has

⋃
c∈N Q(c) �= ∅, then Q is said to be nondegenerate. If

⋂
c∈N Q(c) �= ∅, then Q is

said to be uniform. If Q(c) ≡ � uniformly in c ∈ N, then the quantifier Q is said to be
classical. If for all L-terms t (x1, . . . , xn) with all free variables displayed there is et ∈ A
such that et : Q(a1) ∧ · · · ∧Q(an)� Q(t (a1, . . . , an)) for all a1, . . . an from N, then the
quantifier Q is said to be term-friendly.

Obviously, all classical quantifiers are term-friendly and uniform, and all uniform quan-
tifiers are nondegenerate.

THEOREM 6.12 (Soundness Theorem for Q◦
eq .S4 and Qeq .S4). Let N be a uniform

P(A)-valued L-structure with nondegenerate quantifier Q. Then all the theorems
of Q◦

eq .S4 + CBF are valid on the modal B-valued L-structure μ[N ]. Further, if Q is
uniform, then all the theorems of Qeq .S4 are valid on the modal structure.

Proof. The propositional part follows from Proposition 4.7. For the predicate part of
Q◦

eq .S4 + CBF, first note that we have CBF by Proposition 6.10. The first axiom for
Q◦

eq .S4 in Fitting & Mendelsohn (1998, pp. 133 and 134) is VACUOUS QUANTIFICATION,
namely ∀ x ϕ ≡ ϕ when ϕ does not contain x free. But since Q is assumed to be
nondegenerate, choose n in Q(d) for some d ∈ N . To define a witness

⋂
c∈N (Q(c) ⇒‖ϕ‖μ(D)) ≤ ‖ϕ‖μ(D), let t (x, y) ≡ yx and by Proposition 3.2 choose f such that

f ne = en. Then f n is a witness. For the converse direction, k suffices since if a is in
‖ϕ‖μ(D) then ka is in (Q(c)⇒ ‖ϕ‖μ(D)) for all c ∈ N , since if b ∈ Q(c) then kab = a
is in ‖ϕ‖μ(D).

The second axiom in Fitting & Mendelsohn (1998, pp. 133 and 134) is UNIVERSAL

DISTRIBUTIVITY, namely [∀ x (ϕ(x) ⇒ ψ(x))] ⇒ [(∀ x ϕ(x)) ⇒ (∀ x ψ(x))]. But
the validity of this follows straightforwardly by taking compositions. The third axiom is
PERMUTATION, which says that ∀ x ∀ y ϕ(x, y)⇔ ∀ y ∀ x ϕ(x, y). Let t (x, y, z) = yxz,
and choose f such that f enm = t (e, n,m) = emn; then f performs the desired reduction.

The fourth axiom is UNIVERSAL INSTANTIATION AXIOM (1.3) from §1. So one must
show that the following has top value:⋂

c∈N

[Q(c)⇒ [(
⋂
d∈N

(Q(d)⇒ ‖ϕ(d)‖μ(D)))⇒ (‖ϕ(c)‖μ(D))]]. (6.14)

But given an element n of Q(c) and an element e of (
⋂

d∈N (Q(d) ⇒ ‖ϕ(d)‖μ(D))), it
of course follows that en is an element of ‖ϕ(c)‖μ(D). Let t (x, y) ≡ xy, and choose f
from A such that f en = en by Proposition 3.2. Then k f is an element of A which sends
everything to f in that k f b = f for all b from A. Hence it is a witness to UNIVERSAL

INSTANTIATION AXIOM having top value.
The final components of the deductive system of Fitting & Mendelsohn (1998, pp.

133 and 134) are the rules MODUS PONENS and UNIVERSAL GENERALIZATION. The
former follows by the usual considerations related to composition. The latter is the rule
to infer from ϕ to ∀ x ϕ(x). Suppose then that ‖ϕ(c)‖μ(D) has top value in P(A)
uniformly in c and D via index e, so that eb is in ‖ϕ(c)‖μ(D) for all b from A, uniformly
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in c and D. Then ke is constant function which sends everything to e. Then this is a
witness to

⋂
c∈N (Q(c) ⇒ ‖ϕ(c)‖μ(D)) having top value, in that keb = e is in (Q(c) ⇒

‖ϕ(c)‖μ(D)) for every b from A.
Now we verify (1.5)–(1.6). Obviously (1.5) follows from eref2 in Definition 6.2 and from

(2.4). As for (1.6), this follows directly from Proposition 6.7.
Finally, suppose that Q is uniform. It suffices to show that the free-variable variant

(∀ x ϕ(x)) ⇒ ϕ(y) of the UNIVERSAL INSTANTIATION AXIOM has top value. We
must show that we have

⋂
c∈N (Q(c) ⇒ ‖ϕ(c)‖μ(D)) ≤ ‖ϕ(d)‖μ(D) uniformly in d, D.

So suppose that e is in the antecedent. Since Q is uniform, choose an element of n of⋂
c∈N Q(c). Then for each d and D, one has that en is an element ‖ϕ(d)‖μ(D). �
Sometimes in what follows (cf. Proposition 8.2, Proposition 10.1, and the proof The-

orem 9.2 in Appendix C), we will need to apply a similar soundness theorem for the
uniform P(A)-valued structures themselves. In the following proposition, the intuitionistic
predicate calculus IQC with equality is given by the intuitionstic propositional calculus
IPC formulated in a natural deduction system, together with the usual natural deduction
rules for quantifiers, as well as the axioms (1.5) and (1.6) for identity (cf. (Troelstra & van
Dalen, 1988, Volume 1, p. 48)).

PROPOSITION 6.13. Suppose that N is a P(A)-valued L-structure with term-friendly
nondegenerate quantifier Q.

(I) Suppose that ϕ1(x), . . . , ϕn(x), ψ(x) are L-formulas, with all free variables
amongst those displayed. Suppose that IQC, ϕ1(x), . . . , ϕn(x) � ψ(x). Then the
L-sentence ∀ x ((

∧n
i=1 ϕi (x))⇒ ψ(x)) is valid on N .

(II) Hence, if ϕ1, . . . , ϕn, ψ are L-sentences and IQC, ϕ1, . . . , ϕn � ψ , and if
ϕ1, . . . , ϕn are valid on N , then so too is ψ .

Proof. The proof of (I) is by induction on the length of the derivation. For the base case,
the identity axiom (1.5) follows from the clause pertaining to eref2 in Definition 6.2, while
the substitution axiom (1.6) follows from Proposition 6.4. The other base case is where
ψ(x) is one of the ϕi (x), and in this case an appropriate projection function will witness
the validity. The projection functions also allow one to expand the antecedent as needed.

For the inductive steps, one considers first the propositional rules and then the quantifier
rules. But the propositional rules follow from the observation made at the outset of §2
that Heyting prealgebras are sound for the intuitionstic propositional calculus IPC. For the
quantifier rules, it will be convenient to abbreviate the antecedent as �(x) ≡ ∧n

i=1 ϕi (x)
and to drop excess free variables to enhance readability.

For the “for all” elimination rule, we must show that if ∀ y (�(y) ⇒ ∀ x ψ(x))
is valid on N then so is ∀ y ∀ x (�(y) ⇒ ψ(t (x))), where t is an L-term. Since
Q is term-friendly, choose et such that et : Q(a) � Q(t (a)) for all a from N . By
Proposition 3.2, choose f such that f enmu = enu(et m). Supposing that e is in Q(y) ⇒
(‖�(y)‖ ⇒ ⋂

x∈N (Q(x) ⇒ ‖ψ(x)‖)) for all y from N , we must show that f e is in
Q(y)⇒ ⋂

x∈N (Q(x)⇒ ‖�(y)⇒ ψ(t (x))‖) for all y from N . So suppose that y from N
is fixed and n is in Q(y). Then we must show that f n is in (Q(x)⇒ ‖�(y)⇒ ψ(t (x))‖)
for all x in N . So let x in N and suppose that m is in Q(x) and u is in ‖�(y)‖. We
must show that f enmu is in ‖ψ(t (x))‖. By choice of f , this is the same as showing that
enu(et m) is in ‖ψ(t (x))‖. But by hypothesis on e, n, u, we have that enu is in Q(z) ⇒
‖ψ(z)‖ for all z from N , and by hypothesis on m and et , we have that et m is in Q(t (x)),
so that we are done.
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For the “for all” introduction rule, suppose our induction hypothesis gives us that
∀ y ∀ x (�(y)⇒ ψ(x)) is valid on N ; then we must show that ∀ y (�(y)⇒ ∀ x ψ(x))
is valid on N . By Proposition 3.2, choose f such that f enmu = enum. Supposing that e
is in Q(y)⇒ (

⋂
x∈N (Q(x)⇒ (‖�(y)⇒ ψ(x)‖))) for all y in N , we show that f e is in

Q(y)⇒ (‖�(y)‖ ⇒ ⋂
x∈N (Q(x)⇒ ‖ψ(x)‖)) for all y in N . So fix y in N and suppose

that n is in Q(y). We must show that f en is in (‖�(y)‖ ⇒ ⋂
x∈N (Q(x)⇒ ‖ψ(x)‖)). So

suppose that m in ‖�(y)‖; we must show that f enm is in Q(x)⇒ ‖ψ(x)‖ for all x in N .
So fix x in N , and suppose that u is in Q(x); then we must show that f enmu is in ‖ψ(x)‖.
But by choice of f , this is the same as showing that enum is in ‖ψ(x)‖. By hypothesis on
e and n and u we have enu is in ‖�(y) ⇒ ψ(x)‖, and by hypothesis on m, we have that
enum is in ‖ψ(x)‖, which is what we wanted to show.

For the “there exists” elimination rule, we must show that if both ∀ y (�(y) ⇒
∃ x ψ(x)) and ∀ y ∀ z (�(y) ∧ ψ(z) ⇒ ξ(y)) are valid in N , then ∀ y (�(y) ⇒ ξ(y))
is valid in N . But supposing that e1 and e2 are witnesses to the former one may check
that f e1e2 is a witness to the latter, where one chooses f from Proposition 3.2 such that
f e1e2nu = e2n(p0e1nu)(pu(p1e1nu)). One may do this by beginning with the antecedent
of (6.17), then moving to (6.15) reading left-to-right, and then moving to (6.16) reading
left-to-right, and then finishing at the consequent of (6.17), where the idea is that the
witnesses in the pca are written out below the parts of the formula which they are realizing.

∀ y
n
(�(y)

u
⇒ ∃ x

p0e1nu
ψ(x)
p1e1nu

) (6.15)

∀ y
n
∀ z

p0e1nu
(�(y)

u
∧ ψ(z)

p1e1nu
⇒ ξ(y)

f e1e2nu
) (6.16)

∀ y
n
(�(y)

u
⇒ ξ(y)

f e1e2nu
). (6.17)

This “diagram chase” method of verification is sometimes a helpful counterpoint to the
types of verification exemplified in the previous two paragraphs.

For the “there exists” introduction rule, we must show that if ∀ y ∀ x (�(y)⇒ ψ(t (x)))
is valid in N for some L-term t (x), then so is ∀ y (�(y) ⇒ ∃ x ψ(x)). Since Q
is term-friendly, choose et such that et : Q(a) � Q(t (a)) for all a from N . Since
Q is nondegenerate, choose m0 with m0 in Q(x0) for some x0 from N . By Proposi-
tion 3.2, choose f such that f nu = p(et (m0))(enm0u). Supposing that e is in Q(y) ⇒
(
⋂

x∈N (Q(x) ⇒ (‖�(y) ⇒ ψ(t (x))‖))) for all y from N , we then show that f e is
in Q(y) ⇒ (‖�(y)‖ ⇒ (

⋃
x∈N Q(x) ∧ ‖ψ(x)‖)) for all y ∈ N . So suppose that y

from N is fixed and n is in Q(y) and u is in ‖�(y)‖. It suffices to show that f nu is in
Q(t (x0)) ∧ ‖ψ(t (x0))‖, which by definition of f is to show that et (m0) is in Q(t (x0))
and enm0u is in ‖ψ(t (x0))‖. But both of these follow directly from our hypotheses on
et ,m0, x0, n, u.

This finishes the proof of part (I). For part (II), suppose ϕ1, . . . , ϕn , ψ are L-sentences
and IQC, ϕ1, . . . , ϕn � ψ , and that ϕ1, . . . , ϕn are valid on N . Let x be a variable, which
we may assume does not appear in any of these sentences. Then the L-sentence ∀ x � is
also valid on N , which by part (I) implies that ∀ x ψ is valid on N . But then one may
argue just as in the VACUOUS QUANTIFICATION part of the previous proposition that ψ is
also valid on N , since we’re assuming that the quantifier Q is nondegenerate. �

Let’s now explicitly record the simplifying effect of the classical quantifiers on the
semantics:

PROPOSITION 6.14. Let N be a uniform P(A)-valued L-structure with classical
quantifier Q. Then the quantifier clauses in the semantics have the equivalents
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‖∃ z ϕ(a, z)‖ ≡ ⋃
c∈N ‖ϕ(a, c)‖ and ‖∀ z ϕ(a, z)‖ ≡ ⋂

c∈N ‖ϕ(a, c)‖. Similarly,
the quantifier clauses in the semantics for the modal B-valued L-structure μ[N ] have
equivalents ‖∃z ϕ(a, z)‖μ(D) ≡ D

⋃
c∈N ‖ϕ(a, c)‖μ(D) and ‖∀z ϕ(a, z)‖μ(D) ≡⋂

c∈N ‖ϕ(a, c)‖μ(D).
Proof. A classical quantifier gives Q(c) top value uniformly, so these simplifications

follow from the behavior of top in Heyting and Boolean prealgebras. �
We close this section by noting the stability of atomic formulas under the semantics,

together with some helpful characterizations pertaining to the case of negated atomics,
which we will use in Proposition 9.6 to produce some counterexamples to the stability of
negated atomics.

PROPOSITION 6.15. Let N be a uniform P(A)-valued L-structure with quantifier Q.
Let R(x) be an atomic formula. Then

(i) Atomic Formulas are Stable: ‖R(x)‖μ ≡ ‖�R(x)‖μ.

(ii) Formula for Negated Atomics: One has ‖¬R(a)‖μ(D) ≡ ‖R(a)‖ ⇒ D uniformly
for all a in N and D in P(A).

(iii) Formula for Necessitations of Negated Atomics: Suppose that N0 is a subclass of
N , and for all a in N0 one has that ‖R(a)‖ �= ⊥. Then uniformly for all a in N0
and D in P(A) one has ‖�¬R(a)‖μ(D) ≡ D.

Proof. For (i) this follows from Proposition 4.7.ii and the fact that for atomic ϕ(x),
we have that ‖ϕ(a)‖μ(D) = μ(‖ϕ(a)‖) (cf. Definition 6.5). For (ii), we simply chase
out definitions and appeal to (2.14) to obtain ‖¬R(a)‖μ(D) = [D‖R(a)‖ ⇒ D⊥] ≡
[D‖R(a)‖ ⇒ D] ≡ [‖R(a)‖ ⇒ D]. For the (iii), suppose that ‖R(a)‖ �= ⊥ for all
a from N0. For E = ⊥, we then have that E‖R(a)‖ = � and so ‖¬R(a)‖μ(E) ≡
[E‖R(a)‖ ⇒ E⊥] ≡ � ⇒ ⊥ ≡ ⊥. Hence one then has that ‖�¬R(a)‖μ(D) ≡
D

⋂
E ‖¬R(a)‖μ(E) = D⊥ ≡ D. �

§7. The Gödel Translation and Flagg’s Change of Basis Theorem. The aim of this
section is to show that an important theorem from Flagg’s original paper, namely (Flagg,
1985, Theorem 5.4, p. 168), generalizes to semantics from the previous section. In our
view, it’s expedient to separate this theorem into two parts, the first of which pertains to the
Gödel translation (cf. Troelstra & Schwichtenberg (2000, p. 288), Flagg (1985, p. 147)):

DEFINITION 7.1 (Gödel Translation). For every nonmodal L-formula ϕ, we define its
Gödel translation ϕ� to be the following modal L-formula in the same free variables:

ϕ� = ϕ if ϕ atomic

(ϕ ∧ ψ)� = ϕ� ∧ ψ�

(ϕ ∨ ψ)� = ϕ� ∨ ψ�

(ϕ ⇒ ψ)� = �(ϕ� ⇒ ψ�)

(∃x ϕ)� = ∃x ϕ�

(∀x ϕ)� = �(∀x ϕ�).

Note that if R(x, y) is a binary atomic, then by definition we will have (∃ x (R(x, y) ∧
ϕ(x)))� = ∃ x (R(x, y) ∧ ϕ�(x)), and by appealing to the equivalence � ∀ x � ϕ ≡
� ∀x ϕ in Q◦

eq .S4 + CBF or Qeq .S4, we may obtain

(∀ x (R(x, y)⇒ ϕ(x)))� = �(∀ x �(R(x, y)⇒ ϕ�(x)))

≡ � ∀ x (R(x, y)⇒ ϕ�(x)) (7.1)
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In the setting of set theory in §9, the traditional application will be to the case in which the
binary relation R is just membership ∈. Using the standard shorthand ∃ x ∈ y ϕ(x) for
∃ x (x ∈ y ∧ ϕ(x)) and ∀ x ∈ y ϕ(x) for ∀ x (x ∈ y ⇒ ϕ(x)), we see that existential �0-
formulas are treated compositionally by the Gödel translation and universal �0-formulas
are treated likewise but with an initial box-operator placed in front:

(∃ x ∈ y ϕ(x))� ≡ ∃ x ∈ y ϕ�(x) (7.2)

(∀ x ∈ y ϕ(x))� ≡ � ∀ x ∈ y ϕ�(x). (7.3)

Similar remarks apply to�0-formulas in the setting of arithmetic of §8, wherein the binary
relation is just the less-than relation <. A related observation that we shall apply often in
what follows is that blocks of quantifiers are treated compositionally by the Gödel trans-
lation, modulo one box operator being placed in front of a block of universal quantifiers
(again appealing to � ∀ x � ϕ ≡ � ∀x ϕ):

(∃ x ϕ(x))� ≡ ∃ x ϕ�(x) (7.4)

(∀ x ϕ(x))� ≡ � ∀ x ϕ�(x). (7.5)

Flagg’s result on the Gödel translation was that, in the setting of arithmetic, a validity
on the nonmodal structure had a valid Gödel translation on the modal structure. The below
theorem indicates that the same relationship obtains generally in the semantics described
in the previous section.

THEOREM 7.2. Let N be a uniform P(A)-valued L-structure with quantifier Q. Then
for every nonmodal L-formula ϕ(x), one has μ(‖ϕ(x)‖) = ‖ϕ�(x)‖μ. Hence, for every
nonmodal L-sentence ϕ, one has that ϕ is valid in the uniform P(A)-valued structure N
iff ϕ� is valid on the modal B-valued L-structure μ[N ].

Proof. The proof is by induction on the complexity of ϕ(x). For base cases t (x) = s(x),
R(x), and ⊥, the result follows immediately from the fact that the Gödel translation is
the identity in these cases. For ϕ(x) a conjunction, disjunction, or conditional, the result
follows from the definitions in the semantics as well as the results in lines (4.6), (4.7),
and (4.12) about how μ acts on conjunctions, disjunctions, and conditionals.

For the universal quantifier, for the sake of readability consider the case of ϕ(x) ≡
∀ y ψ(x, y). By the induction hypothesis μ(‖ψ(x, y)‖) ≡ ‖ψ�(x, y)‖μ. Then we must
show that

D

⋂
b∈N

(Q(b)⇒ ‖ψ(a, b)‖) ≡ D

⋂
E∈P(A)

⋂
b∈N

(Q(b)⇒ E‖ψ(a, b)‖). (7.6)

For the left-to-right reduction, note that we have (Q(b) ⇒ ‖ψ(a, b)‖) ≤ (Q(b) ⇒
E‖ψ(a, b)‖) by line (2.5) uniformly in E and a, b. Then this persists when
taking intersections over b ∈ N and E from P(A) and by adding the D operator to
both sides by line (2.4). For the converse, first note that by line (2.11) we have that⋂

E∈P(A)(
⋂

b∈N (Q(b) ⇒ E‖ψ(a, b)‖)) ≤ ⋂
b∈N (Q(b) ⇒ ‖ψ(a, b)‖). Hence by

applying D to both sides, this becomes the desired converse.
For the existential quantifier, again consider the case of ϕ(x) ≡ ∃ y ψ(x, y).

Then we evaluate μ(‖∃ y ψ(x, y)‖)(a, D) as follows, applying Proposition 3.11 in con-
junction with the induction hypothesis to obtain that D

⋃
b∈N (Q(b) ∧ ‖ψ(a, b)‖) ≡

D
⋃

b∈N (Q(b) ∧ D‖ψ(a, b)‖) ≡ D
⋃

b∈N (Q(b) ∧ ‖ψ�(a, b)‖μ(D)), which is just
‖∃ y ψ�(a, y)‖μ(D). �
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The following theorem provides a way of expanding a structure N by adding a new
predicate symbol to represent the necessitation of any given formula. This will be
useful for many of the proofs in the subsequent sections, since it implies that if any
expansion of N validates a schema J (ϕ), then the modal structure μ[N ] validates the
schema J�(�ϕ).

THEOREM 7.3 (Change of Basis Theorem). Let N be a uniform P(A)-valued L-structure
with quantifier Q. Let ϕ(x) be an n-ary modal L-formula with all free variables displayed
and let G(x) be a new n-ary predicate. Further, define G : N n → P(A) by G(a) =⋂

E∈P(A) ‖ϕ(a)‖μ(E) and let N (G) be the expansion of N to an L ∪ {G}-structure by
interpreting G by G. Then (i) N (G) is a uniform P(A)-valued L ∪ {G}-structure with
quantifier Q, and (ii) the valuation of the atomic formula G(x) on the modal B-valued
L ∪ {G}-structure μ[N (G)] is the same as the valuation of the modal formula �ϕ(x) on
the modal B-valued L-structure μ[N ].

Proof. For (i), we need to ensure that there is an element e of A such that for all
a1, . . . , an, b1, . . . , bn from N , the element e is a witness to the following reduction:
‖a1 = b1‖ ∧ · · · ∧ ‖an = bn‖ ∧ ‖G(a1, . . . , an)‖ ≤ ‖G(b1, . . . , bn)‖. Let e be an
element of A which is a witness to the following, uniformly in D from Proposition 6.7:
‖a1 = b1‖μ(D)∧ · · · ∧ ‖an = bn‖μ(D)∧‖ϕ(a1, . . . , an)‖μ(D) ≤ ‖ϕ(b1, . . . , bn)‖μ(D).
Then we have the following:

‖a1 = b1‖ ∧ · · · ∧ ‖an = bn‖ ∧ ‖G(a1, . . . , an)‖ (7.7)

≤‖a1 = b1‖ ∧ · · · ∧ ‖an = bn‖ ∧
⋂

E∈P(A)
‖ϕ(a1, . . . , an)‖μ(E) (7.8)

≤D ‖a1 = b1‖ ∧ · · · ∧ D‖an = bn‖ ∧ ‖ϕ(a1, . . . , an)‖μ(D) (7.9)

≤‖a1 = b1‖μ(D) ∧ · · · ∧ ‖an = bn‖μ(D) ∧ ‖ϕ(a1, . . . , an)‖μ(D) (7.10)

≤‖ϕ(b1, . . . , bn)‖μ(D). (7.11)

In this, line (7.8) follows from interpreting G by G. Further, line (7.9) follows on its first
n-components from line (2.5) and on the last component by the identity function (since
we’re dealing with an intersection). Finally, line (7.10) follows from the semantics for
identity in the modal structure, while line (7.11) follows from the property of element e.
The reduction from (7.7) to (7.11) then suffices by taking intersections over all D from
P(A) (since G is defined as an intersection). So this completes the verification that N (G)
is a uniform P(A)-valued L ∪ {G}-structure.

For part (ii) of the proposition, simply note the following, where for the sake of disam-
biguation we superscript all the valuations with names for their structures:

‖G(a)‖μ[N (G)]
μ (D) = D‖G(a)‖N (G)

= D

⋂
E∈P(A)

‖ϕ(a)‖μ[N ]
μ (E) = ‖�ϕ(a)‖μ[N ]

μ . (7.12)

In this equation, the first equality follows from the interpretation of atomics in the modal
structures, the second follows from the definition of G which serves as the interpretation
of G, and the last comes from the definition of the box (cf. Definition 4.5). �

§8. Epistemic Arithmetic and Epistemic Church’s Thesis. Let f1, f2, . . . be a stan-
dard enumeration of the primitive recursive functions, and let L0 be the signature
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{0, S, f1, f2, . . .}. This is the signature of Heyting arithmetic HA (cf. Troelstra & van Dalen
(1988, Volume 1, p. 126)). In this section we’ll work exclusively with Kleene’s first model
K1 (cf. §3), and the following structure shall be the focus of our study:

DEFINITION 8.1. Let N0 be the uniform P(K1)-valued L0-structure with domain N = ω
and quantifier Q(n) = {n}, wherein 0 and the primitive recursive functions are interpreted
as themselves, S is interpreted as successor, and equality is interpreted disjunctively:

‖n = m‖ =
{
� if n = m,

⊥ if n �= m.
(8.1)

To see that this is indeed a uniform P(K1)-valued structure, note that eref1, esym, etran can
simply be taken to be indexes for the identity function, while eref2 can be taken to be an
index for the function which sends everything to zero. Note that in the terminology of
Definition 6.11, the quantifier Q(n) = {n} is nondegenerate, nonuniform, nonclassical,
and term-friendly. It’s nondegenerate because the union of the Q(n) is nonempty, and by
the same token it’s nonuniform because the intersection of the Q(n) is empty. To see that
it is nonclassical, suppose there were an index e witnessing e : ω � {n} for each n. Then,
e.g., e0 would be an element of both {0} and {1}. Finally, this quantifier is term-friendly
because all the terms n �→ t (n) in the language determine a recursive function with index
et , which witnesses et : {n} � {t (n)}.

Let L be an expansion of L0 by any number of new relation or function symbols. Then
an expansion N of N0 is given by specifying maps G : ωn → P(K1) to provide the
interpretation of G = ‖G(x)‖ for each new relation symbol, along with interpretations of
the new function symbols. It’s easy to see that any such choice will produce a uniform
P(K1)-valued L-structure. For ease of readability, suppose that a new predicate G(x) is
unary. We must show that there is a uniform witness to the reduction ‖m = n‖∧‖G(m)‖ ≤
‖G(n)‖ for all n,m ≥ 0. If ‖m = n‖ is empty, then any index will be a witness to the
reduction. However, if it’s not empty, then m = n and the sets ‖G(m)‖ and ‖G(n)‖ are
equal, so the second projection function is a witness to the reduction. A similar argument
works for the new atomics produced by new function symbols. However, note that if one
expands the structure by symbols for nonrecursive functions, then one will no longer have
witnesses for the quantifiers being term-friendly. Hence, in this section, we work with
expansions of the signature L0 to signatures L by new constant, relation, and function
symbols, and we restrict attention to L-structures N which are expansions of the L0-
structure N0 where the new functions are interpreted by recursive functions.

The first result is that theorems of Heyting arithmetic have top value on these structures.
If L is an expansion of L0, then of course HA in that signature simply contains, in addition,
the instances of the induction schema in that signature.

PROPOSITION 8.2. If ϕ is an L-sentence such that HA � ϕ, then ϕ is valid on N .

Proof. By Proposition 6.13, it suffices to ensure that the axioms of HA in the expanded
signature are valid on the structure. For the axiom S0 �= 0, note that ‖S0 = 0‖ is empty
and so any index is a witness to ‖S0=0 ⇒ ⊥‖. The identity function can again be used
to verify the universal closures of any of the defining equations for the primitive recursive
functions. Further, for induction, it suffices to find a witness to the following:

‖ϕ(0)‖ ∧
⋂
n≥0

(Q(n)⇒ (‖ϕ(n)‖ ⇒ ‖ϕ(Sn)‖)) ≤
⋂
n≥0

(Q(n)⇒ ‖ϕ(n)‖) (8.2)
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So let pe0e1 be in the antecedent. Simply choose a recursive function j such that
j (e0, e1)0 = e0 and j (e0, e1)(n + 1) = (e1n)( j (e0, e1)(n)). Then one can verify by
induction on n ≥ 0 that j (e0, e1) is in Q(n) ⇒ ‖ϕ(n)‖. Since Q(n) = {n}, this is just
to verify that for all n ≥ 0, one has j (e0, e1)(n) ∈ ‖ϕ(n)‖. For n = 0, one has that
j (e0, e1)0 = e0 which is an element of ‖ϕ(0)‖ by hypothesis. Suppose the result holds for
n, so that j (e0, e1)n ∈ ‖ϕ(n)‖. Let � = j (e0, e1)n. Since n ∈ Q(n) and � ∈ ‖ϕ(n)‖, it
follows by the hypothesis on e1 that e1n� ∈ ‖ϕ(n + 1)‖. But by definition of j and �, this
is just to say that j (e0, e1)(n + 1) ∈ ‖ϕ(n + 1)‖. �

In these next results, we appeal often to the Gödel translation (cf. Definition 7.1) and to
its simple consequences that we noted circa (7.1).

THEOREM 8.3. All the theorems of EA◦ are valid on the modal structure μ[N ]. Further,
each instance of the following modal analogue of the induction axiom is valid on the modal
structure μ[N ], where θ(x) can be any modal formula:

[� θ(0) ∧� ∀ x (� θ(x)⇒ � θ(Sx))] ⇒ [� ∀ x θ(x)]. (8.3)

Finally, on the modal structure μ[N ], the following is not valid (cf. (1.4)), in that it does
not have top value uniformly in y:

(∀ x E(x))⇒ E(y), (8.4)

where recall E(x) denotes the existence predicate, which was defined immediately follow-
ing (1.6).

Proof. As consequences of Heyting arithmetic, the axioms of Robinson’s Q are valid in
the P(K1)-valued structure N . Then they are valid on the modal structure μ[N ] since they
are obviously implied by their Gödel translation. For instance, the Gödel translation of Q2
is equivalent to � ∀ x, y �(Sx = Sy ⇒ x = y), which implies Q2 by an application of
the T-axiom. For the induction axiom, we must show that for all modal formulas ϕ(x) we
have a uniform witness to the following reduction, uniform in D:

‖ϕ(0)‖μ(D) ∧
⋂
n≥0

(Q(n)⇒ (‖ϕ(n)‖μ(D)⇒ ‖ϕ(Sn)‖μ(D)))

≤
⋂
n≥0

(Q(n)⇒ ‖ϕ(n)‖μ(D)). (8.5)

But the same index used to verify (8.2) also works in this case. As for (8.3), this follows
from the Gödel translation of the induction axiom in conjunction with the Change of Basis
Theorem 7.3.

As for (8.4), suppose not. Then there would be index which witnesses the following
reduction, uniformly in n ≥ 0 and D from P(K1):⋂

m≥0

(Q(m)⇒ D

⋃
�≥0

(Q(�) ∧ D‖m = �‖)) ≤ D

⋃
�≥0

(Q(n) ∧ D‖n = �‖). (8.6)

By appealing to Proposition 3.11, this is equivalent to:⋂
m≥0

(Q(m)⇒ D

⋃
�≥0

(Q(�) ∧ ‖m = �‖)) ≤ D

⋃
�≥0

(Q(n) ∧ ‖n = �‖). (8.7)
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Then by the semantics for identity, there would then be an e witnessing the reduc-
tion

⋂
m≥0(Q(m) ⇒ DQ(m)) ≤ DQ(n), uniformly in n ≥ 0 and D from P(K1).

But by (2.5), choose e′ such that e′ is in (Q(m) ⇒ DQ(m)) for all m ≥ 0 and all D in
P(K1). But then ee′ is an element of DQ(n) for all n ≥ 0 and D in P(K1). Letting i
be an index for the identity map, by choosing D = Q(n), one has ee′i is an element of
Q(n) = {n} for all n ≥ 0, a contradiction. �

Let us now record some further notation. In the arithmetical setting, the �0-formulas
are the smallest class containing the atomics, closed under the propositional connectives
and closed under bounded quantifiers—i.e., if ϕ(x) is �0, then so are ∃ x < y ϕ(x) and
∀ x < y ϕ(x), which are respectively abbreviations for ∃ x (x < y ∧ ϕ(x)) and
∀ x (x < y ⇒ ϕ(x)). Of course, in the setting of Heyting arithmetic, we take < to be
defined as a certain atomic, but it provably has all of the usual features, e.g., is a linear
ordering etc. (cf. Troelstra & van Dalen (1988, Volume 1, pp. 124 ff)). Just as one can
show, in Heyting arithmetic, that the law of the excluded middle holds for quantifier-free
formulas (cf. Troelstra & van Dalen (1988, Volume 1, p. 128)), so can one show the same
of the �0-formulas.

Similarly, in the arithmetical setting, the �1-formulas are formulas of the form ∃ x ϕ(x)
where ϕ(x) is �0, and the �1-formulas are formulas of the form ∀ x ϕ(x), where ϕ(x)
is �0. If N is the standard model of arithmetic, then the usual argument from Gödel’s
incompleteness theorems implies that if R ⊆ Nn is definable by both a �1-formula ϕ(x)
and a�1-formulaψ(x), then for all n from Nn one has that R(n) implies HA � ϕ(n), while
¬R(n) implies HA � ¬ψ(n). This circumstance is sometimes expressed by saying that the
number-theoretic relation R is strongly representable in the theory HA. By Proposition 8.2,
it then follows further that R(n) implies ϕ(n) is valid in N , while ¬R(n) implies ¬ψ(n)
is valid N . Hence, we may take any �1-definable predicate over the natural numbers to
be definable in the structure N , and we will express this as the strong representability of
�1-definable predicates in the structure N .

The usual argument (cf. Troelstra & van Dalen (1988, Volume 1, p. 199; Volume 2,
pp. 725 and 726)) then shows:

PROPOSITION 8.4. Church’s thesis is valid on the structure N :

[∀ n ∃ m ϕ(n,m)] ⇒ [∃ e ∀ n ∃ m ∃ p (T (e, n, p) ∧ U (p,m) ∧ ϕ(n,m))]. (8.8)

Proof. Suppose that e is a member of the antecedent. This is an abbreviation for
the set

⋂
n≥0[Q(n) ⇒ ⋃

m≥0(Q(m) ∧ ‖ϕ(n,m)‖)]. Then index e on input n returns
an element of Q(m) ∧ ‖ϕ(n,m)‖ for some m ∈ ω. Hence, the computable function
n �→ p1(en) returns an element of ‖ϕ(n,m)‖ for the value m = p0(en). In conjunc-
tion with strong representability, we can use this to uniformly obtain a member of the
consequent. �

THEOREM 8.5. ECT (1.1) is valid on the modal structure μ[N ].

Proof. One proceeds by computing the Gödel translation of (8.8) in the particular
case where ϕ(n,m) is an atomic G(n,m), which perhaps contains parameters which are
suppressed for the sake of readability. This is a conditional of the form � ⇒ �, and
so its Gödel translation will be of the form �(�� ⇒ ��). So let’s proceed by com-
puting �� and �� separately. Since atomics are not changed by the Gödel translation,
we have that �� is �[∀ n ∃ m G(n,m)]. Now let’s turn to ��, which has the form
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∃ e � ∀ n ∃ m ∃ p (T (e, n, p) ∧ U (p,m) ∧ G(n,m))�). Since T (e, n, p) and U (p,m)
are primitive recursive, we can drop the Gödel translation on these, and similarly for the
atomic G. Hence, in sum, on the modal structure μ[N ], we have

[�(∀ n ∃ m G(n,m))] ⇒ [∃ e � ∀ n ∃ m ∃ p (T (e, n, p)∧U (p,m)∧G(n,m))]. (8.9)

Then we obtain ECT (1.1) from this by the Change of Basis Theorem 7.3. �
As mentioned in the introductory section, Flagg (1985) rather suggested that his result

established the consistency of EA + ECT. See, in particular, the first rule governing “for
all” on (Flagg, 1985, p. 146). Given that Theorem 8.3 displays an explicit counterexample
to the free-variable variant (1.4) of the UNIVERSAL INSTANTIATION AXIOM (1.3), there
must obviously be some place where our treatment differs. In short, Flagg identifies two
concepts which we have distinguished, namely the semantics for identity and the quanti-
fier, and in particular, Flagg assumes that the semantics for identity are rather defined by
‖n = n‖ = {n} (cf. the semantics for identity on Flagg (1985, p. 150)).

Now, as mentioned previously, the Heyting prealgebra P(K1) is only two valued up to
equivalence, and so for each particular n ≥ 0, we have that {n} ≡ �. But this equivalence
is not uniform, as one can readily see by the discussion of the first paragraph of this
section showing that the quantifier Q(n) = {n} is nonclassical. But in the uniform P(K1)-
semantics, one needs to have that ‖n = n‖ ≡ � uniformly, since this is just the condition
pertaining to eref1, eref2 in Definition 6.2. The reason for our insistence on this condition is
that we want x = x to be valid on our modal structures, since this is an instance of (1.5),
an axiom of both Q◦

eq .S4 and Qeq .S4.
On the modal structures, the semantics for x = x is given by ‖x = x‖μ(D) which by

definition is D‖x = x‖. This is valid because eref1 from Definition 6.2 is a witness to
the first reduction in � ≤ ‖x = x‖ ≤ D‖x = x‖, where the last reduction follows
uniformly in D by (2.5). By contrast, D{x} is not uniformly equivalent to �, since if
it were then we would have a uniform witness e to the reduction ({n} ⇒ {n}) ≤ {n},
and by taking j to be an index for the identity function we would have ej = n for any n, a
contradiction. Thus if one follows Flagg in defining ‖x = x‖ = {x} and one further defines
‖x = x‖μ(D) ≡ D(‖x = x‖), then x = x would not be valid, and thus the semantics
would not be sound for Q◦

eq .S4. However, from Flagg’s definition of his deductive system,
it seems that x = x is a consequence of this deductive system (cf. first rule for identity on
Flagg (1985, p. 145)).

Another subtlety is that Flagg seems to suggest that one should define identity in the
modal structure by ‖x = x‖μ(D) = {x} (cf. clause (I) of identity in Flagg (1985, Def-
inition 4.2, p. 162)). However, this is not an element of the Boolean algebra B(N ). For,
suppose that one has uniformly in x from N and D from P(A) that ({x} ⇒ D) ⇒
D ≤ {x}. But by choosing D = ⊥, one has that this reduction can be rewritten as
(⊥ ⇒ ⊥) ≤ {x} and since (⊥ ⇒ ⊥) = �, this implies that the sets {x} are not disjoint as
x varies, which is patently false.

For these reasons, we have deviated from Flagg’s own treatment by distinguishing be-
tween the role of the quantifier and the role of the semantics for the identity relation, and
we insist that there always be uniform witnesses for the identity relation.

To close off this section, let’s now note a result about the stability of�1-formulas, and its
consequences for the Barcan Formula. It’s also helpful to note this because it shows us that
in the proof of Proposition 8.5, it wasn’t important that we took the Kleene T-predicate to
be represented as a primitive recursive term, but rather we could have used any�1-formula
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witnessing the strong representability of the Kleene T -predicate. This proposition is stated
in Flagg (1985, p. 149):

PROPOSITION 8.6. The �1-formulas are stable in the modal structure μ[N ] and are
moreover equivalent to their Gödel translations. That is, for every �1-formula ϕ(x), we
have that ∀ x [ϕ(x)⇔ (�ϕ(x))⇔ ϕ�(x)] is valid in the modal structure μ[N ].

Proof. For this proof, let’s work axiomatically in the expansion EA+ of EA◦ by the
Gödel translations of all theorems of HA. By the earlier results in this section, all the
theorems of EA+ are valid on the modal structure.

First we show that the results hold for all �0-formulas by induction on complexity of
formulas. For atomics this follows from the stability of atomics and fact that the Gödel
translation doesn’t change atomics. The inductive steps for conjunction and disjunction
follow trivially from the inductive hypotheses and Q◦

eq .S4.
For conditionals, suppose that the result holds for ϕ(x) and ψ(x). It then suffices to

show (ϕ(x) ⇒ ψ(x)) ⇒ �(ϕ(x) ⇒ ψ(x)). Since, as mentioned above, HA proves
∀ x (ϕ(x) ∨ ¬ϕ(x)), we have that the Gödel translation of this sentence holds in EA+,
and this is equivalent to � ∀ x (ϕ(x) ∨ �¬ϕ(x)) since ϕ(x) is by induction hypothesis
equivalent to its own Gödel translation and stable. In the case where ϕ(x) holds we can
then infer from ϕ(x) ⇒ ψ(x) to ψ(x) and hence to �ψ(x) by induction hypothesis,
then to �(ϕ(x) ⇒ ψ(x)). In the case where �¬ϕ(x) holds, we may directly infer that
�(ϕ(x)⇒ ψ(x)).

For the case of the bounded quantifiers, suppose that the result holds for ϕ(y) and
consider the case of the universal quantifier. Define the formula θ(x) ≡ [∀ y < x ϕ(y)] ⇒
�(∀ y < x ϕ(y)). It suffices to show that θ(0) and ∀ x (θ(x) ⇒ θ(Sx)). Since
EA+ proves ∀ y (¬y < 0), it also proves �(∀ y < 0 ϕ(y)). Now suppose that θ(x);
we must show that θ(Sx). But since EA+ proves y < Sx ⇔ (y < x ∨ y = x), it
also proves the necessitation of this. Hence in EA+, the formula θ(Sx) is equivalent to
[(∀ y < x ϕ(y)) ∧ ϕ(x)] ⇒ �(∀ y < x ϕ(y)) ∧ �ϕ(x), which follows from induction
hypothesis. The case of the bounded existential quantifier, and the case for the�1-formulas
is exactly similar. �

The following proposition complements Proposition 6.10. One of Kleene’s original ex-
amples of a sentence of arithmetic which was true but not realizable pertained to the halting
set (cf. Kleene (1945, §9, pp. 115 and 116), Kleene (1943, p. 71)). The idea of the below
proof is to use Kleene’s halting set example to show the invalidity of the Barcan Formula.

PROPOSITION 8.7. It is not the case that the Barcan Formula BF (1.8) is valid on the
modal B-valued L0-structure μ[N0].

Proof. So suppose that this was valid. This reductio hypothesis in conjunction with
Proposition 6.10 implies that [∀ x � ϕ(x)] ⇔ [� ∀ x ϕ(x)] is also valid.

Consider the halting set ∅′, which for the sake of definiteness we take to have member-
ship conditions y ∈ ∅′ iff ∃ s T (y, y, s), where T is again Kleene’s T -predicate. But then
we can argue that “every number is either in or not in the halting set” is equivalent to its
own Gödel translation:

‖(∀ y y ∈ ∅′ ∨ y /∈ ∅′)�‖μ ≡‖�∀ y (∃ s T (y, y, s) ∨�((∃ t T (y, y, t))⇒ ⊥)‖μ (8.10)

≤‖∀ y (∃ s T (y, y, s)) ∨ ((∃ t T (y, y, t))⇒ ⊥)‖μ (8.11)

≤‖∀ y ∀ t ∃ s (T (y, y, s) ∨ ¬T (y, y, t))‖μ (8.12)

≤‖∀ y ∀ t � ∃ s (T (y, y, s) ∨ ¬T (y, y, t))‖μ (8.13)
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≤‖� ∀ y ∀ t ∃ s (T (y, y, s) ∨ ¬T (y, y, t))‖μ (8.14)

≤‖� ∀ y (∃ s (T (y, y, s)) ∨ (∀ t � ¬T (y, y, t))‖μ (8.15)

≤‖� ∀ y (∃ s (T (y, y, s)) ∨ (� ∀ t ¬T (y, y, t))‖μ (8.16)

≤‖� ∀ y (∃ s (T (y, y, s)) ∨� ((∃ t T (y, y, t))⇒ ⊥)‖μ
(8.17)

In this, the inference from (8.10) to (8.11) follows from dropping the boxes via the T-
axiom, and the next step is just by manipulating the quantifiers in the usual way that is
permitted in classical logic. The inference from (8.12) to (8.13) follows from Proposi-
tion 8.6, and the inference from (8.13) to (8.14) follows from the reductio hypothesis. The
inference from (8.14) to (8.15) follows from Proposition 8.6 again, and the inference from
(8.15) to (8.16) follows again from the reductio hypothesis, and the final step is again by
usual equivalences in classical logic.

Since PA proves that “every number is either in or not in the halting set,” it is valid on
the modal B-valued L0-structure μ[N0]. Since it is equivalent on this structure to its Gödel
translation, by Theorem 7.2 this sentence is valid on the P(A)-valued L0-structure N0.

Let e be a witness to this validity, and note that ‖y ∈ ∅′‖ ≡ � iff y ∈ ∅′, and ‖y /∈ ∅′‖ ≡
� iff y /∈ ∅′. By Proposition 3.2, choose e′ such that e′y = p0(ey). Then for all y ≥ 0, one
has that e′y = k iff y ∈ ∅′, while e′y = k̆ iff y /∈ ∅′, contradicting the non-computability
of the halting set. �

As mentioned in the introductory section, Theorem 1.2 is then a direct consequence of
this proposition in conjunction with Theorem 8.5 and Theorem 8.3.

§9. Epistemic Set Theory and Epistemic Church’s Thesis. Letting A be an arbi-
trary pca, in this section we look at the modalization of a uniform P(A)-valued set-
theoretic structure, with the goal being to establish Theorem 1.5. So let A be a pca and
let κ > |A| be strongly inaccessible. Then we define the following sequence of sets:

VA
0 = ∅, VA

α+1 = P(A× VA
α ), VA

λ =
⋃
β<λ

VA
β if λ limit. (9.1)

This definition is due to McCarty (1984, p. 87), McCarty (1986, p. 157) in the case of A =
K1. The observation that McCarty’s construction essentially works without modification
for an arbitrary pca A is indicated in Rathjen (2006, §5, p. 293). Obviously the definition
in (9.1) mirrors that of the Boolean-valued models of set theory, e.g., Bell (1985, p. 21).

As usual, we define the rank of an element of
⋃
β<κ VA

β to be the least β such that

VA
β contains it. By an easy induction on rank, one sees that all elements of

⋃
β<κ VA

β are

subsets of A× VA
β for some β < κ . We use the notation 〈·, ·〉 for the set-theoretic ordered

pair, so that x ∈ A × VA
β iff x = 〈e, y〉 for some e ∈ A and y ∈ VA

β . This shouldn’t be
conflated with the pairing element p in the pca A itself.

In this section, we always work with the classical quantifier Q(x) = �. Hence, as
mentioned in Proposition 6.14, this has the effect of removing the expression Q(x) from the
clauses for ∃ and ∀. Further, the natural signature for the structure VA

κ is the signature L0
consisting just of the binary membership relation. Hence, to put a uniform P(A)-valued
structure on VA

κ , it suffices to specify the interpretation of the identity relation and the
binary membership relation. One does this by defining the maps ‖· = ·‖ : VA

κ × VA
κ →

P(A) and ‖· ∈ ·‖ : VA
κ × VA

κ → P(A) recursively by the following, which again may
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with profit be compared to the case of the Boolean-valued models of set theory in Bell
(1985, p. 23):

‖a ∈ b‖ = {pe0e1 : ∃c 〈e0, c〉 ∈ b ∧ e1 ∈ ‖a = c‖)} (9.2)

‖a = b‖ = {e0 : ∀ 〈n, c〉 ∈ a e0n ∈ ‖c ∈ b‖} ∧ {e1 : ∀ 〈n, c〉 ∈ b e1n ∈ ‖c ∈ a‖}.
Further, for a set Z ⊆ A, we let p0 Z be the set of x ∈ A such that pxy ∈ Z for some
y ∈ A, and similarly, we let p1 Z be the set of y ∈ A such that pxy ∈ Z for some
x ∈ A. Hence, one has that p0‖a = b‖ = {e0 : ∀ 〈n, c〉 ∈ a e0n ∈ ‖c ∈ b‖} and
p1‖a = b‖ = {e1 : ∀ 〈n, c〉 ∈ b e1n ∈ ‖c ∈ a‖}.

Now we can verify that this generates a uniform P(A)-valued structure. While the
statement of this proposition uses notions specific to this paper (such as uniform P(A)-
valued structures), in the case of A = K1, its proof is that of McCarty (1984, pp. 92–95),
and resembles the usual proof of substitution in Boolean-valued models, as in Bell (1985,
Theorem 1.17, p. 24). We include the proof in Appendix C, since much of the modal
semantics rides on uniformity considerations and since these uniformity considerations
aren’t explicit in the statement of the results in the unpublished McCarty (1984, pp. 92–95),
and while they are explicit in the statement of the results in Rathjen (2006, Lemma 4.2,
p. 291) a complete proof is not given there.

PROPOSITION 9.1. VA
κ is a uniform P(A)-valued L0-structure.

Proof. See Appendix C. �
The following theorem is due to McCarty in the case of A = K1. In this case, the

result is stated without proof in McCarty (1986, Proposition 3.1 p. 158), while the proof is
given in McCarty (1984, pp. 96 and 97), which remains unpublished. Hence, for the sake of
completeness, we give the proof in Appendix C. In the statement of McCarty’s theorem, the
theory IZF has as axioms the usual ZF axioms, but with collection in lieu of replacement,
and with the induction scheme instead of the foundation axiom (cf. McCarty (1984, p.
58), McCarty (1986, p. 158)). The reader should be warned that in other sources, such as
Beeson (1985, Chapter VIII), the name “IZF” is rather used for a two-sorted theory, with
one sort for numbers and another for sets. It’s also worth mentioning that the only place
where we employ the hypothesis that κ > |A| is in the verification of collection.

THEOREM 9.2. All the theorems of IZF are valid on the uniform P(A)-valued L0-structure
VA
κ , and indeed on any expansion of this structure.

Proof. Again, see Appendix C. �
Since we’re always working with classical quantifiers in this section, by Theorem 6.12

the modal structures will be sound for Qeq .S4. Thus in the modal theories considered
in this section, the background modal predicate logic will be Qeq .S4 (as opposed to
Q◦

eq .S4 + CBF). Now we show that this structure models the epistemic set theory eZF
(cf. Definition 1.4), which forms part of Theorem 1.5:

PROPOSITION 9.3. All the axioms of eZF are valid on the modal B-valued L0-structure
μ[VA

κ ].

Proof. For Axiom I (Modal Extensionality), this is implied by the Gödel translation
of the usual axiom of extensionality, since we can write its antecedent in a �0-fashion,
namely as (∀ z ∈ x z ∈ y) ∧ (∀ z ∈ y z ∈ x), keeping in mind the observations on Gödel
translations of �0-formulas from (7.1).
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As for Axiom IV (Pairing) and Axiom V (Union) of eZF, note first that the usual
nonmodal versions of pairing and union assert the that for any set x there is a set y = f (x),
wherein the graph of the function f may be written in a�0-fashion. Then Axioms IV and V
will follow directly from Gödel translations of the usual nonmodal versions of pairing
and union. The arguments for Axiom VII (The Modal Power Set Axiom) and Axiom
VIII (Infinity) are exactly parallel, where for the latter we make use of the second part
of Proposition 6.10 to get the second existential quantifier behind the initial box operator.

The final axioms of eZF are Comprehension�, Collection�, and Scedrov’s Modal Foun-
dation (Axiom III). We give the argument for Comprehension�, since the arguments for
the other two are similar. For Comprehension�, first consider the following instance of
ordinary nonmodal comprehension, wherein we assume that the formula G is atomic,
perhaps in a signature extending that of set theory, and where for the sake of simplicity
we assume that there is only one parameter variable:

∀ p ∀ x ∃ y ∀ z (z ∈ y ⇔ (z ∈ x ∧ G(z, p))). (9.3)

The Gödel translation of this implies the following, which is thus valid on the modal
structure augmented with an interpretation for the atomic:

∀ p ∀ x ∃ y � ∀ z (z ∈ y ⇔ (z ∈ x ∧ G(z, p))). (9.4)

Now suppose that ϕ(z, p) is an arbitrary modal formula. By Flagg’s Change of Basis
Theorem 7.3, we have the following is valid on the structure:

∀ p ∀ x ∃ y � (∀ z (z ∈ y ⇔ (z ∈ x ∧ �ϕ(z, p))). (9.5)

�
In the remainder of the section, we build towards the proof of the other parts of Theo-

rem 1.5. Given the previous proposition, it suffices then to establish a failure of the stability
of negated atomics and the validity of ECT (1.1) in the case A = K1, and we do this
in Proposition 9.6 and Proposition 9.8. In doing this, we work with the ersatzes of the
individual natural numbers and the set of natural numbers within VA

κ . We first recall the
definition of the so-called Curry numerals in a pca A (van Oosten, 2008, Definition 1.3.2,
p. 12), which can easily be shown to be distinct in any pca:

0̃ = skk, ñ + 1 = pk̆ñ. (9.6)

Like in McCarty (1984, Definition 3.6, pp. 105–106), one then defines corresponding
elements of VA

κ as follows:

n = {〈m̃,m〉 : m < n}, ω = {〈m̃,m〉 : m < ω}. (9.7)

As one can see by inspection of the proof of Theorem 9.2 presented in Appendix C, these
are the witnesses to the axiom of infinity in VA

κ .
First let’s note the elementary proposition:

PROPOSITION 9.4. For all m, n ≥ 0, one has (i) n < m iff ‖n ∈ m‖ �= ∅, and (ii) n = m
iff ‖n = m‖ �= ∅.

Proof. For the left-to-right direction of (i), suppose that n < m. Then 〈̃n, n〉 ∈ m and so
pñi0 ∈ ‖n ∈ m‖, where i0 is an element of A such that i0 ∈ ‖a = a‖ for any a ∈ VA

κ .
For the left-to-right direction of (ii), we have that i0 ∈ ‖a = a‖ for any element a of the
structure.
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For the right-to-left direction, first consider a third condition: (iii) m < n iff ‖m ∈
n‖ �= ∅. Then we argue by simultaneous induction on m, that the right-to-left directions
of (i)–(iii) hold. For the base case, consider m = 0. For (i), since 0 = ∅, we have that
‖n ∈ m‖ = ∅. For (ii), if n �= 0 then n �= ∅ which implies that ‖n = m‖ = ∅. For (iii),
suppose that ‖m ∈ n‖ �= ∅ but not 0 < n. Then n = 0 and so n = ∅ and then ‖m ∈ n‖ = ∅.

Now suppose that the result holds for m; we show it holds for m+1. For (i), suppose that
‖n ∈ m + 1‖ �= ∅. Choose pe0e1 in ‖n ∈ m + 1‖. Then there is c with 〈e0, c〉 ∈ m + 1
with e1 ∈ ‖c = n‖. Then there is � < m + 1 with e0 = �̃ and c = �. Then ‖� = n‖ �= ∅
implies � = n by the induction hypothesis for part (ii). Then n < m + 1, which is what we
wanted to show.

For (ii), suppose that ‖n = m + 1‖ �= ∅. Choose e ∈ p1(‖n = m + 1‖). Since 〈m̃,m〉 ∈
m + 1, we have that em̃ ∈ ‖m ∈ n‖, so that m < n by the induction hypothesis for (iii).
Choose i ∈ p0(‖n = m + 1‖). Then for all � < n, one has that i �̃ ∈ ‖� ∈ (m + 1)‖ and
so by the previous paragraph (i.e. the m + 1 case for (i)), we have that � < m + 1. Thus in
particular n − 1 < m + 1, so that n < m + 2. Hence collecting all this together, we have
that m < n < m + 2, so that n = m + 1.

For (iii), suppose that ‖m + 1 ∈ n‖ �= ∅. Choose pe0e1 in ‖m + 1 ∈ n‖. Then there is c
with 〈e0, c〉 ∈ n with e1 ∈ ‖c = m + 1‖. Then there is � < n with e0 = �̃ and c = �. Then
‖� = m + 1‖ �= ∅ and so by the previous paragraph (i.e. the m + 1 case for (ii)), we have
that � = m + 1. Then m + 1 < n, which is what we wanted to show. �

To develop our counterexample to the stability of negated atomics (cf. Proposition 9.6),
we need to work not only with the ersatzes of the natural numbers, but also with ersatzes
of subsets of natural numbers. Hence, for any X ⊆ ω, let χX : ω → {k, k̆} be the
characteristic function of X , defined by χX (n) = k if n ∈ X and χX (n) = k̆ if n /∈ X .

PROPOSITION 9.5. For any X ⊆ ω, define X̂ = {〈pñχX (n), n〉 : n ≥ 0}, which is an
element of VA

ω+1. Then ‖n ∈ X̂‖ = {p(pñχX (n))e : e ∈ ‖n = n‖} for all n ≥ 0.

Proof. First suppose that pe0e1 ∈ ‖n ∈ X̂‖. Then there is d with 〈e0, d〉 ∈ X̂ and
e1 ∈ ‖n = d‖. Then 〈e0, d〉 = 〈pm̃χX (m),m〉 for some m ≥ 0. But since e1 ∈ ‖n = m‖
we have n = m by the previous proposition, so that 〈e0, d〉 = 〈pñχX (n), n〉, so that
pe0e1 = p(pñχX (n))e1 with e1 ∈ ‖n = n‖, which is what we wanted to show. For
the converse containment, simply note that if e ∈ ‖n = n‖ then d = n is a witness to
〈pñχX (n), d〉 ∈ X̂ ∧ e ∈ ‖d = n‖, so that p(pñχX (n))e ∈ ‖n ∈ X̂‖. �

Finally, we have the counterexample to the stability of negated atomics, which is part of
Theorem 1.5:

PROPOSITION 9.6. In the modal B-valued L0-structure μ[VA
κ ], it is not the case that

for every negated atomic formula ¬Rx, we have that ‖¬R(x)‖μ ≡ ‖�(¬R(x))‖μ. In
particular, a counterexample is the negated atomic formula “y /∈ x.”

Proof. Suppose not. Then there would be an index e ≥ 0 such that for all a, b in VA
κ

and all D from P(A), one has that there is a uniform witness to ‖b /∈ a‖μ(D) ≤ ‖�(b /∈
a)‖μ(D). For any n ≥ 0 and any X ⊆ ω one has that ‖n ∈ X̂‖ is nonempty by the
previous proposition. Then by Proposition 6.15 (ii) and (iii), for all n ≥ 0, X ⊆ ω and D
from P(A), one has that there is a uniform witness to (‖n ∈ X̂‖ ⇒ D) ≤ D. But taking
D = ‖n ∈ X̂‖, one has that for all all n ≥ 0, X ⊆ ω, there is a uniform witness e to
(‖n ∈ X̂‖ ⇒ ‖n ∈ X̂‖) ≤ ‖n ∈ X̂‖. Let e′ be an index for the identity function, so that e′
is in (‖n ∈ X̂‖ ⇒ ‖n ∈ X̂‖) for all n ≥ 0 and X ⊆ ω. Then by choosing a pair of distinct
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numbers n,m, the previous proposition implies that p0 p0(ee′) is equal to both ñ and m̃,
a contradiction. �

In these last two propositions of this section, we work over Kleene’s first model K1.
We begin with the following proposition from McCarty (1984, p. 158), whose proof we
include for the sake of completeness:

PROPOSITION 9.7. On any expansion of the uniform P(K1)-valued structure VK1
κ , the

following is valid:

[∀ n ∈ ω ∃ m ∈ ω ϕ(n,m)] ⇒
[∃ e ∈ ω ∀ n ∈ ω ∃ m ∈ ω ∃ p ∈ ω (T (e, n, p) ∧ U (p,m) ∧ ϕ(n,m))] (9.8)

Proof. Suppose that i ∈ ‖∀ n ∈ ω ∃ m ∈ ω ϕ(n,m)‖. Then for all b ∈ VK1
κ , one has that

i is in ‖b ∈ ω⇒ ∃ m ∈ ω ϕ(b,m)‖. Then by definition of ω one has that for all n ≥ 0 that

i(pñi0) ∈ ‖∃ m ∈ ω ϕ(n,m)‖ =
⋃

m∈V
K1
κ

‖m ∈ ω‖ ∧ ‖ϕ(n,m)‖, (9.9)

where i0 is the program such that i0 ∈ ‖a = a‖ for all a ∈ VK1
κ . Then let e0, e1 be the

indexes for the program such that for all n ≥ 0 one has e0n = p0i(pñi0) and e1n =
p1i(pñi0). Then e0, e1 are total. Hence, for each n ≥ 0 one may compute m, p ≥ 0
such that T (e0, n, p) ∧ U (p,m). Since these are recursive, one may effectively find from
e0, n, p,m a proof of T (e0, n, p)∧U (p,m) from IZF, and then e1n returns an element of
‖ϕ(n,m)‖. �

PROPOSITION 9.8. On the modal structure μ[VK1
κ ], the following is valid:

[� ∀ n ∈ ω ∃ m ∈ ω �ϕ(n,m)] ⇒
[∃ e ∈ ω � ∀ n ∈ ω ∃ m ∈ ω ∃ p ∈ ω (T (e, n, p) ∧ U (p,m) ∧�ϕ(n,m))] (9.10)

Proof. By invoking the previous proposition, the proof is exactly the same as in the
arithmetic case in §8, using the Change of Basis Theorem 7.3 and the stability of formulas
which are �1-definable in the signature of arithmetic in exactly the same way. �

As mentioned in the introduction, Theorem 1.5 follows from this proposition and the
earlier Proposition 9.3 and Proposition 9.6.

§10. Troelstra’s Elementary Analysis and Kleene’s Second Model. Now we focus
on building models of fragments of second-order arithmetic with very limited amounts of
comprehension. This will be relative to the pca K2, namely Kleene’s second model (cf.
§3), and we shall concentrate our efforts on the theory of elementary analysis EL studied
by Troelstra (cf. Troelstra (1977, §3.3, 3.4, pp. 982 and 983), Troelstra & van Dalen (1988,
Volume 1, §3.6, pp. 144 ff), Troelstra (1998, §2.5, pp. 425 and 426)).

Let us extend the single-sorted signature of Heyting arithmetic HA by second sort re-
served for functions from natural numbers to natural numbers. The modal semantics devel-
oped in §6 carries over straightforwardly to the many-sorted setting. Since there are only
two sorts, we’ll simply reserve the lower-case Roman letters �,m, n, x, y, z for numbers
and we’ll reserve the lower-case case Greek letters α, β, γ, δ for functions from natu-
ral numbers to natural numbers. The only primitive that we add to the signature is the
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application function (α, n) �→ α(n), which takes a number-theoretic function α and a
number n and evaluates α at n.

We work with the standard model of second-order arithmetic, which we call N 2
0 . In this,

the number sort is interpreted as ω = {0, 1, 2, 3, . . .} and the function sort is interpreted as
Baire space ωω. The elements of the signature of Heyting arithmetic are interpreted exactly
the same as in §8, except that they are taken to be P(K2)-valued instead of P(K1)-valued.
In many treatments of second-order arithmetic, equality for second-order objects would
be defined in terms of coextensionality. However, since the modal semantics of §6 always
has identity built-in, we go ahead and assume that identity terms between functions are
well-formed and interpreted disjunctively just as in (8.1).

The application function (α, n) �→ α(n) is interpreted by the usual application func-
tion given by the metatheory. The same argument as deployed vis-à-vis first-order arith-
metic in §8 shows that N 2

0 is a uniform P(K2)-valued structure, and that any expansion
N 2 of N 2

0 by new function or relation symbols is similarly a uniform P(K2)-valued
structure. As for the quantifiers, here we must proceed a little differently from §8, since
the quantifiers must map each element of the domain to a subset of K2 instead of K1.
Recall from §3 that [σ ] is the clopen through the finite string σ in Baire space, so that
[(n)] = {α ∈ ωω : α(0) = n}.

We then define the quantifiers in N 2 as Q(n) = [(n)] and Q(α) = {α}, so that ωω =⊔
n≥0 Q(n) and ωω = ⊔

α∈ωω Q(α) provide us with two distinct partitions of Baire space.
Using the terminology from Definition 6.11, it’s easy to see that these quantifiers are
nondegenerate, nonuniform, and nonclassical (where these notions are relativized to sorts
in the obvious way). They are also term-friendly, providing that we only introduce new
recursive number-theoretic functions, like in §8, and providing that we don’t introduce
any new functions defined on second-order objects outside of the application function.
For, assuming this, it then suffices to show that there is γ in K2 such that γ : Q(n) ∧
Q(α) � Q(α(n)) for all n ≥ 0 and α. Since the function F : ωω × ωω → ωω given by
F(β, α) = α(β(0))
0 is a continuous function, by Proposition 3.3.I choose δ such that
δαβ = F(β, α). Then by Proposition 3.2 choose γ such that γ γ ′ = δ(p0γ

′)(p1γ
′). This

is why the quantifiers on this structure are term-friendly.

PROPOSITION 10.1. All of the axioms of HA are valid on the structure N 2, as well as
the following recursion axiom and choice schema and law of the excluded middle for the
new atomics:

∀ n0 ∀ α ∃ γ γ (0) = n0 ∧ ∀ n γ (S(n)) = α(γ (n)) (10.1)

[∀ n ∃ m ϕ(n,m)] ⇒ ∃ γ [∀ n ϕ(n, γ (n))] (10.2)

∀ α ∀ n ∀ m (α(n) = m ∨ α(n) �= m). (10.3)

Proof. Again, by Proposition 6.13, it suffices to verify the validity of the axioms. For
HA, the proof proceeds much as in the proof of Proposition 8.2, modulo needing to work
with K2 instead of K1. In parallel to equation (8.2), for induction it suffices to find a witness
to the following:

‖ϕ(0)‖ ∧
⋂
n≥0

([(n)] ⇒ (‖ϕ(n)‖ ⇒ ‖ϕ(Sn)‖) ≤
⋂
n≥0

([(n)] ⇒ ‖ϕ(n)‖). (10.4)

For each n ≥ 0, by Proposition 3.2 choose γn such that γnαβ = (α((n)
0))(β). Then
by Proposition 3.3.II, the map Gn(α, β) = γnαβ has Gδ domain En and is continuous on
this domain. Define a partial function of three variables F : ωω × ωω × ωω ��� ωω by
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F(α0, α1, (0)
β) = α0 and F(α0, α1, (n + 1)
β) = γnα1 F(α0, α1, (n)
β). We claim
that F has Gδ domain and is continuous on this domain. Since the domains Dn of F �
(ωω × ωω × [(n)]) are disjoint and separated by opens, it suffices to show by induction
on n ≥ 0 that F � (ωω × ωω × [(n)]) is partial continuous and that its domain Dn is
Gδ . For n = 0, this is trivially the case. Suppose it holds for n. To show it holds for
n + 1, define F̂(α0, α1, (n)
β) = (α1, F(α0, α1, (n)
β)) which is continuous on Dn by
induction hypothesis. Then (α0, α1, (n+1)
β) ∈ Dn+1 iff both (α0, α1, (n)
β) ∈ Dn and
(α0, α1, (n)
β) ∈ F̂−1(En), which is Gδ by induction hypothesis. Further F is continuous
on Dn+1 since it is the composition of two continuous functions. So indeed F has Gδ

domain and is continuous on this domain. Then by Proposition 3.3.I there is a γ such that
γα0α1β = F(α0, α1, β). By Proposition 3.2, choose γ ′ such that γ ′α = γ (p0α)(p1α).
Now, to verify (10.4), suppose that α = pα0α1 is in the antecedent of this reduction, so
that p0α = α0 and p1α = α1. Then an easy induction on n ≥ 0 shows that γ ′α = γα0α1
is in the consequent of this reduction.

For the recursion axiom (10.1), for ease of readability, consider the specific case where
n0 has been fixed ahead of time, and let’s find a witness to the following reduction, uni-
formly in α:

{α} ≤
⋃
γ

({γ } ∧ [
⋂
n≥0

([(n)] ⇒ (‖γ (0) = n0‖ ∧ ‖γ (S(n)) = α(γ (n))‖))]). (10.5)

Define a function F : ωω → ωω by F(α)(0) = n0 and F(α)(n + 1) = α(F(α)(n)).
Then F : ωω → ω is continuous iff πn ◦ F : ωω → ω is continuous, wherein πn denotes
the projection onto the n-th component, so that πn(β) = β(n), and wherein ω is given
the discrete topology. Clearly π0 ◦ F is continuous since it is a constant function. Suppose
that πn ◦ F is continuous. Then (πn+1 ◦ F)−1({k}) = ⋃

�≥0{α : α(�) = k ∧ α ∈
(πn ◦ F)−1({�})} is open since it’s a union of sets which are an intersection of a clopen
and an open. Hence F : ωω → ωω is indeed continuous. By Proposition 3.3.I there is a
γ such that F(α) = γα. Choose β∧ such that β∧ is a uniform witness to � ≤ � ∧ �.
By Proposition 3.2 choose δ such that δα = p((γ α)(β∧)). Let’s verify that δ is a witness
to (10.5). So suppose that α is given. Then by construction (γ α)(0) = F(α)(0) = n0 and
so ‖(γ α)(0) = n0‖ = � and (γ α)(Sn) = F(α)(n + 1) = α(F(α)(n)) = α((γ α)(n)), so
that ‖(γ α)(Sn) = α((γ α)(n))‖ = �. Then by construction, β∧ is an element of [(n)] ⇒
(‖γ (0) = n0‖∧‖γ (S(n)) = α(γ (n))‖)] for all n ≥ 0, which finishes the argument for the
recursion axiom (10.1).

For the choice schema (10.2), we must find a witness to the following reduction:⋂
n≥0

[(n)] ⇒
⋃
m≥0

([(m)]∧‖ϕ(n,m)‖) ≤
⋃
γ

({γ }∧ (
⋂
n≥0

([(n)].⇒ ‖ϕ(n, γ (n))‖))). (10.6)

Define a partial map F : ωω ��� ωω by (F(α))(n) = (p0(α((n)
0)))(0). For each n ≥ 0,
by Proposition 3.2, there is δn such that δnα = p0(α((n)
0)). By Proposition 3.3.II, this
map is continuous on its Gδ domain Dn , and hence its projection α �→ (p0(α((n)
0)))(0)
onto its zero-th component is also continuous with Gδ domain Dn , where we view ω as
having the discrete topology. Then F has Gδ domain D = ⋂

n Dn and F : D → ωω

is continuous. By Proposition 3.3.II, there is γ such that F(α) = γα. Similarly, there
is γ ′ such that for all α and n ≥ 0 and β one has (γ ′α)((n)
β) = p1(α((n)
0)).
By Proposition 3.2 choose δ such that δα = p((γ α)(γ ′α)). Suppose that α is in the
antecedent of (10.6). Then we show that δα is in the consequent of (10.6). For each
n ≥ 0, there is m ≥ 0 such that α((n)
0) is in [(m)] ∧ ‖ϕ(n,m)‖, so that p0(α((n)
0))
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is in [(m)] and p1(α((n)
0)) is in ‖ϕ(n,m)‖. Then by the definition of F and γ, γ ′,
we have (γ α)(n) = (F(α))(n) = (p0(α((n)
0)))(0) = m, and for all β we have
(γ ′α)((n)
β) = p1(α(n
0)) ∈ ‖ϕ(n,m)‖ = ‖ϕ(n, (γ α)(n))‖. Hence indeed δα is in
the consequent of (10.6), which finishes the verification of the choice schema (10.2).

For the law of the excluded middle for the new atomics (10.3), first define F : ωω×ωω×
ωω → ωω by F(α, β, γ ) = pkk if α(β(0)) = γ (0), while F(α, β, γ ) = pk̆k̆ otherwise.
Then clearly F is continuous and so by Proposition 3.3.I, choose δ such that δαβγ =
F(α, β, γ ). It suffices to show that δα is in [(n)] ⇒ ([(m)] ⇒ (‖α(n) = m‖ ∨ ‖α(n) �=
m)‖) for all α and n,m ≥ 0. Fix α and n,m ≥ 0 and β ∈ [(n)]; we must show that δαβ is
in [(m)] ⇒ (‖α(n) = m‖ ∨ ‖α(n) �= m)‖). So suppose that γ ∈ [(m)]; we must show that
δαβγ = F(α, β, γ ) is in ‖α(n) = m‖ ∨ ‖α(n) �= m)‖. If α(β(0)) = γ (0) then α(n) = m
and so ‖α(n) = m‖ = � and hence F(α, β, γ ) = pkk is in ‖α(n) = m‖ ∨ ‖α(n) �= m‖.
If α(β(0)) �= γ (0) then α(n) �= m and so ‖α(n) = m‖ = ⊥ and ‖α(n) �= m‖ = � and
hence F(α, β, γ ) = pk̆k̆ is in ‖α(n) = m‖ ∨ ‖α(n) �= m)‖. �

Now, if t (x) is term, then ∀ x ∃ y t (x) = y is valid in the structure N 2, since the
quantifiers in this structure are term-friendly. Hence by the axiom of choice (10.2), one
has that there is γ such that γ (x) = t (x). Hence, without loss of generality, we may
assume that we have λ-terms in the language, and write λx .t in lieu of γ . These satisfy
λ-conversion (λx .t)(n) = t (x/n) since γ (n) = t (n). Similarly, we may assume that
we have a term rn0,α which provides a witness to the recursion axiom (10.1). Further,
by a conceptually-slight but notationally-heavy modification of the proof of the recursion
axiom (10.1), one may replace the base case n0 by a term t (x1, . . . , x�) with �-parameter
places and obtain a modified version of the recursion axiom which reads as follows:

∀ α ∃ γ ∀ x [γ (0) = t (x) ∧ ∀ n γ (S(n), x) = α(γ (n), x)]. (10.7)

In this, one thinks of the elements α, γ of Baire space as taking � + 1-many inputs by
using a primitive recursive pairing function on natural numbers, which is available in the
structure due to it validating Heyting arithmetic HA. Proceeding in this fashion, one then
introduces the term rt,α for the γ from (10.7).

Troelstra’s development of the theory EL of elementary analysis proceeded deductively
rather than semantically, and so it was natural for him to work in a logic enriched by
λ-terms and the recursion terms rt,α . Since we can introduce these terms as abbreviations,
it’s then a consequence of the above proposition that all the theorems of EL are valid on
the definitional expansion of N 2 induced by these abbreviations. See the citations in the
beginning paragraph of this section for references to Troelstra’s explicit description of the
syntax and axioms of EL.

Troelstra further developed the basics of oracle computability in EL, and showed
for instance that if we define (αβ)(n) = m in the natural �0

1-way in arithmetic as
∃ � (α(((n)
β) � �) = m + 1 ∧ ∀ �0 < � α(((n)
β) � �0) = 0), then one can
show in EL that {e0}α⊕β = α(β), where the left-hand side is written out in terms of oracle
computations and where e0 can be taken to be the same index as in (3.1) (Troelstra & van
Dalen, 1988, Volume 1, §3.7.9 and 3.7.10, p. 157). Another consequence which it is useful
to take note of is that the usual Normal Form Theorem for oracle computation is provable
in EL (Troelstra & van Dalen, 1988, Volume 1, §3.7.6, p. 155).

These observations allow us to establish the following helpful proposition, where in
part (I), the expression “{e}γ = β” in the context ‖{e}γ = β‖ is an abbreviation for
“∀ n ∃ q (T (e, n, γ, q) ∧ U (q, β(n))),” where T is the oracle-computability version of
Kleene’s T -predicate given by the Normal Form Theorem, and where both T and U may be
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represented by a term in the signature of N 2
0 (using the λ-terms and rt,α-terms introduced

above). Further, in part (II) of this proposition, the expression “γα = β” in the context
‖γα = β‖ is an abbreviation for ‖{e0}γ⊕α = β‖.

PROPOSITION 10.2. (I) For every index e ≥ 0 there is δe such that for all γ, β one has
{e}γ = β implies δeγ ∈ ‖{e}γ = β‖. (II) Hence, there is δ such that for all α, β, γ one has
that γα = β implies δγ α ∈ ‖γα = β‖.

Proof. First let’s note why (II) follows from (I). By (I), one has that {e0}γ⊕α = β implies
δe0(γ ⊕ α) ∈ ‖{e0}γ⊕α = β‖. Since (γ, α) �→ γ ⊕ α is continuous, by Proposition 3.3.I,
choose p′ such that p′γα = γ ⊕ α. Then by Proposition 3.2, let δ be such that δγ α =
δe0(p

′γα). Then γα = β implies δγ α = δe0(p
′γα) = δe0(γ ⊕ α) ∈ ‖{e0}γ⊕α = β‖.

By the remark in the previous paragraph, we have that ‖{e0}γ⊕α = β‖ is identical to
‖γα = β‖.

Now we prove (I). Choose index e′ so that e′ on input n with oracle γ searches for a
halting computation of e on input n with oracle γ . By Proposition 3.3.I, choose δ such
that δγ = {e′}γ . The function H which on input α returns H(α) = ((δ(p0α))(n))
0 for
n = (p1α)(0) is a partial continuous function with Gδ domain, and so by Proposition 3.3.I,
choose η with ηα = H(α). Then η(pγ ((n)
β)) = ((δγ )(n))
0, so that

β ∈ [(n)] implies η(pγβ) ∈ [(q)] for q = (δγ )(n). (10.8)

Let δ∧ be any witness for � ≤ � ∧ �. By Proposition 3.2, choose δ′e such that δ′eβ =
p(η(pγβ))(δ∧β). Suppose that {e}γ = β. It suffices to show that δ′e is a witness to [(n)] ≤⋃

q≥0[(q)]∧ (‖T (e, n, γ, q)‖ ∧ ‖U (q, β(n)‖) for all n ≥ 0. Suppose that β ∈ [(n)]. Then
by (10.8) we have η(pγβ) ∈ [(q)] for q = (δγ )(n). By definition of δ, it follows that
q is a halting computation of e on input n with oracle γ , so that T (e, n, γ, q) and since
{e}γ = β by hypothesis, also U (q, β(n)). Then by the semantics for the atomics, it follows
that (‖T (e, n, γ, q)‖ ∧ ‖U (q, β(n)‖) = �∧�, so that δ∧β is in this set. �

In Troelstra (1998, p. 427), it is noted that in discussions of Kleene’s second model
K2, the role of Church’s Thesis is taken over by the following schema, which is called
generalized continuity:

PROPOSITION 10.3. In N 2, the following Generalized Continuity schema is valid:

[∀ α ∃ β ϕ(α, β)] ⇒ [∃ γ ∀ α ∃ β (γ α = β ∧ ϕ(α, β))] (10.9)

Proof. It suffices to show that there is witness such that when given an element γ of⋂
α

({α} ⇒
⋃
β

({β} ∧ ‖ϕ(α, β)‖)) (10.10)

returns an element of the set⋃
γ ′
({γ ′} ∧ [

⋂
α

({α} ⇒
⋃
β

({β} ∧ (‖γ ′α = β‖ ∧ ‖ϕ(α, β)‖)))]). (10.11)

By Proposition 3.2 choose δi so that δiγα = pi (γ α), so that if γ is an element of (10.10)
then δ1γα ∈ ‖ϕ(α, δ0γα)‖ and both δiγ↓ and δiγα↓ for all α. By Proposition 3.2, choose
δ′ such that δ′γα = p(δ0γα)(p(δ(δ0γ )α)(δ1γα)), where δ is from part II of the previous
proposition. Then similarly, let δ′′ such that δ′′γ = p(δ0γ )(δ

′γ ). Then we claim that δ′′ is
the desired witness. So let γ be from (10.10); we must show that δ′′γ is in (10.11). For this
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it suffices to show that δ′γα is an element of:⋃
β

({β} ∧ (‖δ0γα = β‖ ∧ ‖ϕ(α, β)‖)). (10.12)

Let β = δ0γα. Then since (δ0γ )α = β, by the previous proposition, we have that
δ((δ0γ )α) is in ‖δ0γα = β‖, where we keep in mind from the discussion prior to the
previous proposition that the syntax of “δ0γα = β” in the context ‖δ0γα = β‖ is not an
atomic. Finally, as remarked above, we also have that δ1γα ∈ ‖ϕ(α, β)‖, and so we are
done. �

Using the apparatus constructed thus far, we can then deduce the consistency of HA and
an epistemic version of generalized continuity:

THEOREM 10.4. In μ[N 2], all the theorems of EA◦ are valid, as is

[� ∀ α ∃ β �ϕ(α, β)] ⇒ [∃ γ � ∀ α ∃ β (γ α = β ∧ �ϕ(α, β))]. (10.13)

Proof. As for the theorems of EA◦, the argument proceeds just as in the proof of
Theorem 8.3, using Proposition 10.1 in lieu of Proposition 8.2. As for (10.13) this follows
directly from taking the Gödel translation of (10.9) in the case of an atomic and applying
the Change of Basis Theorem 7.3. In particular, Proposition 8.6 holds on this structure as
well, so that since γα = β in (10.13) is a �0

2-formula, it’s implied by its own Gödel
translation. The reason that Proposition 8.6 holds on this structure is that the law the
excluded middle holds for the new atomics by (10.3). �

§11. Scott’s Graph Model of the Untyped Lambda Calculus. To illustrate the gen-
erality of our construction, let’s consider now Scott’s graph model S described in §3. Since
in this pca the application operation (3.2) is total, there is a natural way of viewing S as
a uniform P(S)-valued structure in the sparse functional pca signature L (cf. immediately
after Proposition 3.2 for a definition of this signature). On the uniform P(S)-valued L-
structure, we interpret identity disjunctively as in (8.1), and we use the quantifier Q(x) =
{x} which is nondegenerate, nonuniform, and nonclassical (cf. Definition 6.11). Further, it
is term-friendly by Proposition 3.2.

Then in parallel to Proposition 3.7, we can show that

PROPOSITION 11.1. On the uniform P(S)-valued L-structure S , all of the following
axioms are valid: ∀ x, y kxy = x and ∀ x, y, z sxyz = (xz)(yz) and 12k = k and
13s = s and the Meyer-Scott axiom ∀ a, b ((∀ x ax = bx)⇒ 1a = 1b).

Proof. For ∀ x ∀ y kxy = x , it suffices to find an element of
⋂

x ({x} ⇒
⋂

y({y} ⇒‖kxy = x‖)). But in fact any element of c is an element of this set. For, suppose that x is
given; we must show that cx ∈ ⋂

y({y} ⇒ ‖kxy = x‖). So suppose that y is given; we
must show that cxy ∈ ‖kxy = x‖. But since kxy = x is true, we have ‖kxy = x‖ = �,
and so trivially cxy ∈ ‖kxy = x‖. A similar argument works in the case of s; and the
validity of the identities 12k = k and 13s = s follows trivially since they are true in the
classical model. For the Meyer–Scott Axiom, it suffices to find a witness to the reduction⋂

x ({x} ⇒ ‖ax = bx‖) ≤ ‖1a = 1b‖, uniformly in a, b. But again, any element c will
do. For, suppose that y is an element of

⋂
x ({x} ⇒ ‖ax = bx‖); we must show that cy

is in ‖1a = 1b‖. But for all x , we have that yx is in ‖ax = bx‖, so that it is true, and
hence since the Meyer–Scott axiom holds classically, we have that 1a = 1b is true, and so
‖1a = 1b‖ = �, and so cy ∈ ‖1a = 1b‖. �
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Similar to the previous sections, it’s convenient to consider expansions S∗ of S by
new relation or function symbols, which are for the same reasons still uniform P(S)-
valued structures; and for the same reasons as in the previous sections, here too we refrain
from introducing function symbols which violate term-friendliness. Then we have that the
following choice principle holds on these expansions. However, note that in this choice
principle, “cx = y” is literally the atomic formula, and so the proof of this choice principle
is less involved than the proof of Proposition 10.3.

PROPOSITION 11.2. On the uniform P(S)-valued L-structure S∗, the following choice
principle holds for any formula in the signature:

(∀ x ∃ y ϕ(x, y))⇒ (∃ c ∀ x ∃ y (cx = y ∧ ϕ(x, y))). (11.1)

Proof. By Proposition 3.2, choose b0, b1, b2 from S such that b0ax = p0(ax) and
b1ax = p((p0(ax))(p(k)(p1(ax)))) and b2a = p(b0a)(b1a). Then b2 is a witness to the
reduction. For, suppose that a is a member of the antecedent. Then for all x one has that
p1(ax) ∈ ‖ϕ(x, p0(ax))‖. Define c = b0a, and let x be arbitrary. Then by construction
cx = b0ax = p0(ax). Further, if we define y = p0(ax), we have that p(k)(p1(ax)) ∈
‖cx = y‖ ∧ ‖ϕ(x, y)‖ and hence b1ax ∈ {y} ∧ (‖cx = y‖ ∧ ‖ϕ(x, y)‖). Hence, since x
was arbitrary we have that b1a ∈ ‖∀ x ∃ y (cx = y ∧ ϕ(x, y))‖. Since c = b0a, we then
have that b2a ∈ ‖∃ c ∀ x ∃ y (cx = y ∧ ϕ(x, y))‖. �

PROPOSITION 11.3. On the modal B-valued L-structure μ[S], all of the following
axioms are valid: ∀ x, y kxy = x and ∀ x, y, z sxyz = (xz)(yz) and 12k = k and
13s = s and the modal version of the Meyer-Scott axiom ∀ a, b ((�(∀ x ax = bx)) ⇒
1a = 1b). In addition, one has the following choice principle, for any modal formula in the
signature:

� (∀ x ∃ y � ϕ(x, y))⇒ (∃ c � ∀ x ∃ y (cx = y ∧ � ϕ(x, y))). (11.2)

However, the Meyer-Scott axiom itself ∀ a, b ((∀ x ax = bx)⇒ 1a = 1b) is not valid on
μ[S].

Proof. The positive parts of the proposition follow from the Gödel translation and
Flagg’s Change of Basis Theorem, by considerations which are by now routine. For the
negative part, suppose for the sake of contradiction that the Meyer–Scott axiom itself
∀ a, b ((∀ x ax = bx) ⇒ 1a = 1b) was valid on μ[S]. By Proposition 3.8, fix
a, b ∈ S such that 1a �= 1b and for all x ∈ S one has ax �= bx . Since D⊥ ≡ D
uniformly, for each x ∈ S we would have ‖ax = bx‖μ(D) ≡ D uniformly, and similarly
‖1a = 1b‖μ(D) ≡ D uniformly. Then our reductio hypothesis yields a witness c to the
reduction {x} ⇒ D ≤ D uniformly in D and x . But since skk is the identity function in
pcas, one has that skk is a member of {x} ⇒ {x} for all x . But then taking D = {x}, we
have that c(skk) = x for all x ∈ S , a contradiction. �

PROPOSITION 11.4. On the modal B-valued L-structure μ[S], the negated atomics are
not stable, and in particular the negated atomic x �= y is not stable.

Proof. (Scott, 1975, p. 174) showed that the “paradoxical combinator” y used by Curry
in his eponymous paradox (cf. Barendregt (1981, Appendix B, pp. 573 ff)) is such that for
all continuous f :S → S one has f (yg) = yg, where g = graph( f ) (cf. Proposition 3.6.I).
By Proposition 3.6.I & IV, choose g in S such that gc = graph(fun(c)) for all c from S .
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Putting these two things together, one has that c(y(gc)) = y(gc) for all c from S . By
Proposition 3.2, choose δ in S such that δc = p(y(gc))k for all c in S . Then δ is a witness
to the validity of ∀ c ∃ x cx = x on the uniform P(S)-valued L-structure S .

The Gödel translation of this is � (∀ c ∃ x cx = x) which is thus valid on the modal
B-valued L-structure μ[S]. In conjunction with the stability of identity and (11.2), this
implies that the following is valid on the modal B-valued L-structure μ[S]:

� (∀ x ∃ y � ϕ(x, y))⇒ ∃ x � ϕ(x, x). (11.3)

If one applies this to ϕ(x, y) ≡ x �= y, then because ∀ x � ¬ϕ(x, x) is valid on the modal
B-valued L-structure μ[S], so too is

� ∃ x ∀ y � x = y. (11.4)

Suppose now for the sake of contradiction that the negated atomic x �= y was stable.
This implies that � ∀ x, y (�(x = y) ⇒ x = y) is valid on the modal B-valued L-
structure μ[S]. In conjunction with the previous equation, we then obtain the validity of
� ∃ x ∀ y x = y, which implies

� ∀ x, y x = y. (11.5)

But by choosing distinct x �= y in S , our reductio hypothesis gives that � x �= y, which
implies ∃ x, y � x �= y, which by Proposition 6.10 implies � ∃ x, y x �= y, which
contradicts the previous equation. �

§12. Conclusions and Further Questions. Drawing the comparison to modal logic
prior to Kripke semantics, Horsten once reported the concern about ECT (1.1) and
related systems that “in the absence of a clear and unifying semantic framework there
is the suspicion [. . . ] that we don’t know what we are talking about” (Horsten, 1998,
p. 24). While one can always adopt an instrumentalist attitude towards semantics, it’s hard
not to have some sympathy for Horsten’s remark, and it’s our hope that the realizability
semantics developed here, which we take to generalize Flagg’s 1985 construction, can add
to our understanding of ECT (1.1). On the one hand, we’ve tried to do so by making
transparent how, e.g., these semantics don’t validate the Barcan Formula BF (1.8) or the
stability of nonidentity (cf. Proposition 8.7 and Proposition 11.4), but they do validate
the Converse Barcan Formula CBF (1.2) and the stability of identity and other atomics
(cf. Proposition 6.10 and Proposition 6.15). On the other hand, we’ve sought to spec-
ify the senses in which the Flagg construction does not depend crucially on the ordi-
nary model of computation over the natural numbers. One degree of freedom is that we
can vary the partial combinatory algebra over which we are working, and we can rather
work over Kleene’s second model or Scott’s graph model of the untyped lambda-calculus
(cf. §10-11). But we can also vary the base theory from Flagg’s original setting of arith-
metic to the setting of set theory using McCarty’s construction (cf. §9).

But there is obviously much that is left unresolved by this paper. Four issues in particular
seem especially noteworthy. First, one would like some understanding of how complex the
consequence relation is for the modal semantics developed here. Given that the semantics
for the box operator is defined in terms of intersections over arbitrary subsets of the
underlying pca (cf. Definitions 4.5 and 4.6), one suspects that the induced consequence
relation might be rather complex, and showing that it was not computably enumerable
would be good evidence that there is no natural completeness theorem for these semantics.
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Second, given the centrality of the stability of atomics to the Flagg construction, the
considerations of this paper tell us nothing about the consistency of ECT (1.1) plus the
failure of the stability of atomics against the background of an epistemic set theory. (See
Flagg (1985, p. 149) for a discussion of the stability of atomics against the background of
an epistemic arithmetic.)

Third, the main open technical question about ECT (1.1) is whether it plus epistemic
arithmetic is a conservative extension of Peano arithmetic PA (cf. Horsten (1997, p. 649),
Horsten (1998, p. 20), Horsten (2006, p. 260), Halbach & Horsten (2000, Question 1, p.
462)). But the conservation of a given system over a subsystem can often be established
by showing that any model of the subsystem can be expanded into a model of the given
system. Because of this, as well as due to its intrinsic interest, one would want to know
whether the model of EA◦ + ECT constructed in §8 validates all the same arithmetical
truths as the standard model of arithmetic.

Fourth and finally, we indicated in §1 how the stability of atomics motivated the mod-
ification eZF of Goodman and Scedrov’s theory EZF, and in §9 we showed that modal
versions of McCarty’s model, which is closely related to the Boolean-valued models of set
theory, validated this theory eZF. However, Martin once suggested that “[. . . ] a Boolean-
valued model would hardly seem to be a contender for the universe of sets” (Martin, 2001,
p. 15). While the philosophical interpretation of Boolean-valued models is currently being
debated, one might reasonably want some further assurance that eZF had the right to the
name of a set theory at all, and for this it would be natural to show that it actually interpreted
ordinary set theory ZF, or at least some fragment of this.

§13. Acknowledgements. This paper has been bettered by comments from and con-
versations with the following people, whom we warmly thank: Marianna Antonutti, Jeff
Barrett, Benno van den Berg, Tim Carlson, Walter Dean, Michael Ernst, Rohan French,
Leon Horsten, Bob Lubarsky, Jaap van Oosten, and Kai Wehmeier. Thanks also to the
anonymous referees for very helpful comments.

§A. Appendix: Proposition on Kleene’s Second Model. Here is the proof of Propo-
sition 3.3, which we stated in §3 in the context of describing Kleene’s second model K2
but only used in §10:

Proof. For (I) in the case of n = 1, let D = ⋂
n Un , where Un is open. Let πn : ωω → ω

be the n-th projection πn(α) = α(n), so that (πn ◦ G) : D → ω is continuous where
ω is given the discrete topology. For each n,m ≥ 0, choose open Vn,m ⊆ Un such that
(πn ◦ G)−1({m}) = Vn,m ∩ D. Define γ by γ ((n)
σ) = m + 1 if [σ ] ⊆ Vn,m and
[τ ] � Vn,m for all τ ≺ σ and m is the least with this property, and γ ((n)
σ) = 0 if
there is no such m. Suppose that α ∈ D and n ≥ 0 and m = G(α)(n), so that α ∈
(πn ◦ G)−1({m}) = Vn,m ∩ D. Choose least � such that [σ ] ⊆ Vn,m where σ = α � �, and
note that there is no m′ < m with this property since it would then imply that G(α)(n) was
equal to both m′,m. Then γ ((n)
σ) = m + 1 and γ ((n)
τ) = 0 for all τ ≺ σ . Hence
(γ α)(n) = m. Finally, note that if α /∈ D, then γα is undefined. For, if α /∈ D, then choose
Un with α /∈ Un . Then γ ((n)
σ) = 0 for all initial segments σ of α, and so (γ α)(n) is
undefined.

For (I) in the case of n = 2 and D = ωω × ωω, see van Oosten (2008, Lemma 1.4.1,
p. 16). Then by applying this to the homeomorphism �2 : ωω × ωω → ωω given by
�2(α1, α2) = α1 ⊕ α2, one obtains γ2 such that γ2α1α2 = α1 ⊕ α2.
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Now let’s show (I) in the case of n = 2 and D ⊆ ωω×ωω being Gδ . Its image D′ under
�2 is also Gδ , and F ′ : D′ → ωω defined by F ′(α1 ⊕ α2) = F(α1, α2) is also continuous.
Then by (I) in the case of n = 1, one has that there is γ such that γβ = F ′(β) for all β in
D′. Then γ (γ2α1α2) = γ (α1 ⊕ α2) = F ′(α1 ⊕ α2) = F(α1, α2) for all (α1, α2) in D. By
Proposition 3.2, choose γ ′ such that γ ′α1α2 = γ (γ2α1α2). Then γ ′ is the desired witness,
and so we are done with the case n = 2.

To finish the proof of (I), suppose that the result holds for n ≥ 2. To show it holds for
n + 1, suppose that D ⊆ (ωω)n+1 is Gδ . Then its image D′ under the homeomorphism
�n+1 : (ωω)n+1 → (ωω)n given by �n+1(α1, . . . , αn−1, αn, αn+1) = (α1, . . . , αn−1, αn ⊕
αn+1) is also Gδ . Further the function F ′ : D′ → ωω defined by F ′(α1, . . . , αn−1, αn ⊕
αn+1) = F(α1, . . . , αn−1, αn, αn+1) is continuous. Then by induction hypothesis, choose
γ such that γβ1 · · ·βn = F ′(β1, . . . , βn) for all (β1, . . . , βn) in D′. Then one has
γα1 · · ·αn−1(γ2αnαn+1) = F ′(α1, . . . , αn ⊕ αn+1) = F(α1, . . . , αn, αn+1). Then by
Proposition 3.2, choose an element γ ′ such that γ ′α1 · · ·αn+1 = γα1 · · ·αn−1(γ2αnαn+1).
Then γ ′ is the desired witness.

For (II), for the case n = 1, it follows from (3.1). For the case of n = 2, (α1, α2) is in the
domain the map iff (i) α1 is in the domain of the map α �→ γα and (ii) for all n ≥ 0 there
is σ1 ⊕ σ2 such that the following three �0

1-conditions in oracle γ ⊕ α1 ⊕ α2 occur: (ii.1)
for all i < |σ1| there is τi # γ ⊕ α1 such that σ1(i) = {e0}τi (i), and (ii.2) σ2 # α2 and
(ii.3) {e0}σ1⊕σ2(n)↓. Note that condition (ii.1) is �0

1 in the oracle since the �0
1-formulas

are closed under bounded quantifiers. Since conditions (i) and (ii) are �0
2 in the oracle, it

follows that the domain in the case n = 2 is �0
2 and thus Gδ . For continuity, suppose that

αi,k → αi where (α1,k, α2,k) is in the domain of the function. Then by case n = 1, we have
γα1,k → γα1. Suppose that we are trying to secure agreement with γα1α2 up to length �.
Choose σ # γα1 ⊕ α2 such that {e0}σ (i)↓ for all i < �. Then choose K ≥ 0 large enough
so that if k ≥ K , then γα1,k agrees with γα1 up to length |σ | and αi,k agrees with α2 up to
length |σ |. �

§B. Appendix: Heyting Prealgebras and Uniformity. In this section, we briefly set
up a logic in which to state and prove quantifier-free facts about Heyting prealgebras,
and in this logic we prove (2.4)–(2.14), and we connect this to the discussion of uniform
witnesses in Heyting prealgebras from §3. The well-formed formulas of this logic are sim-
ply the quantifier-free formulas in the language of Heyting prealgebras without equality,
and the deduction rules are simply the usual natural deduction rules for the intuitionistic
propositional calculus IPC together with the substitution rule “from ϕ(x) infer ϕ(t).” The
axioms of Heyting prealgebras are naturally quantifier-free, and so for instance the axiom
governing the conditional may be written

x ∧ y ≤ z iff y ≤ x ⇒ z. (B 1)

Let us call the system formed by this logic and the quantifier-free versions of the axioms
of Heyting prealgebras the system elementary Heyting prealgebras or EHP. It’s obviously
just a Heyting-prealgebra analogue of primitive recursive arithmetic PRA (cf. Troelstra &
van Dalen (1988, Volume 1, §3.2, pp. 120 ff)).

First let’s begin by noting some more elementary consequences of EHP:

PROPOSITION B.1. EHP proves (2.1)–(2.3) and hence each are true on any Heyting
prealgebra.
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Proof. For, equation (2.1) follows from (B 1) by setting y equal to x ⇒ z. For equa-
tion (2.2), suppose x ≤ y; we want to show y ⇒ z ≤ x ⇒ z. By equation (B 1) this is
equivalent to x ∧ (y ⇒ z) ≤ z. But since x ≤ y, we have x ∧ (y ⇒ z) ≤ y ∧ (y ⇒ z) ≤ z,
where the second reduction comes from equation (2.1). Finally, equation (2.3) follows from
two applications of equation (2.1). �

Using this more elementary proposition, we may then establish:

PROPOSITION B.2. EHP proves (2.4)–(2.14), so that these are true on all Heyting
prealgebras.

Proof. For equation (2.4), suppose that x ≤ y. Then by equation (2.2), we have y ⇒
d ≤ x ⇒ d. Then by equation (2.2) again, we have (x ⇒ d)⇒ d ≤ (y ⇒ d)⇒ d. Then
d x ≤ d y.

For equation (2.5), note that by equation (B 1), it is equivalent to (x ⇒ d) ∧ x ≤ d,
which follows immediately from equation (2.1).

For equation (2.6), let z be (x ⇒ d). Then by equation (2.1), we have (z ⇒ d)∧ z ≤ d.
Since z is (x ⇒ d) we have (z ⇒ d) ≡ d x . We thus have that d x ∧ z ≤ d. By
equation (B 1), it follows that z ≤ d x ⇒ d or (x ⇒ d) ≤ d x ⇒ d. From this we argue
that (x ⇒ d)∧d d x ≤ (d x ⇒ d)∧((d x ⇒ d)⇒ d) ≤ d, where the last reduction
comes from equation (2.1). By equation (B 1), this thus yields that d d x ≤ (x ⇒ d)⇒
d = d x .

For equation (2.7), we want to show that d d x ≡ d x . But we already have d d

x ≤ d x from equation (2.6). To see d x ≤ d d x , we note that we have x ≤ d(x)
from equation (2.5), and applying equation (2.4) with y equal to d(x), we obtain d x ≤
d d (x).

For equation (2.8), let us first show that d(x ∧ y) ≤ d x ∧ d y. Since ∧ is defined
in Heyting prealgebras as the infimum, it suffices to show that d(x ∧ y) ≤ d(x) and
d(x∧y) ≤ d(y). But these both follow directly from equation (2.4), since x∧y ≤ x and
x∧y ≤ y. Now we show the converse, namely d x∧d y ≤ d(x∧y). By equation (B 1),
this is equivalent to

((x ∧ y)⇒ d) ∧ d x ∧ d y ≤ d, (B 2)

which by expanding is equivalent to

[((x ∧ y)⇒ d) ∧ ((x ⇒ d)⇒ d)] ∧ d(y). ≤ d. (B 3)

By two applications of equation (B 1) we can get ((x ∧ y)⇒ d) ≤ (y ⇒ (x ⇒ d)). Hence
we may argue from this and equation (2.3) to equation (B 3) by noting that [((x ∧ y) ⇒
d) ∧ ((x ⇒ d)⇒ d)] ∧ d(y) ≤ (y ⇒ d) ∧ d y ≤ d.

For equation (2.9), note that we have by equation (2.1) that x ∧ (x ⇒ y) ≤ y. By
equation (2.4), we have d(x ∧ (x ⇒ y)) ≤ d(y). By equation (2.8) we obtain d x ∧
d(x ⇒ y) ≤ d(y). Then by equation (B 1), we have d(x ⇒ y) ≤ d x ⇒ d y.

For equation (2.10), since ∨ is defined in Heyting prealgebras as the supremum, it
suffices to show that d(x ∨ y) ≥ d(x) and d(x ∨ y) ≥ d(y). But these both follow
from equation (2.4), since x ∨ y ≥ x and x ∨ y ≥ y.

For (2.11), note that d ≤ d implies that � ≤ (d ⇒ d). Hence one has that dd ≤
(dd) ∧ (d ⇒ d) ≤ d.

For equation (2.12), note that it is equivalent to d ≤ (x ⇒ d)⇒ d. But by equation (B 1)
this is equivalent to d ∧ (x ⇒ d) ≤ d, which follows directly from ∧ being a lower
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bound. Note that equation (2.13) follows directly from equation (2.5) since this implies
� ≤ d(�) and we always have the converse.

For equation (2.14), first note that (d(x) ⇒ d) ≤ (x ⇒ d) is equivalent to
[x ∧ (d(x) ⇒ d)] ≤ d by (B 1). But this follows from x ∧ (d(x) ⇒ d) ≤ d(x) ∧
(d(x) ⇒ d) ≤ d by (2.5) and (2.1). Second note that (x ⇒ d) ≤ (d(x) ⇒ d) is
equivalent to [d(x) ∧ (x ⇒ d)] ≤ d by (B 1). But since d x = (x ⇒ d) ⇒ d, this
follows from (2.1). �

Now we formally justify the claim, made initially in §3 but used throughout the paper,
that there are uniform witnesses to the reductions in (2.4)–(2.14). In the statement of this
proposition, recall that the ample relational signature for pcas was introduced immediately
after Proposition 3.2.

PROPOSITION B.3. Suppose that t (x), s(x) are two terms in the signature of Heyting
prealgebras. Suppose that EHP proves t (x) ≤ s(x). Then there is a closed term τ in the
ample relational signature of pcas such that for all pcas A and all nonempty sets X and
all f in F(X ), one has τ : t ( f )� s( f ).

Proof. In the context of this proof, for a ∈ A let’s write a : t ( f )� s( f ) as a : t ( f ) ≤
s( f ). Let’s further inductively define a : ϕ( f ) for all a from A and all formulas ϕ(x) of
EHP as follows:

a : ϕ( f ) ∧ ψ( f ) iff a = p0a0a1 ∧ a0 : ϕ( f ) and a1 : ψ( f ) (B 4)

a : ϕ( f ) ∨ ψ( f ) iff (a = pkb ∧ b : ϕ( f )) or (a = pk̆b ∧ b : ψ( f )) (B 5)

a : ϕ( f )⇒ ψ( f ) iff ∀ b ∈ A, if b : ϕ( f ) then ab : ψ( f ) (B 6)

and where we say that that no b from A is such that b : ⊥. It then suffices to show by
induction on length of proofs that if EHP, ϕ0(x), . . . , ϕn(x) � ψ(x), then there is closed
term τ such that for all pcas A and all nonempty sets X and all f in F(X ), one has
τ : (ϕ0( f ) ∧ · · · ∧ ϕn( f )) ⇒ ψ( f ). To aid in readability, we’ll write �(x) for ϕ0(x) ∧
· · · ∧ ϕn(x), and we’ll drop the free variables from �,ϕ,ψ when not needed.

One base case is where ψ is one of the axioms of Heyting prealgebras, which are
taken care of by the closed terms e1, . . . , e12 mentioned immediately after Definition 3.9.
Another base case is where ψ is one of the ϕk , in which case we may take τ to be an
appropriate projection function.

The induction steps correspond to the introduction and elimination rules of the intuition-
istic propositional calculus IPC and the substitution rule. For the “and” introduction rule,
by Proposition 3.2, choose τ such that ττ0τ1x = p(τ0x)(τ1x). Then τi : �⇒ ψi implies
ττ0τ1 : � ⇒ (ψ0 ∧ ψ1). Similarly, for the “and” elimination rule, by Proposition 3.2
choose τi such that τiτ x = pi (τ x). Then τ : �⇒ (ψ0 ∧ ψ1) implies τiτ : �⇒ ψi .

For the “or” introduction rule, by Proposition 3.2 choose τ, τ ′ such that ττ0x = pk(τ0x)
and τ ′τ1x = pk̆(τ1x). Then τ0 : �⇒ ψ0 implies ττ0 : �⇒ (ψ0 ∨ ψ1), while τ1 : �⇒
ψ1 implies τ ′τ1 : � ⇒ (ψ0 ∨ ψ1). For the “or” elimination rule, by Proposition 3.2
choose ι such that ιxyz = xyz, so that ιkab = kab = a and ιk̆ab = k̆ab = b, so
that ι serves to distinguish cases. By Proposition 3.2, choose τ ′ such that τ ′στ0τ1x =
(ι(p0(σ x))τ0τ1)(px(p1(σ x))). Suppose that σ : �⇒ (ψ0 ∨ ψ1) and τi : (� ∧ ψi )⇒ ξ .
Suppose that x : �. Then σ x : (ψ0 ∨ψ1). Then σ x = pky for y : ψ0 or σ x = pk̆ y for y :
ψ1. In the former case ι(p0(σ x))τ0τ1 = ιkτ0τ1 = τ0 and px(p1(σ x)) = px(p1(pky)) =
pxy, so that in sum τ ′στ0τ1x = τ0(pxy) and clearly τ0(pxy) : ξ . The argument in the
latter case is analogous.
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For the “arrow” introduction rule, by Proposition 3.2 choose τ ′ such that τ ′τ xy =
τ (pxy). Then τ : (� ∧ ϕ) ⇒ ψ implies τ ′τ : � ⇒ (ϕ ⇒ ψ). For the elimination
rule, τ : �⇒ ϕ and σ : �⇒ (ϕ ⇒ ψ) together imply sστ : �⇒ ψ .

For the ex falso rule, suppose that σ : � ⇒ ⊥. Since no b from A is such that b : ⊥,
it follows from (B 6) that there is no a such that a : �, since otherwise b = σa would be
such that b : ⊥. Hence, it follows that σ : �⇒ ψ for any ψ , again by (B 6).

For the substitution rule, suppose that EHP + �(x) � ψ(x) with σ being a witness to
the inductive hypothesis, so that for all pcas A and all nonempty sets X and all f in F(X )
one has σ : �( f ) ⇒ ψ( f ). Let t (y) be a term in the signature of Heyting prealgebras.
Then by taking f = t (g), one has σ : �(t (g))⇒ ψ(t (g)) for all pcas A and all nonempty
sets X and all g in F(X ). �

§C. Appendix: McCarty’s Theorem. The purpose of this brief appendix is to present
a self-contained proof of Proposition 9.1 and Theorem 9.2. For references to McCarty’s
original work, see the discussion prior to the statements of these results in §9. We begin
with the proof of Proposition 9.1:

Proof. So it suffices to find ρ, σ, τ, ι (for “reflexivity”, “symmetry,” “transitivity”, and
“indiscernability”) such that for all a, b, c, a′, b′ from VA

κ we have ρ : � � ‖a = a‖,
σ : ‖a = b‖ � ‖b = a‖, τ : ‖a = b‖ ∧ ‖b = c‖ � ‖a = c‖, ι : ‖a = a′‖ ∧ ‖b =
b′‖ ∧ ‖a ∈ b‖ � ‖a′ ∈ b′‖.

For ρ, by the recursion theorem (van Oosten, 2008, Proposition 1.3.4, p. 12), choose an
index j such that jn = pn(pj j). We show that pj j ∈ ‖a = a‖ for all a ∈ VA

κ by induction
on rank, so that we can set ρn = pj j . Suppose it holds for all sets in VA

κ of lower rank
than a. Suppose that 〈n, c〉 ∈ a. Then c has lower rank than a, so pj j ∈ ‖c = c‖. Then
we have pn(pj j) ∈ ‖c ∈ a‖, and so jn = pn(pj j) ∈ ‖c ∈ a‖. Since 〈n, c〉 ∈ a was
arbitrary, we thus have j ∈ p0‖a = a‖. A similar argument shows j ∈ p1‖a = a‖ and so
pj j ∈ ‖a = a‖.

Symmetry is trivial since it is witnessed by σ(pe0e1) = pe1e0, which exists by
Proposition 3.2.

For transitivity, by Proposition 3.2, choose℘ from A such that℘uvwxy = u(v(w(xy))).
By the recursion theorem (van Oosten, 2008, Proposition 1.3.4, p. 12), choose τ such that

(p0τ )(p(pe0e1)(pe∗0e∗1))n = p(℘ p0e∗0 p0e0n)(τ (p(p1(e0n))(℘ p1e∗0 p0e0n)))

(p1τ )(p(pe0e1)(pe∗0e∗1))n = p(℘ p0e1 p0e∗1n)(τ (p(p1(e
∗
1n))(℘ p1e1 p0e∗1n))).

We argue by induction on rank. So suppose that pe0e1 ∈ ‖a = b‖ and pe∗0e∗1 ∈ ‖b = c‖.
We must show that (p0τ )(p(e0e1)p(e∗0e∗1)) ∈ p0‖a = c‖ and (p1τ )p((e0e1)p(e∗0e∗1)) ∈
p1‖a = c‖. We focus on the first since the other is similar. For this we must show that if
〈n, d〉 ∈ a then (p0τ )(p(e0e1)p(e∗0e∗1))n ∈ ‖d ∈ c‖. So suppose that 〈n, d〉 ∈ a. Since
e0 ∈ p0‖a = b‖, we have that e0n ∈ ‖d ∈ b‖. Let e0n = pn0n1. Since pn0n1 ∈
‖d ∈ b‖ there is d ′ with 〈n0, d ′〉 ∈ b and n1 ∈ ‖d = d ′‖. Since 〈n0, d ′〉 ∈ b and
e∗0 ∈ p0‖b = c‖, we have e∗0n0 ∈ ‖d ′ ∈ c‖. Then e∗0n0 = pm0m1 and there is d ′′ with
〈m0, d ′′〉 ∈ c and m1 ∈ ‖d ′ = d ′′‖. By induction hypothesis τ (pn1m1) ∈ ‖d = d ′′‖.
Then ∃ d ′′ (〈m0, d ′′〉 ∈ c ∧ τ (pn1m1) ∈ ‖d = d ′′‖). Hence pm0τ (pn1m1) ∈ ‖d ∈ c‖.
Now, note that m0 = p0(e∗0n0) = p0(e∗0(p0(e0n))) = ℘ p0e∗0 p0e0n, and n1 = p1(e0n) and
m1 = p1(e∗0n0) = p1(e∗0(p0(e0n))) = ℘ p1e∗0 p0e0n. From this and what was said earlier
in the paragraph, we are then done with the verification that τ is the witnesses to transitivity.

Now it remains to define ι. So apply Proposition 3.2 to obtain ι0 and ι such that
ι0e0e1e′1 = τ (p(σ (pe0e1)e′1)), ιe0e1e∗0e∗1e′0e′1 = p(p0(e∗0e′0))(τ (p(ι0e0e1e′1)((p1(e∗0e′0))))).
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So suppose that pe0e1 ∈ ‖a = a′‖ and pe∗0e∗1 ∈ ‖b = b′‖ and pe′0e′1 ∈ ‖a ∈ b‖. It suffices
to show that ιe0e1e∗0e∗1e′0e′1 ∈ ‖a′ ∈ b′‖. Since pe′0e′1 ∈ ‖a ∈ b‖, there is c such that
〈e′0, c〉 ∈ b and e′1 ∈ ‖a = c‖. Since pe0e1 ∈ ‖a = a′‖ we have τ (p(σ (pe0e1))e′1) ∈‖a′ = c‖, or what is the same ι0e0e1e′1 ∈ ‖a′ = c‖. Now, since e∗0 ∈ p0‖b = b′‖ and
〈e′0, c〉 ∈ b, it follows that e∗0e′0 ∈ ‖c ∈ b′‖. If we write e∗0e′0 = p�0�1 then it follows
that there is c′ with 〈�0, c′〉 ∈ b′ and �1 ∈ ‖c = c′‖. Since ι0e0e1e′1 ∈ ‖a′ = c‖ and
�1 ∈ ‖c = c′‖ we have that τ (p(ι0e0e1e′1)(�1)) ∈ ‖a′ = c′‖. Since �i = pi (e∗0e′0), we thus
have ∃ c′ 〈(p0(e∗0e′0), c′〉 ∈ b′ ∧ τ (p(ι0e0e1e′1)(p1(e∗0e′0))) ∈ ‖a′ = c′‖, which is to say
that ιe0e1e∗0e∗1e′0e′1 ∈ ‖a′ ∈ b′‖. �

Before going onto the proof of Theorem 9.2, we need only one small preliminary propo-
sition, which is from (McCarty, 1984, Lemma 6.2, p. 92).

PROPOSITION C.1.

(i) For all b ∈ VA
α and all c ∈ VA

κ , if ‖c ∈ b‖ ≡ � then c ∈ VA
β for some β < α.

(ii) If a ∈ VA
α and ‖a = b‖ ≡ �, then b ∈ VA

α .

(iii) If β < α then VA
β ⊆ VA

α .

Proof. The proof of (i)–(iii) is by simultaneous induction on α. The zero and limit steps
are trivial. So suppose the result holds for α; we show that it holds for α + 1.

For (i), suppose that b ∈ VA
α+1. Then b ⊆ ω × VA

α . Suppose that ‖c ∈ b‖ ≡ �. Choose

pe0e1 ∈ ‖c ∈ b‖, so that there is d with 〈e0, d〉 ∈ b and e1 ∈ ‖c = d‖. Then d ∈ VA
α and

so by the induction hypothesis for (ii) we have that c ∈ VA
α .

For (ii), suppose that a ∈ VA
α+1 and that ‖a = b‖ ≡ � with witness j ∈ ‖a = b‖.

Suppose that 〈e, d〉 ∈ b. It suffices to show that d ∈ VA
α since then we would have

b ∈ VA
α+1. Recall that in the proof of Proposition 9.1, we showed that there is an index

i0 such that i0 ∈ ‖d = d‖ for all a ∈ VA
κ . Then 〈e, d〉 ∈ b implies pei0 ∈ ‖d ∈ b‖.

Then by appeal to VA
κ being a uniform P(A)-valued structure and substitution therein

(Proposition 6.4 in conjunction with Proposition 9.1), choose k0 such that for all u, v, w
one has k0 ∈ ‖(u ∈ v ∧ w = v) ⇒ u ∈ w‖. Then k0 p(pei0) j ∈ ‖d ∈ a‖. Then by the
induction hypothesis for (i) and (iii), we have that d ∈ VA

α .
For (iii), it suffices by induction hypothesis to show that VA

α ⊆ VA
α+1. So suppose that

b ∈ VA
α , and suppose that 〈e, c〉 ∈ b. Then pei0 ∈ ‖c ∈ b‖ and so by (i) there is β < α

such that c ∈ VA
β and so by induction hypothesis we have c ∈ VA

α . Hence b ⊆ A × VA
α

which is just to say that b is an element of VA
α+1. �

Here, finally, is the proof of Theorem 9.2, which of course resembles the proof that the
axioms of set theory are valid on Boolean-valued models from e.g. (Bell, 1985, pp. 37 ff):

Proof. By Proposition 6.13, it suffices to show that the axioms of IZF are valid. Recall
that in the proof of Proposition 9.1, we showed that there is an index i0 such that i0 ∈ ‖a =
a‖ for all a ∈ VA

κ . This index i0 is fixed throughout this proof.
To verify extensionality, by Proposition 3.2 choose f, h such that f en = epni0 and

hpe0e1 = p( f e0)( f e1). Suppose pe0e1 ∈ ⋂
c∈VA

κ
(‖c ∈ a ⇒ c ∈ b‖∧‖c ∈ b ⇒ c ∈ a‖).

We must show that hpe0e1 ∈ ‖a = b‖, or what is the same that f e0 ∈ p0‖a = b‖
and f e1 ∈ p1‖a = b‖. This is equivalent to showing that 〈n, c〉 ∈ a implies f e0n =
e0 pni0 ∈ ‖c ∈ b‖ and 〈n, c〉 ∈ b implies f e1n = e1 pni0 ∈ ‖c ∈ a‖. We verify the
first since the proof of the other is identical. So suppose that 〈n, c〉 ∈ a. Then taking
d = c we trivially have ∃ d (〈n, d〉 ∈ a ∧ i0 ∈ ‖c = d‖). Then pni0 ∈ ‖c ∈ a‖.
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Since e0 ∈ p0‖c ∈ a ⇒ c ∈ b‖ we have that e0 pni0 ∈ ‖c ∈ b‖, so that we are now done
verifying extensionality.

For pairing, suppose that a, b are members of VA
α . Fix an element e0 of A. Then c =

{〈e0, a〉 ∪ 〈e0, b〉} is a member of VA
α+1. By Proposition 3.2, consider h such that hn =

p(pe0i0)(pe0i0). Then we may verify that h : � � ‖a ∈ c‖ ∧ ‖b ∈ c‖. For, by setting
d = a and d ′ = b we have ∃ d (〈e0, d〉 ∈ c ∧ i0 ∈ ‖d = a‖) and ∃ d ′ (〈e0, d ′〉 ∈
c ∧ i0 ∈ ‖d = b‖). This finishes the verification of pairing.

For the union axiom, let a in VA
κ be given and then set u = {〈n, c〉 : n ∈ ‖∃ x (c ∈

x ∧ x ∈ a)‖}. Then u is in VA
κ by Proposition C.1. By Proposition 3.2, choose f such

that f n = pni0. Then we show that f is the witness to the reduction ‖∃ x (c ∈ x ∧ x ∈
a)‖ ≤ ‖c ∈ u‖. So suppose that n is in ‖∃ x (c ∈ x ∧ x ∈ a)‖. Then by taking d = c we
have that ∃ d (〈n, d〉 ∈ u ∧ i0 ∈ ‖c = d‖). Then f n = pni0 ∈ ‖c ∈ u‖.

For power set, let a in VA
κ be given and set PA(a) = {〈n, c〉 : n ∈ ‖c ⊆ a‖}. By

Proposition C.1, choose β < κ such that b ∈ VA
κ and ‖b ∈ a‖ ≡ � implies b ∈ VA

β .

Supposing that 〈n, c〉 ∈ PA(a), we first show that c ∈ VA
β+1. So suppose that 〈e, b〉 ∈ c.

Then taking d = b we have ∃ d 〈e, d〉 ∈ c ∧ i0 ∈ ‖b = d‖, so that pei0 ∈ ‖b ∈ c‖. Then
by hypothesis on n, we have that npei0 ∈ ‖b ∈ a‖. Hence ‖b ∈ a‖ ≡ � and thus b ∈ VA

β .

Thus indeed c ∈ VA
β+1 for all 〈n, c〉 ∈ PA(a). Hence PA(a) ∈ VA

β+2. Now consider, just
as in the verification of the union axiom, the element f such that f n = pni0. Then we
show that f is the witness to the reduction ‖c ⊆ a‖ ≤ ‖c ∈ PA(a)‖. So suppose that
n ∈ ‖c ⊆ a‖. Then taking d = c we have that ∃ d (〈n, d〉 ∈ PA(a) ∧ i0 ∈ ‖c = d‖).
Hence f n = pni0 ∈ ‖c ⊆ PA(a)‖.

For separation, let a in VA
κ and a formula ϕ(x) in the signature be given, which perhaps

has parameters from VA
κ . Define b = {〈e0, d〉 : e0 ∈ ‖d ∈ a ∧ ϕ(d)‖}. Again by

similar appeal to Proposition C.1, b is an element of VA
κ . Then by appeal to VA

κ being
a uniform P(A)-valued structure and substitution therein (Proposition 6.4 in conjunction
with Proposition 9.1), let g be an element witnessing the substitution ‖d ∈ a ∧ ϕ(d) ∧ c =
d‖ ≤ ‖c ∈ a ∧ ϕ(c)‖. Suppose that pe0e1 ∈ ‖c ∈ b‖. Then ∃ d (〈e0, d〉 ∈ b ∧ e1 ∈
‖c = d‖). Then by definition of b, we have e0 ∈ ‖d ∈ a ∧ ϕ(d)‖. Then g(pe0e1) ∈
‖c ∈ a ∧ ϕ(c)‖. Hence g is also a witness to the reduction ‖c ∈ b‖ ≤ ‖c ∈ a ∧ ϕ(c)‖.
Conversely, suppose that e0 ∈ ‖c ∈ a ∧ ϕ(c)‖. Then by taking d = c, we have that
∃ d (〈e0, d〉 ∈ b ∧ i0 ∈ ‖c = d‖). Then pe0i0 ∈ ‖c ∈ b‖. Hence the element f e0 = pe0i0
is the witness to the reduction ‖c ∈ a ∧ ϕ(c)‖ ≤ ‖c ∈ b‖.

For collection, suppose that a from VA
κ is given and that ϕ(x, y) is a formula in the

signature, perhaps with parameters from VA
κ . Choose α such that ‖c ∈ a‖ ≡ � implies

c ∈ VA
α , and set Z = {c ∈ VA

α : ‖c ∈ a‖ ≡ �}. For each triple (c, e, k) such that c ∈ Z ,
e ∈ ‖∀x ∈ a ∃ y ϕ(x, y)‖, k ∈ ‖c ∈ a‖, define γ (c, e, k) to be the least ordinal γ < κ
such that there is d ∈ VA

γ with ek ∈ ‖ϕ(c, d)‖. Then since κ is strongly inaccessible and
satisfies κ > |A|, choose β < κ such that β is strictly greater than all such γ (c, e, k).
Let b = A × VA

β which is trivially an element of VA
κ . Fix an element e0 of A. Our

desired e′ is given by e′ek = p(pe0i0)(ek), which exists by Proposition 3.2. For suppose
e ∈ ‖∀x ∈ a ∃ y ϕ(x, y)‖. We must establish that e′e ∈ ‖∀ x ∈ a ∃ y ∈ b ϕ(x, y)‖.
So suppose c is fixed and k ∈ ‖c ∈ a‖. By construction of β, choose d ∈ VA

β with
ek ∈ ‖ϕ(c, d)‖. Then pe0i0 ∈ ‖d ∈ b‖ and so p(pe0i0)(ek) ∈ ‖∃ y ∈ b ϕ(c, y)‖.

For the axiom of infinity, recall the elements ñ from A from (9.6) and the elements n and
ω from VA

κ from (9.7). It suffices to show that there are e′, e ∈ A such that e′ ∈ ‖0 ∈ ω‖
and e ∈ ‖c ∈ ω ⇒ ∃ y (c ∈ y ∧ y ∈ ω)‖. For e′, simply take e′ = p̃0i0. Then we have
〈̃0, 0〉 ∈ ω and i0 ∈ ‖0 = 0‖ and hence e′ ∈ ‖0 ∈ ω‖. Now we work on e. By appeal
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to VA
κ being a uniform P(A)-valued structure and substitution therein (Proposition 6.4 in

conjunction with Proposition 9.1), choose k0 such that for all u, v, w one has k0 ∈ ‖(u ∈
v ∧ u = w)⇒ w ∈ v‖. Using primitive recursion on Curry numerals (van Oosten, 2008,
Proposition 1.3.5, p. 12), we choose e such that epñe1 = p(k0 p(pñi0)e1)(p(ñ + 1)i0).
Suppose that pe0e1 ∈ ‖c ∈ ω‖. Then there is d such that 〈e0, d〉 ∈ ω and e1 ∈ ‖d = c‖.
Then 〈e0, d〉 = 〈̃n, n〉 for some n < ω and hence e1 ∈ ‖n = c‖. Since pñi0 ∈ ‖n ∈ n + 1‖,
we have k0(p(p(̃ni0))e1) ∈ ‖c ∈ n + 1‖. Since p(ñ + 1)i0 ∈ ‖n + 1 ∈ ω‖, we thus have
that epñe1 = epe0e1 ∈ ‖∃ y (c ∈ y ∧ y ∈ ω)‖.

For the the induction schema, we need to show that there is e such that e ∈ ‖[∀ x (∀ y ∈
x ϕ(y)) ⇒ ϕ(x)] ⇒ (∀ x ϕ(x))‖. Let k0 such that for all a, b in VA

κ we have k0 ∈
‖ϕ(b)⇒ (b ∈ a ⇒ ϕ(b))‖. By Proposition 3.2, choose f such that f em = mk0(em). By
the recursion theorem (van Oosten, 2008, Proposition 1.3.4, p. 12), choose an e such that
em = f em = mk0(em). Suppose that

m ∈ ‖∀ x (∀ y ∈ x ϕ(y))⇒ ϕ(x)‖. (C 1)

We show by induction on α that a ∈ VA
α implies em ∈ ‖ϕ(a)‖. Suppose it holds for all

β < α. Suppose that a ∈ VA
α . Then we claim k0(em) ∈ ‖∀ y ∈ a ϕ(y)‖. For this claim,

it suffices to show that for all b ∈ VA
κ we have k0em ∈ ‖b ∈ a ⇒ ϕ(b)‖. So suppose

that n ∈ ‖b ∈ a‖. Then by the second part of Proposition C.1, we have that b ∈ VA
β for

some β < α. Then by induction hypothesis we have em ∈ ‖ϕ(b)‖. Then by definition of
k0 we have that k0(em) ∈ ‖b ∈ a ⇒ ϕ(b)‖, which is what we wanted to show. So we’ve
succeeded in showing the claim. Then by the hypothesis on m recorded in equation (C 1),
we have mk0(em) ∈ ‖ϕ(a)‖, which by the choice of e implies that em ∈ ‖ϕ(a)‖, which is
what we wanted to show. �
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