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ABSTRACT

Financial time series data are typically found to possess leptokurtic
frequency distributions, time varying volatilities, outliers and correlation
structures inconsistent with linear generating processes, nonlinear depen-
dence, and dependencies between series that are not stable over time. Regime
Switching Vector Autoregressions are of interest because they are capable of
explaining the observed features of the data, can capture a variety of
interactions between series, appear intuitively reasonable, are vector
processes, and are now tractable.

This paper considers a vector autoregression subject to periodic
structural changes. The parameters of a vector autoregression are modelled
as the outcome of an unobserved discrete Markov process with unknown
transition probabilities. The unobserved regimes, one for each time point,
together with the regime transition probabilities, are determined in addition
to the vector autoregression parameters within each regime.

A Bayesian Markov Chain Monte Carlo estimation procedure is
developed which efficiently generates the posterior joint density of the
parameters and the regimes. The complete likelihood surface is generated at
the same time, enabling estimation of posterior model probabilities for use in
non-nested model selection. The procedure can readily be extended to
produce joint prediction densities for the variables, incorporating both
parameter and model uncertainty.

Results using simulated and real data are provided. A clear separation of
the variance between a stable and an unstable regime was observed. Ignoring
regime shifts is very likely to produce misleading volatility estimates and is
unlikely to be robust to outliers. A comparison with commonly used models
suggests that Regime Switching Vector Autoregressions provide a particu-
larly good description of the observed data.
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1. INTRODUCTION

An important feature of financial data is the presence of short periods of
instability characterised by large magnitude changes. Such extreme values
are not consistent with common linear time series processes in either their
magnitude or frequency of occurrence, so that they are often referred to as
data "outliers", and often effectively ignored.

The chances that the observed "outliers" were generated from linear models
is overwhelmingly small, e.g. consider the quarterly and monthly Australian
share price return series over the period 1960-96. The largest magnitude outlier
in each case corresponds to the October 1987 sharemarket crash. The chances
of observing a return as extreme as observed in the samples from an i.i.d.
Normal generating process is less than 1-in-a-million for quarterly data, and
indistinguishable from zero (5 x 10~20) for monthly data. Similarly, the
quarterly rate of change in bond yields over the same period produced twice as
many "outliers" (residuals in excess of 2 standard deviations) as would be
expected from the fitted AR(1) data generating process.

Stock & Watson (1996) examined the stability and predictive ability of 8
univariate models for each of 76 monthly U.S. times series, and 8 bivariate
models for each of 5,700 bivariate relationships. They found evidence of
substantial instability in a significant proportion of the univariate and
bivariate autoregressive models considered.

Conditional heteroscedasticity, or changes in the level of volatility, has
been found in financial series by numerous researchers, both actuarial and
from the wider financial and econometric fields. Examples of the former
include Praetz (1969), Becker (1991), Harris (1995b, 1996) and Frees et al
(1996). Examples of the latter include McNees (1979), Engle (1982), Akgiray
(1989), Hamilton & Susmel (1994), Hamilton & Lin (1996) and Gray (1996).

This paper presents an attempt to deal with the observed difficulties in
financial time series, a Regime Switching Vector Autoregression (RSVAR),
the parameters of which are subject to periodic discrete changes. The process
may have quite different characteristics in different regimes. A tractable
mathematical model of structural changes and discrete market regimes is the
univariate Markov regime switching autoregressive process introduced by
Hamilton (1989), and subsequently considered by Albert & Chib (1993) and
Harris (1996).

Given that financial series appear interdependent, both in terms of their
levels and their volatilities, e.g. Harris (1994, 1995a, 1995b, 1995c) and
Hamilton & Lin (1996), a vector joint regime switching process would seem
to be an attractive description of the data.

Hamilton (1990, p40) observed that the usual numerical maximisation of
regime switching likelihood functions is subject to computational difficulties
associated with the often ill-behaved likelihood surface (multiple local
maxima, essential singularities, and local increases as boundary conditions
are approached). He suggested a numerically robust Expectation-Maximisa-
tion (EM) maximum likelihood algorithm to overcome the numerical

https://doi.org/10.2143/AST.29.1.504606 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.1.504606


MARKOV CHAIN MONTE CARLO ESTIMATION 4 9

problems. The author has performed convergence comparisons of EM and
Markov Chain Monte Carlo (MCMC) estimation procedures for regime
switching processes, which demonstrate much faster convergence of the
MCMC estimation, particularly for larger data sets.

The present paper extends regime switching to vector processes and
develops a Bayesian Markov Chain Monte Carlo estimation procedure that
is more informative, efficient, and flexible than a maximum likelihood based
approach. The estimation procedure estimates regimes at each time point,
regime transition probabilities, and vector process parameters within each
regime. In addition it is numerically efficient, ensures stability of the data
generating process within each regime, is able to assess the joint significance
of the large number of potential parameters, is numerically stable, produces
robust parameter estimates, and enables the estimation of posterior model
probabilities for use in non-nested model selection.

The RSVAR process is described in section 2. Markov Chain Monte
Carlo methods in the form of the Gibbs sampler and Metropolis-Hastings
algorithm are introduced in section 3. Model fitting results are presented in
section 4, while concluding remarks are made in section 5. The derivation of
the Bayesian MCMC estimation procedure is contained in the Appendix.

2. THE MODEL

Vector regime switching processes are characterised by multiple discrete
regimes, where each regime has different dynamics and is characterised by a
different set of parameters. They are subject to probabilistic joint discrete
shifts in the parameters of the vector process, so that a regime shift may alter
the dynamics of all the variables at the same time. Within each regime the
vector process is assumed stable a priori, and is hence linear stationary. The
effect of the discrete regime shifting is to make the total process nonlinear
stationary. The task, based on the observed data, is to make probabilistic
inferences about when transitions between the various regimes occurred, the
parameters of the vector process characterising the different regimes, and the
regime transition probabilities.

Define p, to be an unobserved discrete-valued indicator variable, such
that at any time t the process will be in regime pt e {1,...,K}. Define the
transition probabilities, ptj = p(pt =j\pt-\ = /) with YlPy' = 1 ^ ' ' ant^
PT ~ {Pp}(K x K). J

Consider the following VAR(g) time series process with K discrete
regimes, where each regime is characterised by a different set of parameters,

x> = »w+
h=\
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&(„) ~ N(0,nM), E&(ft) = 0 and ^,{pi)^(pi) = fyft) V? > <?. The variables

x, fj, and £ are mxl column vectors, while the A^' and the 0 are mxra
matrices. For convenience the above regime switching \AR(q) process will
be denoted an RSVAR(#,AT) process.

The total parameter set to be estimated is A = {M(1)> ••)/•*(*•)> A(i),.., A(X),
O(i),.., Q(K), P}, which can be partitioned as A = {6, P}. To ensure that the
process is identifiable, it will usually be necessary to define the regimes by
insisting upon prior restrictions on the parameters, such as ordering of the
variances of at least one of the variables (components of the xt). If this is not
done, it is possible that the regime associated with essentially the same set of
data points could be labelled differently in different iterations of the
estimation procedure.

3. MARKOV CHAIN MONTE CARLO SAMPLING METHODS

Draws from the joint posterior distribution of the regimes and the
parameters, given the sample data, can be simulated using Markov Chain
Monte Carlo methods, such as the Gibbs Sampler and Metropolis-Hastings
algorithm. The resulting simulated sample from the parameter space can be
used to make inferences about the distribution of the process parameters and
regimes. Chib & Greenberg (1995) provide a useful and readable description
of MCMC methods.

Posterior simulators are particularly attractive in the case of complicated
processes which are impossible or impractical to estimate using maximum
likelihood or other methods. Advantage can often be taken of structure
within a process to decompose the inference problem into manageable
components. In the case of Regime Switching VAR, the process is non-
Normal and path dependent, however, conditional on the regime, the
process is a regular VAR process.

Markov Chain theory would usually start with a transition kernel
density, n(x,y), which describes how the Markov Chain moves between
states. In the current application, the state space is the joint parameter and
regime space of the RSVAR process, {p, A}, and the Markov Chain is the
sequence of joint parameter and regime estimates, {p^c\ A*f)}.

Since the process must end up somewhere at each transition,
J K(x,y)dy = 1. The probability of the process being in state y after n
transitions, given that it was initially in state x, is given by
Kn(x,y) = JKn-\(x,Z)K(Z,y)dz. A limiting or invariant distribution, TT(-), is
said to exist whenever Kn(x,y) —> n(y) as n —> oo. It follows therefore that
n(y) = j7r(x)K(x,y)dx.

A major concern of Markov Chain theory is to determine conditions
under which there exists an invariant distribution, and conditions under
which iterations of the transition kernel converge to the invariant
distribution. MCMC sampling methods look at the theory from a different
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perspective. The invariant distribution is the target distribution from which
we wish to sample, generally a Bayesian posterior distribution. The
transition kernel is unknown.

3.1 The Gibbs Sampler

Starting from an arbitrary point, the Gibbs Sampler generates samples from
a joint density TT(-) via a sequence of random draws or samples from full
conditional densities, as follows

y\ <- ir(y\\x2,~,xm)

ym <— n{ym\yi,..,ym-i).

The above completes a transition from x to y in the state space. The
sequence forms a realisation of a Markov Chain which converges in
distribution to a random sample from the target joint distribution TT(-).

The Gibbs sampler will often be useful where a complicated process can
be built up from components with standard conditional distributions. The
target joint regime and parameter distribution of the RSVAR process is too
complicated to sample directly. The structure of the RSVAR process is
however such that draws from the full conditional densities can be made
tractable, since essentially standard densities arise for the VAR parameters
once one conditions on the sequence of regimes.

3.2 The Metropolis-Hastings Algorithm

Suppose the target density TT(-) is unknown, but that a density q(-,-) exists,
J q(x,y)dy = 1, from which candidate values of y can be generated for given
x, to be accepted or rejected. The candidate generating density, q(x,y), is a
first approximation to the unknown target density. The candidate generating
density needs to be modified to ensure convergence to the desired target
density. This is done by introducing a move probability, a(x,y) < 1. If a
move is not made, with probability 1 — a(x,y), then the process remains at x
and again returns a value of x as a value from the target distribution. The
move probability is given by

}
[ 1 otherwise

An important feature of the algorithm is that the calculation of a(x,y) only
requires knowledge of the target density TT(-) up to proportionality (which in
the case of a Bayesian posterior is given by the product of the likelihood and
the prior), since TT(-) only appears as a ratio.

https://doi.org/10.2143/AST.29.1.504606 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.1.504606


52 GLEN R. HARRIS

A particularly useful application of the Metropolis-Hastings algorithm
is where an intractable density arises within a Gibbs Sampler as the
product of a standard density and another density, e.g. ix(x) ex ijj(x) • <t>(x),
where <f>(x) is a standard density that can be sampled. Then q(x,y) = <p(y)
can be used to generate candidate y, which is accepted with probability
a(x,y) = mm{fip(y)/ijj(x), 1}. The Metropolis-Hastings algorithm will be
superior to direct acceptance/rejection methods since the move probability
will be higher than ip(-), the acceptance probability under the acceptance/
rejection method, particularly where ip(-) is small.

3.3 Outline of the Estimation Procedure

Samples from the joint posterior distribution of the regimes and the
parameters given the data,p(p, A|Y), can be simulated via the Gibbs Sampler
and the Metropolis-Hastings algorithm. The algorithm will involve the
repeated generation of variates from their full conditional densities as
follows:

In each case, V will be a function of the A and the $7 on the right
hand side. Under mild regularity conditions, the sequence
{p(c+1),A(c+1)} = Uc+l\^c+l\A{c+1\n^c+l\Pic+1)\ will form a Markov
Chain whose limiting distribution will be p(p, A|Y).

4. RESULTS

4.1 Validation Against Simulated Data

The estimation procedure was tested against a number of simulated data
sets. The mean parameter estimates were found to converge extremely
rapidly, even when the initial parameter estimates were very poor and the
order of the fitted process was incorrect. The MCMC procedure can
therefore be expected to supply a good estimate of the mean parameter
values within seconds, regardless of the initial parameter estimates, even for
vector processes. This is in contrast to maximum likelihood based
approaches, which are subject to computational difficulties and/or are
relatively slow to converge.

When data was generated from a VAR process (without regimes), the
MCMC algorithm very rapidly collapsed to a single regime with p\ \ —> 1 &
Pn —*• 0. The results of one of the simulation tests are briefly reported below.

https://doi.org/10.2143/AST.29.1.504606 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.1.504606


MARKOV CHAIN MONTE CARLO ESTIMATION 53

2000 observations were generated from a bivariate RSVAR(2,2)
process. The data generating process was a random noise process within
each regime, apart from variable 2 in regime 1, which was generated
from an AR(2) process with autoregressive parameters of 0.75 and —0.25,
i.e. x,2 = 0.01+0.75(x,_i2-0.01)-0.25(x,_2 2-0.01)+0.005z,, where
zt ~ iid

TABLE 1

SIMULATION TEST RESULTS

Number in regime 2
Transition Prob p\i

Transition Prob />2i

Regime 1:

<]

M2

V^22

Regime 2:

«!','

"n

v--<

\A^22

True

Value

462
0.161
0.500

1.00%

0.000

0.000

1.00%

1.00%

0.750

-0.250

0.50%

0.00%

0.000

0.000

1.50%

2.50%

0.000

0.000

1.50%

1st

5%'ile

404
0.131
0.497

0.91%

-0.027

-0.049

0.95%

0.93%

0.747

-0.281

0.48%

-0.08%

-0.073

-0.075

1.47%

2.27%

-0.068

-0.112

1.49%

50 iterates/samples

Mean

451.3
0.159
0.548

0.97%

0.005

-0.009

0.98%

0.98%

0.770

-0.261

0.51%

0.07%

0.015

0.034

1.58%

2.43%

0.066

0.033

1.57%

95%'ile

502
0.189
0.605

1.04%

0.031

0.024

1.02%

1.03%

0.798

-0.238

0.53%

0.20%

0.104

0.131

1.65%

2.54%

0.171

0.143

1.67%

2000 iterates/samples

5%'ile

424
0.138
0.466

0.93%

-0.039

-0.048

0.95%

0.93%

0.740

-0.287

0.48%

-0.19%

-0.074

-0.072

1.48%

2.26%

-0.034

-0.071

1.45%

Mean

463.9
0.161
0.527

0.98%

0.002

-0.010

0.98%

0.98%

0.767

-0.261

0.50%

0.03%

0.025

0.035

1.57%

2.46%

0.077

0.045

1.54%

95%'ile

508
0.185
0.589

1.03%

0.042

0.029

1.02%

1.03%

0.795

-0.236

0.52%

0.24%

0.120

0.145

1.67%

2.69%

0.187

0.157

1.63%

The MCMC estimation procedure described in the Appendix was used to
generate 2000 samples from the joint parameter density of the model. The
mean parameter estimates are summarised in table 1. The procedure
successfully identified the data generating process with very tight densities
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centred over the true parameter values. The significance or otherwise of the
various parameter estimates is beyond doubt. Tests demonstrated the
robustness of the estimation procedure to various starting values.
Graph 1 compares the mean regime (line) with the true regime (shaded
bands) for the first 150 time points. The procedure can be seen to have
successfully differentiated between the low and high volatility regimes.

GRAPH 1: Probability of Being in Regime 2

4.2 Empirical Estimation Results

To further illustrate the estimation procedure, an RSVAR(1,2) process was
fitted to a real financial data set (m = 4, q = 1, K = 2, N = 147). The data
set considered, derived from the Reserve Bank of Australia database,
consisted of 147 quarterly observations, for the quarters ending December
1959 through to June 1996, of the continuously compounded rates of
• real economic growth;
• change in the rate of price inflation;
• share price return; and
• change in the 10 year bond yield.
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More precisely, the data series examined were
• VlnGDP, where GDPr is the real Gross Domestic Product for the quarter

ending time t;
• V2lnCPI, where CPI, is the Consumer Price Index at time t;
• VlnSPIf where SPI, is the All Ordinaries Share Price Index at time t; and
• VlnBr where Bt is the yield to maturity on 10 year Treasury bonds,
where V is the backward difference operator.

The data set was chosen on the basis of its general interest and
convenience, to illustrate the MCMC estimation procedure developed in the
paper. It is not suggested that the resulting model is appropriate for any
other specific purpose, e.g. it would clearly be inappropriate for long term
projections, given the degree of differencing.

5,000 iterations/samples were generated using the MCMC estimation
procedure described in the Appendix. Rapid convergence was observed in
the quantities measured. The first 50 samples were discarded and the
remaining 4,950 samples used to describe the joint parameter density.

The estimation procedure identified two clearly distinct regimes. One
regime (regime 1) was characterised by strong economic growth, stable
inflation and interest rates, and relatively stable share price growth. The
other regime (regime 2) was characterised by weak economic growth, volatile
inflation and interest rates, and volatile and generally falling share prices.
The low volatility regime was relatively stable in the sense that it was the
more persistent of the two regimes.

The duration of a regime / episode is a discrete random variable, with
oo

expected value given by Y^k x pk
l' x (1 — pa) = 1/(1 —pa). Given the

estimated mean transition probability of 0.15, the expected duration of a
regime 1 episode is about 6\ quarters. The high volatility regime was
unstable in the sense that it was not expected to persist for long. Given its
estimated mean transition probability of 0.51, the expected duration of a
regime 2 episode is 2 quarters. The identified regimes seem highly intuitive.

The theoretical density of the duration of an episode of each regime,
given the mean transition probabilities, Prob(duration of regime i = k) =
pkf\\ — pa), is shown in graph 2. The duration of an episode of either
regime can be seen to vary over a considerable range, even if the transition
probabilities were known with certainty. The uncertainty in the estimated
transition probabilities themselves is illustrated by graph 3.
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GRAPH 2: Density of Duration of Episodes

Prob of transition
from regime 1 to

regime 2

Prob of transition
from regime 2 to

regime 1

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

GRAPH 3: Density of Transition Probabilities

0.9 1.0

Graph 4 shows the mean regime at each time point. The economic
environment was identified as almost certainly being in the unstable regime
during the turbulence of the mid-1970s and early 1980s, the last quarter of
1987 stock market crash, and briefly during the early 1990s. There is a
slightly better than average chance that mid-1994 also witnessed a regime
shift. Again, the identified regimes seem highly intuitive.
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Q Q Q Q Q O Q

GRAPH 4: Probability of Being in Regime 2
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The unstable high volatility regime captured extreme events that might
otherwise be termed outliers. Outliers have the potential to seriously distort
the estimation of process dynamics. Regime shifting can therefore be viewed
as providing a robust data driven treatment of outliers in this case, which
should enable more robust parameter estimates.

TABLE 2

PARAMETER ESTIMATES

Transition Prob />,,

Mean Parameters:

Mi

M2

m
Std Dev Parameters:

V^22

5%'ile

0.089

0.98%
-0.07%
1.99%

-1.18%

1.03%
0.48%
6.24%
3.71%

Regime 1

Mean

0.151

1.14%
0.00%
3.28%
0.22%

1.17%
0.55%
7.06%
4.53%

95%'ile

0.231

1.31%
0.07%
4.55%
0.81%

1.32%
0.62%
7.96%
5.37%

5%'ile

0.351

-0.82%
-0.39%

-10.82%
-1.69%

1.18%
1.19%

13.45%
7.82%

Regime 2

Mean

0.509

0.13%
0.11%

-4.63%
2.67%

1.50%
1.55%

17.05%
10.02%

95%'ile

0.668

1.05%
0.65%
0.86%
7.51%

1.91%
2.01%

21.63%
12.91%

variable 1 = VlnGDP,, variable 2 = V2lnCPI,, variable 3 = VlnSPI,, variable 4 = VlnB,

The clear distinction between the parameters in each regime is illustrated by
the clear separation of a number of the parameter densities, particularly
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those relating to the volatility of share price returns and changes in inflation
and interest rates, and to the level of share price returns (refer to table 2 and
graphs 5a, 5b & 5c). Given the clear separation of the variance of the
variables in the two regimes, any procedure that ignores the regime shifts is
very likely to produce misleading volatility estimates, and is unlikely to be
robust to outliers.

Regime 1

Regime 2

0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4
%

GRAPH 5a: Density of Std Dev of Change in Inflation Rate Parameter

7.5 10.0 12.5 15.0 17.5 20.0 22.5
%

GRAPH 5b: Density of Std Deviation of Share Price Return Parameter

25.0

In the case of the quarterly change in inflation, the mean standard deviation
parameter estimate in regime 2 is 3 times as large as in regime 1 (1.55%
versus 0.55%). In the case of the quarterly share price return, the mean
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standard deviation parameter estimate in regime 2 is 2^ times as large as in
regime 1 (17% versus 7%). The mean share price return level parameter
estimate in regime 1 is 3.3% compared with -4 .6% in regime 2.

-15.0 -12.0 -9.0 -6.0 -3.0 0.0 3.0
%

GRAPH 5C: Density of Mean Share Price Return Parameter

Examination of the marginal parameter densities revealed that relatively few
regressive cross-correlation parameters were significantly nonzero once joint
regime switching was allowed for. The notable regression parameters were
serial correlation in the inflation rate in both regimes, and serial correlation
in real GDP and the change in interest rates in the stable regime.

-0.178
0.049

-0.156

-0.052

mean i

0.078

0.332

0.078

0.086

0.021

0.000

0.072

0.048

-0.009

0.006

-0.049

0.222

0.137

-0.108

0.033

0.054

mean .

-0.021

-0.449

-0.030

0.008

-0.009

0.019

-0.111

0.098

0.084

0.080

-0.125

0.160

variable 1 = VlnGDP,, variable 2 = V2lnCPI,, variable 3 = VlnSPI,, variable 4 = VlnB,
Numbers in bold are significantly nonzero at the 5% one-sided level under the posterior density, i.e.
zero falls outside the region bounded by the 5%'ile and the 95%'ile of the posterior parameter density.

Ignoring regime shifts would expose estimates of regression parameters to
the effects of "outliers" generated during episodes of the high volatility
regime, the effects of which would then be assumed to operate at all times. It
is therefore interesting to compare the mean regression parameters of the
RSVAR(1,2) process with the corresponding VAR(l) parameters, which
reflect the usual sample correlations/regression relationships (the stability of
which was previously questioned).
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A from VAR(l)

-0.10 0.06

0.01 -0.51

0.15 -0.74

0.06 0.56

0.02 0.03

0.00 0.03

-0.03 -0.28
0.08 0.27

variable 1 = VlnGDP,, variable 2 = V2lnCPI,, variable 3 = VlnSPI,, variable 4 = VlnB,
Numbers in bold are simply large in magnitude.

Notable differences are the large feedback of lagged changes in inflation
into share price returns (—0.74) and changes in interest rates (0.56), and
the feedback of lagged changes in interest rates into share price returns
(—0.28). If the feedback were as strong as indicated by the VAR model,
the VAR model should have a significantly higher likelihood than an
independent AR(1) model (where the off-diagonal elements of A are all
zero) and one ought to be able to make better predictions than models
without the feedback. Neither of these features was observed empirically
(refer section 4.3).

A number of contemporaneous error correlations were found to be
significantly nonzero. In the stable regime changes in bond yields were found
to be contemporaneously negatively correlated with share price returns
(—0.195), so that unanticipated shocks that caused bond yields to rise were
more likely to be associated with a downward (than an upward) shock to
share prices. Similarly, increases in inflation were found to be contempor-
aneously correlated with real economic growth (0.15). Both contempora-
neous relationships appear consistent with intuition.

No significant relationship was revealed between inflation and share price
returns, at least in the short term. In the unstable regime the only significant
contemporaneous error correlation detected was between share price returns
and real economic growth (—0.34), the sign of which is somewhat counter-
intuitive.

Mean contemporaneous error correlations

implied by fi(i)

Mean contemporaneous error correlations

implied by iln)

1

10.148

-0.044 -0.053

0.087 -0.084

1

-0.195 1

1

-0.098 1

-0.337 0.004 1

0.132 -0.120 -0.181 1

variable 1 = VlnGDP,, variable 2 = V2lnCPI,, variable 3 = VlnSPI,, variable 4 = VlnB,
Numbers in bold are significantly nonzero at approximately the 5% one-sided level under the posterior
density, i.e. zero falls outside the region bounded by approximately the 5%'ile and the 95%'ile of the
posterior parameter density.
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4.3 Empirical Comparison With Common Models

In this section the statistical goodness-of-fit of the Regime Switching VAR
model is compared with commonly used models. The models considered
were independent random/noise, independent autoregressive (i.e. diagonal
VAR), independent non-Gaussian autoregressive, independent GARCH,
Vector Autoregression and RSVAR. The results are summarised in table 3.

Non-Gaussian error distributions are sometimes used in an attempt to
directly capture the leptokurtosis observed in the frequency distribution of
many series. The Student t density, standardised to have zero mean and unit
variance, was considered as an alternative to the standard Normal error
distribution.

The Generalised ARCH model was introduced by Bollerslev (1986). The
conditional variance is modelled as a linear combination of lagged squared
residuals and variances. For example, the commonly used GARCH(1,1)
conditional variance is such that of = ao + GL\E\_\ + {5\o\_v

The models were compared in terms of their maximum log-likelihood,
posterior model probabilities, prediction errors, ability to predict volatility,
and their ability to explain the observed excess kurtosis (a measure of non-
Normality). For the purposes of the comparison, the MCMC iteration/
sample which produced the largest log-likelihood value was used to calculate
the measures for the regime switching model. The regime switching measures
were therefore based on a single realisation from the joint parameter and
regime density.

The maximum log-likelihoods, both unconditional and conditioned on
the first data point, are reported in table 3. The standard likelihood ratio test
was used to assess the significance of the respective maximum log-
likelihoods. Where one model is completely nested within another, twice
the increase in the maximum log-likelihood is asymptotically distributed as
\\ where k is the number of additional parameters fitted in the more general
of the two models (equal to the number of parameter restrictions imposed by
the null hypothesis). Simulation experiments confirmed the appropriateness
of the asymptotic \\ distribution for samples of the size considered. Thus the
data suggests the AR(1) model is significantly more likely than the Random
model and both the Student t AR(1) and the GARCH-AR(l) models are
significantly more likely than the AR(1) model. The introduction of the non-
Normal error density (Student t) produced a substantial increase in the
maximum likelihood with the addition of only 4 parameters. The VAR
models are not significantly more likely than the independent AR(1) model,
suggesting spurious regressive correlations between the series based on
sample cross-correlations.

The usual asymptotic statistical distribution theory fails to apply in the
regime switching case, since the transition probabilities are not denned under
the null hypothesis that the regime switching model is inappropriate. If
standard distribution theory did apply, the RSVAR(1,2) model would be
overwhelmingly more likely than the independent AR(1) or VAR models.
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Though not a statistical test, it is at least reassuring that there is a large
increase in the maximum log-likelihood after allowing for the larger number
of potential parameters. The addition of the second lag in the RSVAR(2,2)
model produced only a modest increase in the maximum log-likelihood. The
addition of a further regime (K = 3) proved problematic, due to the degree
of instability of the third regime in iterations where p^ « 0 . A third regime
would appear to be superfluous given its virtual unidentifiability.

The standard LR test assesses the significance of the evidence against a
nested null hypothesis, based on the maximum likelihood of model j , i.e.
maximum over A, of p(Y\Xj,Mj). An alternate, and arguably more
sensible model selection approach, which does not require the models to
be nested, is to consider the evidence in the observed data in favour of the
alternative models. The probability of model j given the observed data is
given by p(Mj\Y) ocp(Y\Mj) xp[Mj). A priori convictions regarding null
hypotheses are reflected in the prior probabilities assigned to the
alternative models, p{Mj), which are then modified by the likelihood of
the observed data given the models, p(Y\Mj). MCMC estimation enables
p(Y\Mj) = Jp(Y\Xj,Mj)p(\j\Mj)d\j to be readily estimated as the harmo-
nic average of the likelihood over the MCMC samples/iterations, e.g. refer
to Kass & Raftery (1995, 4.3). The harmonic average estimate was found
to have stabilised after 1,000 samples or so in the present case.

The likelihood of the data given model j can be seen to be related to a
likelihood where the parameters are eliminated by integration rather than
maximisation. The logarithm of p(Y\Mj) is shown in table 3 for each of
the models which could be estimated based on the MCMC estimation
scheme described in the paper. The model probabilities are also shown,
assuming the alternative models considered were assumed equilikely a
priori. The data overwhelmingly supports the RSVAR model over the AR
and VAR models. Of the 4 models considered, the probability that the
data was generated by the AR(1) or VAR alternatives is virtually zero,
while the probability that the data was generated by the RSVAR
alternative is virtually 1.

The average prediction or forecast errors for each model were assessed
using the root-mean-square error, which for series i was denned as

rmset = Jj^Yl£h where et is the residual or one-period-ahead prediction
error at time t. The rms errors for each series were combined into a single
weighted rms error for each model for ease of comparison. The weights used
were proportional to the reciprocals of the corresponding AR(1)

residual variances, i.e. wrms error = Jwt x rmsej. Despite their high

likelihood, both the Student t AR(1) and GARCH(1,1)-AR(1) models
produced forecasts no better than the simpler AR(1) model on average.

To assess the explanatory information contained in the regime, the
regime switching model residuals in each period were calculated conditional
on the realised regime in that period, i.e. the £,(P/) ~ N(0, £i(Pl)) were tested.
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Allowing for the regime, the RSVAR model produced the smallest errors on
average (it is noted that the RSVAR model does have the largest number of
parameters).
Two measures were used to assess the ability to predict volatility. The first
measure used was the root-mean-square squared error, defined for series / as

rmssei = W jfz^Yl (e? ~ °f) > where a, is the one-period-ahead predicted
error standard deviation according to the model. The rmsse measure directly
compares the sample volatility with the volatility predicted by the model,

since is (ef) = of. While intuitive, the rmsse measure is highly skewed, since

e2
t ~ of Xi> a n d hence is susceptible to outliers. The rms squared errors were

also combined into a single weighted rms squared error using the same
weights as used for the wrms error.

The second measure used was the root-mean-square normalised absolute

error, defined for series i as rmsnaei = \ wr~J2 \et\ '
3— la,3 . While less

intuitive than the previous measure, the rmsnae should be more robust, since
the deviations should be less skew and more Normal. The measure was
motivated by the approximately Normal transformation of the chi-square

density, {xt/vft~ N(l - £ , £ ) , so that \eft~ <r/3tf&§).
Allowing for the regime, the RSVAR model produced better predictions

of volatility than the other models on average. Discrete regime switching
would appear to be a better explanation of conditional heteroscedasticity
than the commonly used GARCH and ARCH processes, which, despite
their high log-likelihood, generally impute too much persistency in the
volatility (see, for example, Hamilton & Susmel (1994)).

The excess kurtosis of the residuals of each series was calculated, and the
average reported in table 3. Autoregressive, VAR and GARCH models
failed to explain the observed excess kurtosis. The RSVAR model was able
to successfully account for the excess kurtosis in terms of discrete regime
switching in the variance, i.e. conditional heteroscedasticity. The non-
Normal process explicitly models excess kurtosis by assuming the residuals
are drawn from a leptokurtic non-Normal distribution. The excess kurtosis
of a standardised Student t density, when finite, is 6/(v - 4), where v is the
degrees of freedom parameter. Since the fitted v values of 3 out of the 4 series
were less than 4, the kurtoses of the fitted non-Normal processes are in
general not finite, which appears inconsistent with the observed residuals,
which had an average excess kurtosis of 4.4.
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TABLE 3

MODEL COMPARISON

uncond max lnL
cond max lnL
A In Lover AR(1)

significance of std \2

\np(Y\M)

p(M\Y)
wrms error

wrmse as % Random
wrmsse as % Random
wrmsnae as % Random
ave excess kurtosis

Random

1231.4
1221.5

1.48%
100%
100%
100%

4.6

AR(1)

1258.9
1249.0

0.0

1221.0

< lO"30

1.40%
95.0%
99.5%
89.6%

4.0

Student t
AR(1)

1296.4
47.4

< 10"6

1.41%

95.6%
101.0%
93.2%

4.4

GARCH

(hi)
-AR(1)

1287.3
38.3

< 10 6

1.41%

95.6%
103.4%
84.7%

2.1

VAR(l)

1271.1
1261.2

12.2
0.44

1253.6
< 10 -15

1.39%

94.0%
92.7%
87.9%

3.5

VAR(2)

1284.6

1261.1
< io-|r>

1.36%

92.0%
93.5%
84.1%

3.2

RSVAR
(1,2)

1326.5
1315.5

66.5
< 10""
1296.7

1.000
1.30%
88.1%
70.8%
78.1%

0.8

5. CONCLUSIONS

A Bayesian Markov Chain Monte Carlo (MCMC) procedure was developed
for estimating the joint parameter and regime density of Regime Switching
Vector Autoregressions (RSVAR). The mean parameter estimates were
found to converge extremely rapidly, even when the initial parameter
estimates were very poor and the order of the fitted process was incorrect.
The MCMC procedure can therefore be expected to supply a good estimate
of the mean parameter values within seconds, regardless of the initial
parameter estimates, even for vector processes (in contrast to maximum
likelihood based approaches).

The estimation procedure identified two clearly distinct regimes in
quarterly Australian financial data. One regime was characterised by strong
economic growth, stable inflation and interest rates, and relatively stable
share price growth. The other regime was characterised by weak economic
growth, volatile inflation and interest rates, and volatile and generally falling
share prices. The high volatility regime was found to be unstable, with an
expected duration of only 6 months.

The unstable high volatility regime captured extreme events that might
otherwise be termed outliers. Outliers have the potential to seriously distort
the estimation of process dynamics. Regime shifting can therefore be viewed
as providing a robust data driven treatment of outliers in this case, which
should enable more robust parameter estimates.

Regression relationships are often not robust to outliers nor stable over
time. Relatively few regressive cross-correlations appeared important in the
dynamics once joint regime switching was allowed for, in contrast to the
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large lagged cross-correlation terms observed when a standard Vector
Autoregression was fitted to the data. If the feedback were as strong as
indicated by the VAR model, the VAR model should have a significantly
higher likelihood than an independent autoregressive model (where there are
no cross-correlation terms) and one ought to be able to make better
predictions than models without the feedback. Neither of these features was
observed empirically.

MCMC estimation enabled the calculation of posterior model prob-
abilities, i.e. the probabilities of the various models given the observed data.
The data overwhelmingly supported the RSVAR model. The RSVAR model
also produced the lowest average prediction errors and better predictions of
volatility on average. Discrete regime switching would appear to be a better
explanation of conditional heteroscedasticity than the commonly used
GARCH and ARCH processes.

In conclusion, many financial time series processes appear subject to
periodic structural changes in their dynamics. Regression relationships are
often not robust to outliers nor stable over time, whilst the existence of
changes in variance over time is well known. This paper presented an
attempt to deal with such difficulties in financial time series, a Regime
Switching Vector Autoregression, the parameters of which are subject to
periodic discrete shifts. The Regime Switching Vector Autoregression
process was found to provide a particularly good description of an
Australian quarterly financial data set.
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APPENDIX

The derivation of the Bayesian MCMC estimation procedure is described in
this Appendix. At times it will be more convenient to consider the equivalent
VAR(l) form of the RS\AR(q,K) process, namely

i.e.

Xt )
X(-l

X/-2

X&t-q+lJ

=

/M(P, ) \

M(P-)

M(P,)

\M(p,)/

+

V oB

• O m

om / V

M(ft)

0
0

\ o

^ ( P , ) = 0 and El(p,)iJ{pi) = %,) V; > q. X, p, and | are m̂ r x 1 column
vectors, while the A are mq x mq matrices.

The contribution of the t-th data vector to the likelihood conditional on
the regime is

=xt-
h=\

in the case of t > q, where Y, = (xj,..., x,).
The first q data vectors can be taken together. l{Xcl\pq,\) can be

approximated by exploiting stationarity within each regime (effectively
ignoring regime shifts prior to time #), so that the contribution to the
likelihood from the first q data vectors can be approximated by

mq , - 1 2

The within regime unconditional or stationary mq x mq variance-cpvariance
matrix, V, could be determined from vecV = (lm2^ — A <g> A) vecQ, as
described by Liitkepohl (1991, p21-22). vec is the column stacking operator,
such that if A = (a\, ...,an) is an m x n matrix with m x 1 columns a,-, then
vecA is the mn x 1 column vector (af,...,a^)T, and <g> is the (right)
kronecker product, such that if A and B are two matrices, m x n and p x q
respectively, then A ® B is the mp x nq matrix (a,yB).
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Assuming within regime stationarity,

Xq = p + A(X?_i - p) +ig

= p + lq + Aig-i + A2(X?_2 - p)

The unconditional mean is therefore EXq = p^), where py = k. Assuming
the process is stable within each regime,

VarXq = E(Xq-p)(Xq-p)T

Stability requires that AJ converge rapidly to zero as j —> oo so that the

partial sum J2 ̂ J converges rapidly to (I — A) as n —> oo. A stable process
. . ;=o

is also a stationary process.

In practice, to avoid inversion of an m2q2 x m2q2 matrix, V could be

approximated as a finite sum of the form f2 + ^ ^ ^ ( A 7 ) , and then an
- 1 ^ = 1

approximation to V obtained by inverting the approximation to V (an
mq x mq matrix).

The full likelihood conditional on the regimes is
N

l(xt\PhYt_u\),
t=q+\

https://doi.org/10.2143/AST.29.1.504606 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.1.504606


68 GLEN R. HARRIS

where Y = Yyv and p = {pq, ...,pyv}- The exact or unconditional likelihood
of A is obtained by integrating over all possible regimes, i.e.

t=q+\

The exact or unconditional maximum likelihood parameter estimate is given
by the value of A that maximises L.

Draws from the joint posterior distribution of the regimes and the
parameters given the data, p(p, A|Y), can be simulated via the Gibbs Sampler
and the Metropolis-Hastings algorithm. The algorithm will involve the
repeated generation of variates from their full conditional densities as
follows:

In each case, V will be a function of the A and the il on the
right hand side. Under mild regularity conditions, the sequence

{p(c+1\A(e+1)} = (p(-c+l\^c+]\A{c+l),n^+i\Pic+])\ will form a Markov

Chain whose limiting distribution will be p(p, A|Y).

Generating the Regimes

p(c+i) ^-MW,A(c),fiW,P(c). Carter & Kohn (1994) suggested that it is
generally much more efficient to generate the regime variables simulta-
neously from the joint distribution of the pt rather than one-at-a-time
from the full conditional densities. Generating the regimes one-at-a-time
can lead to little movement at each iteration due to conditioning on the
neighbouring regimes from the previous iteration. Their empirical results
are supported theoretically by the results of Liu, Wong & Kong (1994).
Following Carter & Kohn (1994), the regimes can be generated jointly
from

/v-i

p{p\Y,X) =p{PN\VA) •
t=q
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Estimation of the regimes at each time t is based on the probability filters of
Hamilton (1989, 1990) and Kim (1994). The first step in calculating the
smoothed regime probability estimates is to calculate the joint regime filter
probabilities and conditional likelihoods, which can be determined
recursively. The filter probabilities, p{pN\Y,X), can be calculated from

l(Xq,Pq\X)=l(Xq\Pq,X)-p(pq\X)

p(pq\Xq,X)=l(Xq,pq\X)/l(Xq\X).

For t = q+\,..,N,

K K

p{pt,pt-\\Yt, A) = l(x,,pt,pt-i|Y,_i, A)//(x,|Y,_i, A)
K

P(Pt\Yt,X)= Y,
ft-1=1

Note the filter probabilities p(p,\Yh A) are each a K-tuple of probabilities,
representing p(p, = i\Y,,X) for i = \,..,K. Once the filter probabilities,
P(PN\Y,X), have been calculated, a sample can easily be generated from
P(PN\Y, A), since it is a discrete density.

The above iterations require the evaluation of the contributions to the
conditional likelihood, l(xt\pt,Yt-\,X), which will require evaluation of the
mxm determinants of the K J7~'. Using the Choleski decomposition,

i l H i j ^ g
To initialise the previous iterations, the K p{pq\X) will be required.

They can be derived as the limiting distribution of the regime Markov
chain. Define the K x 1 column vector n = {p(pt = i\X), i = 1, •••,!(}, then
7T = Pvr. The limiting distribution TT can be estimated by iterating on
^(H+I) _ p-x-in) until convergence to the desired level of accuracy. The
p(pq\X) are given as the elements of TT. Observe that P is a stochastic
matrix since all column sums equal one and all elements are non-negative,
hence 1 is an eigenvalue of P, and all eigenvalues of P have magnitude no
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greater than one. A necessary and sufficient condition for the existence of
a limiting distribution is that P has a distinct non-repeated unit
eigenvalue.

Thus, drawing on Carter & Kohn (1994), to generate a sample from the
joint distribution of p we first generate p^ from p(pN\Y,\). Then for
t = N - I to q, calculate p(pt\pt+\,Yt, ty using the most recently generated
value of pi+\ and the previously calculated filter probabilities, as follows

p(pt+\,p,\Yt,\) =p{pt+\\pt,\) -p(pt\Yt,\) for p, = \,...,K
K

p(pt+\\Y,,\)= Y,P(Pt+\,Pt\Yt,X)

{P+UP^] for * = ! , . . . ,*

Once the probabilities,p(pt\pt+\, Yt, A), have been calculated, pt can easily be
generated fcomp(pt\pt+\,Yt, A), since it is a discrete density. For the regime
switching process to be defined, each of the K regimes needs to be visited.

Generating the Parameters

The conditional densities of the parameters are given by

ocL(Y|p,A) -p(p\X)

i.e. p(@j\P,e^,P,Y) ocL(Y\p,\)-p(Qj)
N

and p(P\p,e,Y) ocp(P(!\P) • J ] p(pt\p,-uP)

Generating the Level ParametersW,fiWip(c). in this section, n{r) represents one of the
possible discrete values of y.(Pl), pt € {1,..., K}. Independent uniform priors
can be used for the /i(r), conveying no prior information. The prior would
therefore be uniform where the identifiability restrictions (if any) are met,
and zero everywhere else. The level parameter vectors can be generated
jointly from

p(H(i), •-, V(K)\p, - W Y) oc L(Y\p, A) x

which is the product of K independent multivariate Normal densities (and
the identifiability prior), since the contribution at each time / involves only
one of the /Z(r). The exponent in the above expression is
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N
1

t-q+\

t=q+\ \ h=\ \ h=\

/ 1 / 1

-IE

/ q (h\\ ( q (h)
where W(^ = Im - E A j f t ) %)) (I« ~ E A(P')

V h=\ / \ h=\ /
Suppose pq = k and that nr of the pt = r, then the exponent can be

rewritten as
- I ^ y - l l

1 / _±_ ..A"' / _«

A=l / ft=A:

/ „ \ -1 *

U-
p,=k \ h=\
t>q J

- 1

/ p,=r \ h=\

~X ( 1

P,=r \ A=l
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Ignoring the first term in V ', which is a function of / i ^ , the above
expression is in the form of K independent vector Normal densities in the /x(r).

oc V

x N

- l

^T(«-E*1S E
/ P,=k

where N(.,.) is the multivariate or vector Normal density. The AM fi(r),
r y£ k, can therefore be independently generated from the above multivariate
Normal densities. Asymptotically, the means of the above densities, for each
regime, are the average of the data vectors in each regime, as expected.

A variate from the multivariate or vector Normal density, x ~ (/̂ , fi), can
be generated as x = \i + Lz, where z is a vector of i.i.d. N(0,l) variates, and
L is a lower triangular matrix obtained from the Choleski decomposition of
17, such that L i / = ft.

The terms in fj,^ are not quite vector Normal, since V~' is also a function
of ij,(ky A Metropolis-Hastings step can be used to generate / i ^ . First, a
candidate ji^ is generated,

{*] N 1 I -TA{h)
- 1

h=\ / p,=k \ h=\
t>q

and accepted, i.e. M^t'' = M(itj> w i t n probability

mm<
\

rH*)
(k) 7-Hc)

r

(k)
,1

otherwise the previous value is retained, i.e.

function of A ^ and ft^(e), while V^c) is a function of Â

Generation of the K

represented by p^/j^,..,

rejection).

= fj^y Here, Y'^ is a

and ft^''"1'-

would continue until the prior conditions

are satisfied (i.e. by direct acceptance/
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Generating the Regressive Correlation Parameters

A(c+1) <-p(c + 1),/i(c + 1),fiW,P( e ) . In this section, A(r) represents one of the
possible discrete values of A(p,), p, e {\,...,K}. The regressive correlation
parameter matrices can be generated jointly from

ocL{\\p,X)

Recall that

i m o m ••• o m

o m im ••• o m

\ om om • •• om

so that only the first m rows need to be generated. Define the mx mq matrix
operators = (Im,0m,0m, .. ,0m), so that tfA = ( A ( 1 ) , A ( 2 ) , .. , A("M. It is the
A"i?A(r) that need to be generated.

A suitable prior for each of the i?A(r) is a matrix Normal density in
the region of stability of the VAR process within each regime, and
zero everywhere else. Thus it is assumed a priori that the process is
stable in each regime. The prior for i?A(r) will be represented by
/»(#A(r)) oc N(B(r), l/v>(r)lm2q) xg(A(r)), where the first term is a matrix
Normal density, B(r) = ( B [ V , B | 5 , ..,B ̂  j is the m x mq prior estimate of
$A(,.), Im29 is an m2q x m2q identity matrix, and the last term is uniform in the
stable region of A(r) and zero everywhere else. In the absence of strong prior
evidence, each of the B L is likely to be zero everywhere except perhaps
instances on the diagonal where serial correlation is clearly present, e.g.
inflation rate series. The prior variance of each element of ~&A^ is l/v^,
where v^ can be interpreted as the equivalent number of prior observations in

regime r.
Stability requires that AJ converge rapidly to zero as j —> oc, so

that the sequence {AJ,j = 0, 1, 2, ..} is absolutely summable, converging

to (I - A)"1, since X, = [i + A(X,_i - \i) + & = (I - A)/x + AX,_i + £,

= (I + A + A2 + .. + A;)(I - A)/i + A/+1X,_y-_i + J2 A'6-i- This is equiva-
i=0

lent to insisting that all eigenvalues of A have modulus less than one. The
latter condition holds if and only if the determinant of (I - zA) is nonzero
for \z\ < 1, i.e. iff detfl - zA(1) - .. - z?A(<?)j / O o n the interval \z\ < 1.
For practical implementation it is wise to insist that det(I - zA) exceeds a
fixed positive constant (depending on the dimension of the problem) for
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z — ±1 (noting that it equals 1 for z = 0), to control the occurrence of
(I — A)~ becoming large, which can lead to the level estimates visiting
unlikely values (since the level parameters are not denned when (I — A) is
not invertible).

Supposing pq — k, consider regimes p, = r (^ k), and define the m x nr

matrix of regime r residual vectors, cw = (& : Pt = r), and matrices of deviation
vectors, x>) = ((x<-i - Aw) '• Pt = r) and xw = ((X, - Aw) '• P> = r)- N o t "
ing that - | r = A(,.)(Xr_i - /2(r)) - (X, - /2(rj) from the VAR(l) form of the
process, consider the following (dropping the references to regime r, for
brevity).

= (xT <S> lm) |veci?A - vecJT?(xxr) (xx 7 ) }J

= {xT ® Im) [vea?A - vecC],

where C = $(xx r ) (xx r ) is an m x mg sample regression matrix. Note
that vec(AB) = (Br ® i)vec(A). Ltitkepohl (1991, Appendix A. 11-A. 12)
provides a useful summary of the properties of the kronecker product and
the vec and trace operators.

The contribution at each time t involves only one of the A(r). The
exponent of the likelihood term can be expressed as

5 j£

where q^ = (^ : p, = k, t > q) is the m x («* - 1) matrix of regime A:
residual vectors, excluding the first (t = q). The exponent, including the
prior, can therefore be expressed as

| , - i £ [vea?A(r)-vecC(r)]
r((x(r)X(^) ®%]) [veo?A(r) -vecCw]

veci?A(r) -vecB(r)]
7\>{r)\m2q [vectfA{r) - vecB(r)]
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where \(k) and C(k) are defined to exclude the first vector (t = q), and

1-1 —

a(r) =

X(r)Xfr)

r) + i/(r )vecB(r)].

Note that the term involving V"1 is also a function of A^j. Excluding the
term in V"1, the previous expression is in the form of independent matrix
Normal densities in the Air).

:.p(A{V),..,A(K)\p, oc

x g(A{r))

The means of the above densities for the A(^ are weighted averages of
the sample regression matrices of the data vectors within each regime and
the prior estimates of the A(r), as expected. The prior variance provides a
floor under the inverse of the variance matrix, and hence limits
the variance of the A(r).

Direct acceptance/rejection can be used to independently generate the
regression matrices, A(r), r ^ pq. Candidate A(r) are generated from the
matrix Normal densities until they fall within the stable region. The
acceptance rate can however fall to very low levels as the dominant
eigenvalue of A approaches 1 and as the dimension of A increases, causing
the procedure to get "stuck" in the A dimension. This is an area of current
research. A possible approach would be to use a Metropolis-Hastings step
with a suitably well constructed candidate density to enforce the stability
constraint.

Generation from a matrix Normal density is the same as from a vector
Normal density, since A ~ N(6, S) = vecA ~ N(vec9, S). If A is m x m,
then 0 is also m x m while £ is m2 x m2, and vecA and vec6 are m2 x 1.

The terms in A ^ are not quite matrix Normal, since V"1 is also a
function of A(ky A Metropolis-Hastings step can be used to generate A ^
using A,*k ~ N(a(£), ^(k)) a s the candidate generating density. If the
candidate is stable, it is accepted, i.e. A/jt = A^l, with probability

mm<
\

7-U*)

expj-^ V) - V
-l(c)
(k)

otherwise the previous value is retained, i.e. A „ ; = A
function of A ?j and fi

:<o. Here, is a
, while V(yt> is a function of A v, and ^,k)
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Generating the Variance and Covariance Parameters

p(c+\) (c+i)
p(c+\)? ^(c+i) j A(c+i) ) P w _ I n t h i s s e c t i o n ; 0 ( r ) represents one of the

possible discrete values of fi(ft), p? € {1, ...,.£}. It is more convenient to
generate the inverse of the variance-covariance matrices (i.e. to generate the
precision matrices), rather than the fl^ directly.

Suitable priors for the m x m precision matrices would be Wishart
densities with parameters r]^r) and F , where F is diagonal with z'-th diagonal
element equal to rj^sj, where sf is the prior error variance for the /-th series.
The T7(r) can be interpreted as the equivalent number of prior observations in
each regime. The generation of the precision matrices presents no stability
problems, so that the prior need only be diffuse, hence TJ^ is likely to be
smaller than v^. The complete prior would therefore be of the form

= nwm(%),Fw') xh(nw,..,tt{K)), where h(nm,..,n{K))

captures the identifiability prior restrictions (if any). An example of an
identifiability restriction might be that the variance of the second series
increases with the regime, i.e. 0̂ 2(1) < .. < UJ22(K)> where w,,(r) is the /-th
diagonal element of fi(r). As before, define ^ = (£t : pt = r), r ^ pq and
( ^ = ( ,̂ : pt — k, t > q),k = pq (noting that the £; are functions of the most
recently generated \r))-

The precision matrices can be generated jointly from

oc "1

expi - f

%

(X \k)

nis

oc

X

| g } x Wm f « -1

-1
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Therefore the precision matrices, other than fi^', can be generated
independently from Wishart densities. £l7j\ can be generated via a
Metropolis-Hastings step with the Wishart candidate generating density

m (nk + V(k) ~ 1 , (̂ (/fc)̂ (fc)+F(/t)J )• T n e candidate would be

accepted, i.e. ^7k) = ^m , with probability

mm<
\

-iw

otherwise the previous value would be retained, i.e. Q,^ = fl,k, . Here,

V"1^ is a function of Q,'^ and A ^ 0 , while V^( c ) is a function of ft~'(c)

andAg.
A variate from the Wishart density, W ~ Wm(ry, £), can be generated as

W = QQT, where Q = LU, L is lower triangular given by the Choleski
decomposition S = LLr , and U is upper triangular given by the Bartlett
decomposition, uy = 0 for ; >j, u2

u ~ \l (i =j) a n d My ~ N(0,1) for / <j (so
thatUVU~Wm(r/,Im)).

Generating the Transition Probabilities

p(f+i) ^_ p(c+1),Ai(
c+1),A(c+l),fi(e+1). The transition probability matrix can be

generated from

N

p(P\p,Q,Y) <xp(pq\P) • n P(Pt\Pt-uP) -P(P)-
t=q+\

Suppose that p represents ity transitions from regime / to regime j . Define the
prior for the py to be Beta (my + 1, m,, + 1), where my has the interpretation
as the equivalent number of prior transitions, then

K / \ n"+m"

P{?\P, e, Y) { ) n^+m ft ( Y

In the above expression, p(pq\P) is a function of each of thepy. Draws from
the above joint density can be generated using a Metropolis-Hastings step,
using independent Beta densities as the candidate generating densities.
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Generate candidate P, P^*\ from py ~ Beta(«,y + my + 1, «„• + m,-,- + l) for

i ^j, p)*' = 1 - J^Pij > until/?|*' > 0' which is then accepted, i.e. p(e+1> set

equal to P^*', with probability min< *{c),
q
M , 1 \, where

otherwise the previous value is retained, i.e. set p(f+|) = p( ' \ Recall that
p{pq\P) is given by iterating on P.

The acceptance rate is high for stable regimes where thepy are small. The
acceptance rate can become very low when a pti becomes small, since then
Pa = 1 — Tipy < 11(1 — Pij), and hence their ratio can become very small
when raised to the power «,-,- + m,,. However if a pa is small, perhaps the
appropriateness of modelling the corresponding regime at all should be
questioned.

REFERENCES

AKGIRAY, V. (1989). Conditional Heteroscedasticity in Time Series of Stock Returns: Evidence
and Forecasts. Journal of Business 62, 55-80.

ALBERT, J. H. and CHIB, S. (1993). Bayes Inference via Gibbs Sampling of Autoregressive Time
Series Subject to Markov Mean and Variance Shifts. Journal of Business and Economic
Statistics 11, 1, 1-15.

BECKER, D. (1991). Statistical Tests of the Lognormal Distribution as a Basis for Interest Rate
Changes. Transactions of the Society of Actuaries XLIII.

BOLLERSLEV, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of
Econometrics 31 (June 1986), 307-327.

CARTER, C. K. and KOHN, R. (1994). On Gibbs Sampling for State Space Models. Biometrika
81, 3, 541-553.

CHIB, S. and GREENBERG, E. (1995). Understanding the Metropolis-Hastings Algorithm. The
American Statistician 49, No.4, 327-335.

ENGLE, R. F. (1982). Autoregressive Conditional Heteroscedasticity with Estimates of the
Variance of U.K. Inflation. Econometrica 50, 987-1008.

FREES, E. W., KUNG, Y-C, ROSENBERG, M. A., YOUNG, V. R. and LAI. S-W. (1996).
Forecasting Social Security Actuarial Assumptions. North American Actuarial Journal 1,
No.4, 49-75.

GRAY, S. F. (1996). Modeling the Conditional Distribution of Interest Rates as a Regime-
Switching Process. Journal of Financial Economics 42, 27-62.

HAMILTON, J. D. (1989). A New Approach to the Economic Analysis of Nonstationary Time
Series and the Business Cycle. Econometrica, 57, 357-384.

HAMILTON, J. D. (1990). Analysis of Time Series Subject to Changes in Regime. Journal of
Econometrics, 45, 39-70.

HAMILTON, J. D. and SUSMEL, R. (1994). Autoregressive Conditional Heteroskedasticity and
Changes in Regime. Journal of Econometrics, 64, 307-333.

HAMILTON, J. D. and LIN, G. (1996). Stock Market Volatility and the Business Cycle. Journal of
Applied Econometrics, 11, 573-593.

HARRIS, G. R. (1994). On Australian Stochastic Share Return Models for Actuarial Use. The
Institute of Actuaries of Australia Quarterly Journal, September 1994, 34-54.

https://doi.org/10.2143/AST.29.1.504606 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.1.504606


MARKOV CHAIN MONTE CARLO ESTIMATION 7 9

HARRIS, G. R. (1995a). Statistical Data Analysis and Stochastic Asset Model Validation.
Transactions of the 25th International Congress of Actuaries 3, 313-331 (Brussels, Belgium).

HARRIS, G. R. (1995b). Low Frequency Statistical Interest Rate Models. Proceedings of the 5th
A FIR International Colloquium 2, 799-831 (Brussels, Belgium).

HARRIS, G. R. (1995C). A Comparison of Stochastic Asset Models for Long Term Studies. The
Institute of Actuaries of Australia Quarterly Journal, September 1995, 43-75.

HARRIS, G. R. (1996). Market Phases and Cycles? A Regime Switching Approach. The Institute
of Actuaries of Australia Quarterly Journal, December 1996, Part 2, 28-44.

KASS, R. E. and RAFTERY, A. E. (1995). Bayes Factors. Journal of the American Statistical
Association 90, 430, 773-795.

KIM, C. (1994). Dynamic Linear Models with Markov-Switching. Journal of Econometrics 60,
1-22.

LUTKEPOHL, H. (1991). Introduction to Multiple Time Series Analysis. Springer-Verlag.
Liu, J., WONG, W. H. and KONG, A. (1994). Covariance Structure of the Gibbs Sampler with

Applications to the Comparison of Estimators and Augmentation Schemes. Biometrika 81,
27-40.

MCNEES, S. S. (1979). The Forecasting Record for the 1970's. New England Economic Review
September/October 1979, 33-53.

PRAETZ, P. D. (1969). Australian Share Prices and the Random Walk Hypothesis. Australian
Journal of Statistics 11, no. 3 (1969), 123-139.

STOCK, J. H. and WATSON, M. W. (1996). Evidence on Structural Instability in Macroeconomic
Time Series Relations. Journal of Business and Economic Statistics 14, 1, 11-30.

GLEN HARRIS
33 Struen Marie St
Kareela NSW 2232
Australia

https://doi.org/10.2143/AST.29.1.504606 Published online by Cambridge University Press

https://doi.org/10.2143/AST.29.1.504606



