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Earlier studies show that in iron deficiency with anaemia and in latent iron deficiency
neurotransmitters are altered. The changes induced in the fetal brain are irreversible on
rehabilitation. The important alterations in glutamate metabolism in latent iron deficiency
stimulated studies on gamma aminobutyric acid and glutaminate receptors. It was observed that
binding of 3H-muscimol at pH 7´5 and 1 mg protein/assay increased significantly in synaptic
vesicular membranes and under similar conditions 3H-glutamate binding showed reduction.
Thus iron deficiency played a role in both excitatory and inhibitory neurotransmitter receptors.
To elucidate the role of body iron status on the brain, anaemic children with thalassemia and
iron deficiency were subjected to `magnetic resonance spectroscopy' of globus pallidus, caudate
and dentate nuclei and there was no change in iron content. The concentrations of creatinine and
aspartate increased, with lowering of choline content. The findings were similar in thalassemia
as well as iron deficiency anaemia, suggesting that in anaemia changes operate through reduced
oxygen availability.

Iron: Deficiency: Neurotransmitters

Studies from different parts of India in the last two decades
have shown that nutritional anaemia, usually due to iron
deficiency, affects 60±90 % of the population, particularly
pregnant women, young children and adolescents (WHO,
1992; ICMR, 1989; ICMR, 1992; Gomber et al. 1998). Our
earlier studies in pregnancy anaemia demonstrated that in
maternal hypoferremia, the transfer of iron to fetus is at a
gradient but proportionate to maternal iron level (Singla
et al. 1978; Singla et al. 1979), the fetal iron stores are low
(Singla et al. 1985), the concentration of iron in breast milk
is higher (Franson et al. 1985) and the treatment of anaemia
with iron folate improves birth weight (Agarwal et al.
1991).

Felt & Lozoff (1996) reported that in iron deficiency
anaemic rat mothers despite rehabilitation by iron as early
as mid-gestation, the brain iron content remained low in the
offspring and behavioural changes persisted at 3 months of
age. Iron deficiency anaemia reduced brain iron, but brain
enzymes were resistant to change, although activities of
aminobutyric acid transaminase and glutamate decarbox-
ylase, decreased (Youdim & Green, 1977; Youdim et al.
1989). Iron deficiency anaemia changes the dopamine,
serotonin and gamma aminobutyric acid/(GABA) systems
(Beard et al. 1993). Further, binding receptors of dopamine
D2 (3H-spiperone) decrease and GABA (3H-muscimol)
increases in the brain (striatum and cortex) of iron deficient
anaemic rats. Nelson et al. (1997) demonstrated that in iron
deficiency anaemia the extracellular level of dopamine

increased in the caudate±putamen brain area, but normal-
ized on rehabilitation and that the elevation of dopamine or
other neurotransmitters was not due to anaemia per se. In
earlier studies alterations in 5-hydroxytryptophan, dopa-
mine and norepinephrine were observed (Ashkenazi et al.
1982; Ben-Shachar et al. 1986). The above studies were
mainly limited to the effects of iron deficiency anaemia on
alterations in various brain neurotransmitters.

Iron, as a micronutrient, is required for regulation of
brain neurotransmitters by altering the pathway enzymatic
system. To study iron as a micronutrient, a rat model was
developed to create iron-deficiency (low hepatic iron)
without change in haematocrit. Pregnant and lactating rats
were fed on 30 mg iron/kg diet (normal need 250±300 mg)
and post-weaning rats received 18±25 mg/kg (normal need
60±80 mg). The body, brain and liver weights reduced at
around 14±21 days postnatally in rat pups (mothers
maintained on low iron diet in pregnancy and lactation),
without any change in brain and hepatic protein, DNA and
RNA contents. The hepatic iron showed marked reduction;
40 % in 20 days fetus and 85 % by postnatal day 21. The
fetal as well as weanling rat brain iron content decreased
significantly and this alteration was irreversible on
rehabilitation. In post weanling rats, iron content reduced
irreversibly; in the corpus striatum by 32 %, midbrain
21 %, hypothalamus 19 %, cerebellum 18 %, cerebral
cortex 17 % and in the hippocampus by 15 %, but there
was no change in the medulla oblongata (Taneja et al.
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1990). The corpus striatum in iron deficiency showed lower
zinc content, while calcium and copper content had
increased. There was a decrease in zinc and an increase
in copper in the cerebral cortex. Calcium content in the
hypothalamus increased as well (Shukla et al. 1989a). Such
heterogeneous brain region iron distribution in iron
deficiency anaemia was observed by Hill (1988).

The latent iron deficient rats (pregnancy and lactation)
show decrease in activities of GABA shunt enzymes, which
do not normalize on rehabilitation of dams with an iron rich
diet (Taneja et al. 1990). In contrast latent iron deficient
post weanling rats show decrease in GABA shunt enzyme
activities, which recover on rehabilitation (Taneja et al.
1986; Shukla et al. 1989b). These post weanling rats show
irreversible reduction in whole brain: dopamine, norepi-
nephrine and tyrosine (catecholamine metabolism) and in
tryptophan, 5-hydroxy tryptophan and 5-hydroxy indolea-
cetic acid (5-hydroxy tryptamine metabolism). In the
corpus striatum of these rats dopamine, homovanilic acid,
monoaminooxidase, tyrosine and to some extent norepi-
nephrine are reduced irreversibly (Shukla et al. 1989c;
Shukla et al. 1989d). These are specific affects of iron
deficiency, as in intrauterine as well as postnatal
malnutrition; neurotransmitter changes partially recover
on rehabilitation (Prasad et al. 1979; Prasad & Agarwal,
1980).

We briefly report the changes in GABA and glutamate
receptors in latent iron deficient rats (Agarwal et al.
unpublished)

Materials and methods

Female mice of Sprague±Dawley strain were used. They
were kept in plastic cages with stainless steel mesh.
Synthetic diets contained all necessary components, as
described earlier (Shukla et al. 1989a; Shukla et al. 1989d).
Radioligands were purchased from Amersham (UK). All
fine chemicals of analytical grade were obtained from
Sigma or Merck India.

Creation of iron-deficiency in rats. Female albino rats
were used in the experiments. Weanling (21-day-old) rats
weighing 40 ^ 5 g were divided into two groups, control
and experimental. The experimental group was maintained
entirely on an iron-deficient synthetic diet containing
18±20 mg Fe/kg. The control group received the same diet
supplemented with iron to 260 mg Fe/kg. Water was served
ad libitum in iron-free feeding bottles. At least six animals
were included in each group.

Both experimental and control groups were given diets
for 2 months. The rats were killed by cervical dislocation.

Blood was collected in plain as well as EDTA vials. Brain
and liver were dissected out, rinsed in saline, weighed and
frozen at 2208C until the time of processing.

Hematological analysis. Brain and liver non-haem iron
was determined in 10 % homogenate (Hallgren, 1953).
Haemoglobin (Crosby & Houchin, 1957) and micro-
haematocrit (Guest & Siler, 1934) were determined by
standard laboratory protocols.

Neurotransmitter receptors GABA and L-glutamic acid
receptors in brain were estimated by radioligand binding
assays in synaptic membranes prepared according to Hell
et al. (1990). For inhibitory neurotransmitter receptors,
3H-muscimol, a GABA A agonist, was used. Binding of
3H-muscimol (specific activity 25 Ci/mmol) for GABA
receptors was done by the method described by Seth et al.
(1981). The assay was done in presence or absence of
1�104 mmol GABA. Incubation was done at 378C for
30 min. At the end of incubation, 2 ml of chilled buffer was
added and the incubation mixture immediately filtered
through a glass fiber filter under vacuum. The filters were
rinsed twice in buffer, dried and counted in a liquid
scintillation counter. Specific binding of radioligand for
each concentration was carried out in triplicate.

For excitatory neurotransmitter receptors, 3H-glutamate
binding was performed according to Cross et al. (1986).
Binding was carried out in 200-ml volume in microtiter
plates. Optimum pH and protein concentration was
determined and found to be 7´4 and 1 mg respectively.
Binding was carried out at 378C, for 30 minutes. After the
incubation, reaction mixture was filtered through Whatman
GFB glass fiber filter using a cell harvester (Hall & Thor,
1979). The filters were washed, dried and counted in a
liquid scintillation counter.

Results

Eight weeks of iron deficiency did not significantly change
the gross weight of rat brain and liver. There was no effect
on haemoglobin and haematocrit. The non-haem iron in the
liver and the brain decreased significantly �P , 0´001;
Table 1).

GABA-receptors 3H-muscimol binding to synaptic
membrane was dependent both on pH and concentration
of protein. The assay was carried out at optimum pH (7´5)
and protein concentration (1 mg/assay). Binding of 3H-
muscimol increased by 193 % in membranes from iron-
deficient rats as compared to controls (Table 2).

Glutamate receptors like muscimol, 3H-glutamate bind-
ing was also dependent on pH and concentration of
membrane vesicles. There was significant reduction by

Table 1. Effect of iron deficiency on haemoglobin, haematocrit and non-haem iron in rats

Group
Haemoglobin

gm/dL
Haematocrit

%
Non-haem iron in

liver mg/gm
Non-haem iron in

brain mg/gm

Control 15´6^0´6 47´2^1´0 131^8´0 8^0´2
Iron-deficient 15´5^0´4 46´8^1´9 45^1´9* 6´5^0´2²

All values are mean ^ sd:
Iron deficient diet: 18±20 mg Fe/kg diet; Control: 250 mg Fe/kg diet.
* P , 0´001; ² P , 0´005:
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63 % in specific binding of 3H-L-glutamate in the iron
deficient group as compared to controls (Table 2). The
binding could be easily displaced by excess of cold
L-glutamate, but not by D-glutamate.

Discussion

The observations on reduction in hepatic and brain non-
haem iron in post-weanling rats kept on an iron-deficient
diet for two months are in agreement with various reports
on latent iron deficiency (Siimes et al. 1980; Taneja et al.
1986; Taneja et al. 1990; Shukla et al. 1989a).

The significant effects on neurotransmitter receptors
during early stages of iron deficiency clearly indicate the
deficits in both excitatory and inhibitory pathways of the
central nervous system. The neurotransmitter receptors
remain in dynamic equilibrium and their regulation
depends on the synthesis, metabolism and various other
components in the signal transudation cascade (Nakanishi
et al. 1998). Changes in the affinity of ligands with the
receptor can also alter the binding without affecting
numbers of receptors present in the system. Fluidity of
biological membranes can influence the interaction parti-
cularly under in vivo conditions (Scheuer et al. 1996).
Recently, group I metabotropic receptors have been
identified which can be modulated by other neurotransmit-
ter receptors including GABA and the ionotropic glutamate
receptors (Bordi & Ugolini, 1999). Both GABA and
glutamate pathways have been implicated in several
nervous system disorders. Dysfunction of the glutamatergic
pathway has been suggested in Huntington's disease (Albin
et al. 1990; Calabresi et al. 1999); Alzheimers (Chalmers
et al. 1990) and epilepsy (Sherwin, 1999). GABA-linked
receptor system dysfunction plays an important role in
several neurological and psychiatric disorders (Kowell
et al. 1987). Therefore, it may be logical to suggest that
impairment of higher mental functions like cognition
and learning in humans may also be linked to changes
in neurotransmitter receptors and consequent signal
transduction processes in the nervous system.

In an ongoing study in children aged 8±12 years with
moderate anaemia or nutritional anaemia or thalassemia,
the iron content on globus pallidus, caudate and dentate
nuclei was similar in thalassemia as well as in iron
deficiency anaemia and in both the anaemic conditions,
there was an increase in creatinine and aspartate and
reduction in choline concentration (Agarwal, unpublished).
These are important alterations as choline is synthesized in
the brain in very small amounts; its uptake is Na+

dependent, which requires oxygen.

Conclusions

In latent iron deficiency (without anaemia), brain iron
content, neurotransmitters and the related receptors are
affected irreversibly during brain development. In contrast,
in anaemia the changes are due to anoxia, irrespective of
body iron status. Thus in latent iron deficiency iron behaves
as a micronutrient inducing specific alterations.
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