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While capillary imbibition in tubes or porous materials has been studied extensively in
the past, less attention has been paid to imbibition into a swellable porous material.
However, swelling is commonly observed when a polymeric network, such as the cellulose
composing paper fibres or sponges, absorbs a solvent. The incompressibility of the fluid
leads to an elastic expansion of the polymeric matrix. In a porous material, swelling can
affect the geometry of the pores, thus affecting the capillary flow. To describe this complex
problem, we propose a model experiment, namely the capillary imbibition in a model pore
composed of two parallel and stretched elastomeric fibres. In this configuration, one can
observe both the progression of a capillary meniscus and the swelling of the fibres. We
show that swelling enables a capillary imbibition for fibres placed further apart than the
critical distance existing for non-swelling fibres. In this swelling-dominated regime, we
identify a new imbibition dynamic at constant velocity which we rationalize using a linear
poro-elastic theory. Finally, we describe the elastocapillary collapse of our model pore
which is observed when capillary forces overcome the restoring tension force within the
fibres.

Key words: capillary flows, wetting and wicking, porous media

1. Introduction

Raindrops are absorbed by wet soil, tea can rise within a biscuit dipped in a cup and
a sponge swells when soaking up water. These common phenomena all involve capillary
imbibition into a porous structure (Ha & Kim 2020). A porous material is often considered
as an assembly of individual capillary channels (or tubes) in which the progression of
a fluid is captured by Darcy’s law linking the pressure gradient to the fluid velocity.
In a capillary tube, a wetting fluid will form a curved meniscus, leading to a constant
negative capillary pressure sucking the fluid into the tube. This suction fights a growing
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viscous drag due to the presence of the tube boundaries, leading to a gradual slowing
down of the fluid. In the early 20th century, Lucas (1918), Bell & Cameron (1906) and
Washburn (1921) showed that, in the absence of gravity, the position of the meniscus zm(t)
scales as

√
t. In the case of a sponge, and more generally swellable porous materials,

the microscopic porous structure is composed of cellulose, a material that swells when
exposed to water (Kvick et al. 2017). Swelling occurs when solvent molecules penetrate a
polymeric network, leading to its elastic deformation. It is observed for most natural fibres
exposed to water (e.g. cellulose, hemp or flax; see Pucci, Liotier & Drapier 2016; Testoni
et al. 2018). The absorption of fluid leads to a change in geometry at the macroscopic
scale and often to large-scale motions or deformations. For example, a paper sheet will
spontaneously curl when placed upon a bath of water (Reyssat & Mahadevan 2011), while
the petals of a pine cone will open or close depending on the ambient humidity (Reyssat
& Mahadevan 2009). In the case of a sponge, the macroscopic pores change in size and
distribution when the cellulose matrix swells. This modification in pore size affects the
imbibition dynamics into the material. Similarly, it has been shown that, for fluids of
equivalent viscosity and wettability, swelling slows down the capillary imbibition of fluids
in paper sheets (Kim & Mahadevan 2006). Several mechanisms for this slowing down have
been given, depending on the density of the fibres. The pore sizes might either grow or
shrink, depending on the mobility of the fibres (Schuchardtl 1991; Takahashi, Häggkvist
& Li 1997; Chang & Kim 2020; Duprat 2022).

The examples of paper and sponges show the complexity of the coupled
swelling–imbibition problem. Justifications of the different models rely on experimental
observations at the scale of the paper sheet or the sponge. Simultaneously observing
both the fluid progression and the swelling of the matrix is complex. Model experiments
on single swelling pores could help us to understand the physical principles underlying
these problems. Several studies have described the imbibition into capillary tubes made of
hydrogels (Chang, Jensen & Kim 2022), but the behaviour of individual pores of swellable
fibrous materials remains elusive.

In this paper, we describe the imbibition of fluid between two stretched and parallel
fibres made of a swelling elastomer of well-known properties. The model pore formed
by the fibres has the advantage of allowing easy visualization of both the fluid front
and the swelling of the material. Moreover, this system also allows us to examine the
effect of stresses within the material, which impact both the swelling properties and the
overall deformations of the material. We show that, for swelling fibres, imbibition becomes
possible for larger distances than in the non-swelling case. We describe the dynamics of
this imbibition and show the existence of a swelling-dominated imbibition at constant
velocity. Our observations are compared with a linear poro-elastic theory capturing the
main physical ingredients of our problem and highlighting in return the change in the
material’s elastic properties. Finally, we describe the elasto-capillary collapse of our model
pore, which can be observed once surface tension forces overcome the restoring tension
force within the fibres.

2. Imbibition between two swellable fibres

2.1. Problem formulation and experimental set-up
We consider an elementary pore composed of two identical parallel fibres placed at a
distance 2d (figure 1a). The fibres, of initial unstretched length L0 and radius R0, are
stretched to a length L. The stretching causes the fibre radius to decrease. In all that follows,
R(z, t) denotes the local radius of the fibres in the stretched state. In the case of rigid
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Figure 1. Experimental set-up and notations. Panel (a) (constant length) shows two fibres of initial radius
R0 that are stretched to a length L (held constant). The meniscus position is called zm. Here, d denotes the
half-distance between the outer edges of the fibres. The fibres are clamped to a supporting frame at z = 0 and
z = L and held horizontally. A small portion of the fibres (approximately 2 mm) is in contact with the bath at
t = 0. As the fibres swell, the fluid can progress in the model pore thanks to capillarity. Pictures are then taken
from the top. Panel (b) (constant tension) shows that, to perform the experiment at constant tension, the fibres
are attached to a mass m and free to slide at z = L. The same supporting frame ensures that the fibres stay
parallel and horizontal. The length is no longer constant.

non-swelling fibres, L = L0 and R = R0 for all times and positions. In the case of swelling
fibres, R depends on both z and t. The position of the meniscus is denoted zm. In all that
follows, the subscript ‘m’ refers to the fluid meniscus.

To examine the effect of fibre swelling on the imbibition velocity, we fabricate fibres
out of polyvinylsiloxane (PVS, Zhermack Elite Double 32), a silicon-based elastomer that
swells when placed in contact with low-viscosity silicone oil. The fibres are fabricated
by sucking degassed liquid PVS into capillary tubes of known inner radii (250, 400 and
600 ± 1 μm) before it becomes solid. After polymerizing, the elastic fibres are extracted
by breaking the capillary tube and gently pulling on one end of the fibres. No preliminary
treatment is done to the capillary tubes. We obtain fibres of Young’s modulus E = 0.9 ±
0.1 MPa and elastic Poisson ratio νP = 1

2 . To describe the extent to which a fibre swells,
we define the maximal swelling ratio of our fibres as

λmax = Rmax

Rs
. (2.1)

For an isotropically swelling material, it is defined so that λ3
max = Vswollen/V0, where

Vswollen is the volume of a polymer slab swollen completely under no mechanical
constraints when immersed in a solvent bath and V0 is its initial unswollen volume. We
can also define the current swelling ratio (which will vary along the position of the fibre)
as λ(z, t) = R(z, t)/Rs. In our case, λmax = 1.55 ± 0.05. The exact value of the maximal
swollen radius depends slightly on the temperature as well as the tension applied to
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the fibres (Van de Velde et al. 2022). The variations remain small compared with the
overall swelling and we thus consider λmax = 1.55, which was measured on free swelling
fibres immersed in a solvent bath, to be a good approximation for our experiments. The
swelling time scales depend highly on the fibre geometry and oil viscosity and can range
anywhere from seconds to multiple days for large enough polymer blocks. More details
on the time scales are discussed in § 3. Figure 1 presents the experimental set-up used
throughout this study. Depending on the experiment, we used two different configurations.
In configuration A (figure 1a), the fibres are prestretched and attached to a custom
Plexiglas frame with engraved slits ensuring that the fibres stay parallel throughout the
experiment. The total stretched length of the fibre is set to L = 3 cm (i.e. the length of
the frame) unless otherwise specified. Calling L0 the unstretched length of the fibres,
the imposed stretch is given by ε = L/L0 − 1. At both ends, the fibres are clamped,
ensuring that their length remains constant. As the fibre radius will shrink due to the
stretch, we call Rs = R0/

√
1 + ε the radius of the fibre in its stretched state before any

swelling. As the fibres are compressed at their ends due to the clamps, a small region
(of the order of 1 mm) is not perfectly circular. Nonetheless, as this portion is small
compared with the fibre length, we assume that, before any swelling occurs, R = Rs at
all positions. The fibres are maintained horizontal during the whole experiment to prevent
any gravitational effects. Before every experiment, any dust particles are removed using
compressed air and any electrostatic charges are removed using an ion gun. An overfilled
bath of low-viscosity silicone oil (Carl Roth, M2, M3 or M5, viscosity η = 2.3, 3.2 or
5.4 ± 0.3 mPa s) is then placed in contact with one end of the fibres (figure 1). A small
portion of the fibres (approximately 2 mm) is thus always in contact with the oil. In the
second configuration (figure 1b), the fibre length is no longer constant. It is still clamped
at z = 0 where the fibres touch the oil bath but the fibres are able to slide within the slits of
the supporting frame at z = L. As shown in the schematic, both fibres sit on a ballbearing
and are connected to a known mass m applying a constant tension on the fibres throughout
the experiment. Unless otherwise specified, all presented experiments are performed at a
constant length.

We track the evolution of the system by taking pictures at regular intervals using a
camera (Basler ac 3.0) and a 50 mm lens. The frame rate is adjusted depending on the
experiment. An image taken before the start of the experiment allows us to measure the
values of d and Rs before starting the imbibition. As the fibres are elongated objects and
filmed as a whole, the resolution in the direction perpendicular to the flow is limited.
One pixel corresponds to approximately 4 μm in our measurements, which explains the
uncertainty when measuring d/R.

2.2. Imbibition without swelling
The imbibition between two rigid and parallel fibres was described at the end of the 1960s
in different studies. The main difference with the imbibition in a capillary tube comes from
the fact that the two fibres form an open tube, leading to a saddle-shaped meniscus rather
than a spherical cap. Dyba and Miller showed experimentally that the imbibition between
two fibres is only possible if the interfibre distance is lower than a critical value (Dyba
& Miller 1969). This value was later rationalized by Princen (1969). In his 1969 article,
Princen described the shape of the fluid column between the fibres, and in particular the
two main curvatures of the saddle-shaped meniscus, allowing him to calculate the Laplace
pressure in the column. If this pressure is negative and in the absence of gravity, the fluid
will imbibe the inter-fibre space. The fluid–air interface thus has to be oriented inward,
which is only the case when the fibres are close enough to one another. For a fully wetting
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fluid, this transition occurs when

d
R0

= π

2
− 1 � 0.57. (2.2)

Note that, in the rigid case, Rs = R0. Although the exact capillary imbibition dynamics
remains to be described, it has been shown experimentally that the meniscus position
scales, similarly to the tube case, as

zm ∼ αt1/2, (2.3)

where α depends on the oil viscosity η, as well as the distance between the fibres (Bintein
2015). Recently, a numerical study showed that the description of the meniscus made
by Princen still holds during the capillary rise (Charpentier, de Motta & Ménard 2020).
Unlike the case of a tube, the imbibition is slower if the fibres are further apart and the
imbibition velocity tends to 0 when d/R0 comes closer to the limit value of 0.57. In this
study, we wish to understand how swelling of the fibres will affect the imbibition dynamics
between two fibres. We will see that both the critical distance at which imbibition occurs
and the imbibition dynamics are modified in the presence of swelling.

2.3. Imbibition between swelling fibres

2.3.1. Condition for imbibition
We vary the distance d/Rs and record the evolution of the meniscus. Figure 2 shows the
different scenarios observed when varying the value of d/Rs. At large initial d/Rs we
observe some swelling of the fibre portion in contact with the solvent bath (left side of the
pictures, figure 2) but no progression of the meniscus between the fibres occurs (figure 2).
In figure 2(c), on the other hand, d/Rs is small and the Princen criterion (2.2) is met at
t = 0. As soon as the fibres come in contact with the solvent bath, some fluid imbibes
the pore. This imbibition happens within seconds, which is much faster than the typical
time scales for swelling (around 1–2 min). Once the meniscus has advanced sufficiently,
we observe a collapse of the model pore. This leads to an acceleration of the meniscus,
as observed in the literature (Aristoff, Duprat & Stone 2011; Duprat, Aristoff & Stone
2011). Finally, for an intermediate value of d/Rs (b), Princen’s criterion is not met at t = 0.
Nonetheless, we observe a meniscus imbibing the interfibre pore. The time scales are much
larger than in the case of capillary imbibition. Indeed, the meniscus progresses by locally
swelling the fibres, which reduces d and increases R, thus effectively lowering d/R until
criterion (2.2) is met. Again, once the meniscus has progressed enough, we observe the
collapse of the pore, leading to an acceleration of the meniscus. To predict which type of
imbibition will occur, we wish to extend Princen’s criterion (2.2) to a swollen fibre. For
simplicity, we will consider that the fibre swells uniformly at a given position z. In reality,
as can be seen from figure 2(b), the swelling is asymmetric as there is more swelling
inside the pore than outside. Effects of this asymmetry will be discussed in more detail
in § 3.2.3. Figure 3(a) shows a cross-section of the fibres, illustrating how R and d change
when the fibres swell. Inserting the swollen radius and reduced interfibre distance into
(2.2), we obtain a new criterion defining the limit between swelling-induced imbibition
and no imbibition

d − (λmax − 1)Rs

λmaxRs
< 0.57, (2.4)

978 A2-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

97
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.976


P. Van de Velde, J. Dervaux, C. Duprat and S. Protière

(a)

(b)

(c)

d/Rs = 1.64

d/Rs = 0.55 

d/Rs = 1.02 

0 s

30 min

180 min

0 s

3 s

1 min

7 s

8 s

10 s

50 min

80 min

120 min

140 min

2 mm

Figure 2. Different imbibition regimes. Pictures show top views of experiments at specified times from the
beginning of the experiment. Fibres of radius R0 = 250 ± 1 μm with an initial stretch of ε = 0.6 are placed
in contact with an oil bath (left side of the picture). Depending on the initial distance d between the fibres,
different imbibition regimes are observed. (a) For fibres placed at a large distance, no imbibition is observed.
The fibres swell at their base but show no motion of the meniscus. (b) For distances above the Princen criterion
(2.2), the meniscus may propagate by swelling the fibres locally. The swelling reduces d and increases R until
the imbibition becomes possible. The imbibition also provokes the collapse of the structure once the capillary
force overcomes the tension within the fibres. (c) For sufficiently small distances, the imbibition is purely
elasto-capillary. Within a few seconds, the meniscus has imbibed far enough to make the fibres collapse. Here,
the meniscus reaches the end of the fibres before any significant swelling is noticeable.

or

d
Rs

< 1.57λmax − 1. (2.5)

In our specific case, we obtain d/Rs < 1.43 as an upper limit for the swelling-induced
imbibition. Figure 3(b), summarizes the three observed regimes depending on d and
Rs. Princen’s criterion and (2.5) separate elastocapillary imbibition, swelling-induced
imbibition and cases without imbibition.
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Figure 3. Imbibition criterion. (a) Schematic of the cross-section of the fibres before and after swelling at a
given position z along the fibre. As the fibres swell, their radius increases to λRs (dotted lines), where λ is the
swelling ratio of the fibres. Here, d also decreases as the fibres swell, which may allow imbibition if criterion
(2.2) is reached. (b) Predicted phase diagram showing the type of imbibition depending on d and Rs. Using
the new values of d and R, we obtain a new imbibition criterion. For values of d and R between the two black
lines the imbibition is induced by the swelling. The lower line is the upper limit for purely elasto-capillary
imbibition. For distances above the second line, the fibres remain too far apart, even after swelling completely.

2.3.2. Imbibition dynamics
Figure 4 presents the measured values of the meniscus position zm for fibres of initial radius
R0 = 250 μm. The initial stretch is set to ε = 0.6 and the initial distance d between the
fibres varies. The oil viscosity is η = 3.2 mPa s for all experiments. In figure 4(a), we plot
the meniscus position as a function of time for different initial values of d/Rs. We observe
that a higher value of d/Rs leads to a slower overall imbibition. For small initial distances
(d/Rs < 0.7), the fibres collapse within a few seconds and the meniscus rapidly progresses
towards the end of the fibres. For larger distances (d/Rs > 0.7), the dynamics can be
divided into two different parts, illustrated in figure 4(b). After a rapid initial increase
of zm due to the swelling of the fibre portion in contact with the solvent bath at t = 0, we
observe a long swelling-dominated regime. In this regime, the progression of the meniscus
is enabled by the local swelling of the fibre, which reduces the interfibre distance. The
characteristic times of the swelling are much larger than the typical time scales of a purely
elasto-capillary imbibition and we can thus consider the capillary imbibition to be almost
instantaneous. The meniscus velocity is thus solely determined by the speed at which the
fibre swells. Interestingly, the imbibition occurs at a quasi-constant velocity, which we call
vswell. We can estimate it experimentally by measuring the slope of zm(t), as shown in
figure 4(b). In the next section, we will attempt to estimate this imbibition velocity based
on our understanding of fibre swelling combined with geometrical arguments.

3. Swelling-induced imbibition velocity

3.1. Simple scaling based on immersed swelling dynamics
Within the region of swelling-induced imbibition, the meniscus can only propagate
through the swelling of the fibre portion ahead of zm. Since the capillary imbibition is
a much more rapid phenomenon than swelling (it occurs in seconds, whereas swelling
takes minutes), we estimate that the meniscus is always located at the largest possible
z for which d/R < 0.57. Experimentally, we can confirm this statement by measuring d
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Figure 4. Swelling-induced imbibition: dynamics. (a) Measured meniscus position zm vs time for various
initial values of d/Rs. In these experiments, R0 = 250 μm and the initial stretch is set to ε = 0.6. A larger
initial interfibre distance leads to a slower imbibition and a delayed zipping transition. The exact imbibition
velocity is very sensitive to the value of d/R. (b) Meniscus position vs time for d/Rs = 1.01 (also presented in
figure 2b.) Insets are the experimental pictures corresponding to the larger dots on the graph. After a rapid initial
swelling of the fibre portion in contact with the solvent bath, we observe a long imbibition at a quasi-constant
velocity. We call vswell the slope of the curve in the region of swelling-dominated imbibition. When zm reaches
1 cm, the meniscus accelerates and we observe the collapse of the structure, which accelerates the meniscus
(zipping). We call lzip the distance at which the zipping occurs (details in § 4.).

and R at the meniscus position. As such, as long as elastic effects can be neglected, the
concentration profile in the meniscus-centred reference frame is constant, explaining the
constant imbibition velocity. To estimate this velocity, we propose a scaling based on the
swelling dynamics of an immersed fibre, described in a previous publication (see Van de
Velde, Protière & Duprat (2021) and Van de Velde (2022) for more details).

The swelling dynamics of a fibre immersed in a solvent bath can be fitted by the
following law:

λ(t) − 1
λmax − 1

= 1 − exp
( −t

Tswell

)
, (3.1)

where Tswell = R2
0η/D∗ is a characteristic time scale of the swelling process, and D∗ a

pseudo-diffusion coefficient that does not depend on the oil viscosity η, defined so that
D = D∗/η has the dimension of a diffusion coefficient. A larger fibre or a more viscous
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Figure 5. Estimation of vswell. (a) Schematic explaining the mechanism behind the swelling-induced
imbibition. To progress from z to z + dz, the small fibre portion (dotted black box) has to swell until d/R = 0.57
locally. (b) Comparison of the normalized experimental swelling velocities (points) and the values predicted
by (3.5) (line). The black line corresponds to 1/f (d/R0). The black diamonds correspond to constant-tension
experiments. The imbibition velocity is always lower compared with experiments where the overall stretched
length of the fibre was held constant.

oil will lead to a slower overall swelling of the fibre. For simplicity, we will assume that
the elastic deformations remain small, i.e. Rs � R0.

The schematic (figure 5a) shows the propagation mechanism we propose. We consider
a fibre that is completely dry ahead of the meniscus and swollen behind it. At a time t,
the meniscus is located at a position zm for which d/R = 0.57 (according to Princen’s
criterion). To reach zm + dz, the small fibre portion of length dz has to swell until d/R =
0.57. We call dt the time necessary to reach this fibre radius. Using the swelling ratio λ(t)
we can rewrite this condition as

d
R0

< 1.57λ(dt) − 1. (3.2)
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By substituting (3.1) we obtain

d
R0

< 1.57
[
(λmax − 1)

(
1 − exp

( −dt
Tswell

))
− 1

]
− 1, (3.3)

which we can simplify to deduce

dt = Tswell ln

⎡
⎢⎢⎣ λmax − 1

λmax − 1
1.57

(
1 + d

R0

)
⎤
⎥⎥⎦ . (3.4)

In all that follows, we will call f (d/R) the logarithmic function such that dt = Tswellf (d/R).
For dz, R0 is the natural length scale we choose. Indeed, considering our material to be
isotropic, as the fluid will diffuse radially towards the centre of the fibre over a distance
close to R0, this will lead to a swelling of the order of R0 in the axial direction of the fibres.
We thus obtain an estimate for the velocity

vswell � dz
dt

= D∗

ηR0f (d/R0)
. (3.5)

In figure 5(b), we compare the experimental values of vswell with our scaling. The values
are normalized by the natural velocity D∗/ηR0 emerging from (3.5). The black line
presents the value of 1/f (d/R0). We varied the radius of the fibre R and the oil viscosity
and find that the data seem to collapse well and are in good agreement with our scaling. In
particular, the two asymptotes at d/R0 = 0.57 and d/R0 = 1.43 correspond to the limits
obtained in § 2.3. At d/R = 0.57, our model assumes an infinite velocity since we do not
consider the exact dynamics of the capillary flow. When d/R0 comes close to its upper
boundary, the time necessary to swell the fibres becomes extremely long, thus vswell tends
to zero.

The black diamonds in figure 5(b) show the experimental values obtained at constant
tension. The experimental set-up used for these experiments is described in figure 1(b).
To maintain a constant tension within the fibres during the imbibition, we used long fibres
which were clamped at one end and free to slide in the slits of the Plexiglas frame at x = L.
The length of the fibres is thus no longer constant. The end of the fibres was attached
to a constant mass m, thus effectively imposing T = mg/2 in each fibre. We find that
the velocity is always smaller here than at fixed length/non-constant tension. This shows
that tension in the fibre plays a crucial role in the overall imbibition dynamics that is not
accounted for in our scaling analysis so far. In the next section, we propose to build a
model based on linear poroelasticity, that will justify the validity of our scaling analysis,
give more details on the imbibition mechanisms and highlight the role of fibre tension.

3.2. Refined modelling using linear poroelasticity
The scaling analysis made in the previous section gives a good estimation of the imbibition
velocity. We will now develop a more detailed model based on linear poroelasticity. This
model includes fluid diffusion in the z direction (which is neglected in the scaling). We will
see that it further justifies the choice of length and time scales made previously. Moreover,
it will allow us to predict fibre profiles and the evolution of the fibre tension in time and
thus compare the two experimental configurations we used. Predicting the tension decrease
due to the swelling is also key to understanding the elastocapillary collapse that we observe
in our experiments.
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3.2.1. Model equations
We model our fibres in the framework of linear poroelasticity based on Biot’s theory
developed for fluid imbibition in soils (Biot 1941; Hui & Muralidharan 2005; Dervaux
& Ben Amar 2012). This model was adapted to model the absorption of fluid drops on
fibres in a previous study (Van de Velde et al. 2022).

The fibre is considered as a poro-elastic material, which can be described by three
different quantities: the local solvent concentration c, the chemical potential μ and a
displacement field u. The initial values in the absence of any mechanical load are
homogeneous in the fibre, c = c0 and μ = μ0. The chemical potential in the fluid outside
the fibre is set at μ = μb. When the fibre touches the solvent, if μ < μb, solvent will
flow into the poroelastic network. By symmetry, we can consider only one of the two
fibres. The solvent concentration within the fibres can be linked to the deformations
of the material described by the displacement field u. The initial stretch applied to the
fibre is ε = L/L0 − 1. For simplicity, we do not consider any deflection of the fibres
due to the capillary force in the meniscus. The objective of the model is to give a
prediction for the spatio-temporal evolution of the solvent concentration c(z, t). The
derivation of all the equations is detailed in Appendix A. For simplicity, we will only
focus on the essential equations in this section. After simplifications due to the mainly
one-dimensional geometry of the fibres, we obtain the following equation describing the
solvent concentration along the fibre:

∂c
∂t

= D
∂2c
∂z2 + 2D

R0h
(cmax(t) − c)1d(z, t), (3.6)

which contains a diffusing term, with a diffusion coefficient D = D∗/η, and a source term,
where the fibres are in contact with the liquid with a length scale h characterizing the flow
of fluid across the fibre interface that is of the order of the fibre radius (Van de Velde et al.
2022). Here, 1d(z, t) = 1 if z < zm and 0 elsewhere. The maximal possible concentration
in the fibre is given by

cmax(t) = c0 + 3(1 − 2ν)

2GΩ2(1 + ν)

(
μb − μ0 + Ωσzz(t)

3

)
, (3.7)

where Ω is the molar volume of the solvent, ν is the poro-elastic Poisson ratio and μb is
the chemical potential in the drop (outside the polymer). Equation (3.6) can be understood
as a one-dimensional diffusion equation with a source term depending on the position of
the meniscus and the local concentration of solvent within the fibre. For simplicity, we
consider the source to be surrounding the fibre rather than located on one side of the fibres
only, although this effect could easily be incorporated by adding a prefactor proportional
to the fraction of the fibre perimeter in contact with the solvent to the second term on the
right-hand side of (3.6). Moreover, we consider the swelling to be homogeneous across the
fibre section, which is an approximation that we discuss later.

The tension in the fibre is found by integrating the concentration over the fixed length
of the fibre, i.e.

σzz(t) = 3Gε − GΩ

L

∫ L

0
(c − c0) dz. (3.8)

We can also deduce the radial displacement along the fibre by calculating

ur(r, z, t) = r
2(c − c0)GΩ − σ zz(t)

6G
, (3.9)
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with r the coordinate in the radial direction of the fibres and G = E/3 the shear modulus of
the polymer. In fact, by combining (3.6), (3.7) and (3.8), one obtains an integro-differential
equation. Complex effects arise from the fact that the equilibrium concentration in the fibre
depends on the current tension, which in turn depends on the total amount of fluid that has
diffused into the fibre.

We opt for no-flux boundary conditions at z = 0 and z = L in the constant length
configuration. At constant tension, we have a no-flux boundary condition at z = 0 and
c = 0 at z = ∞. To solve for the meniscus position, we also need to evaluate the position
of the meniscus. By considering the capillary imbibition to be instantaneous compared
with the poroelastic diffusion within the fibres, we find zm(t) as the largest value of z
verifying d(z, t)/R(z, t) < 0.57. This is done numerically at each time step.

We will now solve this set of equations first analytically at constant tension and then
using finite differences.

3.2.2. Solution at constant tension
In all that follows, we consider c0 = 0 for simplicity, as this does not change the reasoning
made in this section. We simplify the equations by considering a constant tension such
that σzz = σ0 = 3Gε at all times. Considering (3.8), this holds as long as the integral term
is small compared with 3Gε. If zm/L = 0.2, assuming the fibre is fully swollen behind
the meniscus, the associated change in stress is 	ε = L/L0 − L/(1 + 0.2(λmax − 1))L0 =
0.1ε. Taking this as a limit, we assume that, as long as zm/L < 0.2, this simplification is
reasonable, thus allowing us to use it to estimate vswell. The maximal concentration within
the fibre is thus constant. Considering the capillary imbibition to be instantaneous relative
to the swelling process, we can still assume that d/R = 0.57 at the meniscus position. As
d and R can be evaluated from the radial displacement, this is written as

d − uR

R0 + uR
= 0.57. (3.10)

Knowing uR from (3.9), we can rewrite (3.10) as

d − R0

(
2cmGΩ − 3Gε

6G

)
= 0.57R0

(
1 + 2cmGΩ − 3Gε

6G

)
, (3.11)

and, after isolating cm, we obtain

Ωcm = 3
d − 0.57R0

1.57R0
+ 3

ε

2
. (3.12)

The maximal concentration within the fibre can also be deduced as a function of the
maximal swelling ratio λmax. At a constant tension, cmax is a constant (as is λmax). Knowing
that uR,max = (λmax − 1)R0, and using (3.9) with c = cmax we obtain

Ωcmax = 3(λmax − 1) + 3
2ε. (3.13)

In the steady state (far from z = 0 and z = L), the meniscus propagates at a constant
velocity vswell, thus zm = vswellt and we can rewrite (3.6) as

∂c
∂t

= D
∂2c
∂z2 + 2D

R0h
(cmax(t) − c)θ(vswellt − z), (3.14)

where θ is the Heaviside function. Note that the steady-state solution only exists at a
constant tension.
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Placing ourselves at the meniscus position such that z′ = vswellt − z, we can rewrite our
equation as

∂2c
∂z′2 + vswell

D
∂c
∂z′ + 2

R0h
(cmax − c)θ(z′) = 0. (3.15)

We consider a fibre of infinite length (i.e. that the meniscus is very far from the clamps).
The boundary conditions on the concentration are then as follows:

c(z′) =
⎧⎨
⎩

cm, z′ = 0
cmax, z′ = −∞
0, z′ = +∞.

(3.16)

We find the solutions ahead and behind the meniscus separately and get the following
solutions:

c(z′) =

⎧⎪⎨
⎪⎩

cm exp
(
−vswell

2D
z
)

, z′ > 0

cmax + (cm − cmax) exp
((

−vswell

2D
+ 1

2

√(vswell

D

)2 + 8
R0h

)
z′
)

, z′ < 0.

(3.17)
The continuity of flux at z′ = 0 then gives us

∂c
∂z′ (z

′ = 0−) = ∂c
∂z′ (z

′ = 0+), (3.18)

and after rearranging

cm = cmax

⎛
⎜⎜⎜⎜⎝1 − 1√

1 + 8D2

v2
swellR0h

⎞
⎟⎟⎟⎟⎠ . (3.19)

Replacing cmax with (3.13) and comparing the expressions obtained for cm in (3.12) and
(3.19) we get, after a few lines of algebra, the following expression for vswell:

vswell
√

R0h
D

= 2
√

2

⎛
⎜⎜⎝

⎛
⎜⎜⎝ λ− 1 + ε/2

λ− 1 − d − 0.57R0

1.57R0

⎞
⎟⎟⎠

2

− 1

⎞
⎟⎟⎠

−1/2

. (3.20)

We can thus define V∗ = D/
√

R0h as the natural velocity of our system. Note that, if
h = R0 (which is the case in previous studies Van de Velde et al. 2022), one recovers the
natural velocity found by our scaling developed in the previous section. An increase in
stretch will lead to a decrease of vswell since Rs will decrease slightly due to the elastic
Poisson effect, the distance between the fibres will thus slightly increase. An increase in
ε can thus be related to an increase in d/Rs. The maximal swelling ratio has little effect
on vswell, but rather on the limit values of d/Rs. Figure 6 shows the normalized velocity
calculated with (3.20) (red solid line) compared with our previous scaling (black solid
line). The analytical solution is similar to our scaling, thus confirming the length and
time scales we chose before. Differences between the poro-elastic model and the scaling
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104 Scaling
Analytical solution
ε = 0 constant (num)
ε = 0.3 constant (num)
R0 = 250 µm, η = 3 mPa s
R0 = 250 µm, η = 2 mPa s
R0 = 400 µm, η = 2 mPa s
R0 = 600 µm, η = 2 mPa s
R0 = 250 µm, η = 5 mPa s
ε = 0.3 constant (exp.)

v
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0
η
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0.4 0.6 0.8 1.0 1.2 1.4

d/R0

Figure 6. Poroelastic estimation of vswell. Normalized experimental values of vswell (points) compared with our
scaling (black), the analytical solution of the poroelastic model (3.20) (red line) and the values of vswell found
by solving the model numerically with a constant zero tension (red crosses) and constant non-zero tension
(ε0 = 0.3, red squares) (§ 3.2.3). Black diamonds correspond to values found experimentally at a constant
non-zero tension (ε = 0.3).

become visible at large values of d/R0, as diffusion in the axial direction plays a larger role.
The red crosses present the values of vswell obtained by solving our model numerically at
a constant zero tension. The results overlap with our analytical solution, which means we
can trust our numerical scheme to find the solution at a time-dependent tension using this
method. The deviations between the analytical solution and the simulations at large values
of d/R0 can be attributed to the finite size of the fibres in the simulation, which is not the
case for the analytical solution (3.16). Our analytical solutions (and the scaling) both agree
well with our data, even though they are evaluated at a constant, zero tension, whereas the
experimental data are obtained at non-zero time-dependent tension. The scatter of the data
at small values of d/R0 is mainly due to the fact that the cross-over between the regime of
quasi-constant velocity and the acceleration due to elasto capillary effects happens sooner,
thus decreasing the period over which vswell can be measured. This might also lead to
a slightly higher measured velocity compared with the constant-tension models. The red
squares show the results of the simulation for a constant tension corresponding to the same
stretch of ε = 0.3 as the experiments described in the previous section (black diamonds).
We have a good agreement between our experiments and the numerical simulations. This
means that, in reality, our scaling slightly overestimates the value of vswell. The good
agreement between the experimental data obtained at a constant length and the scaling
is fortunate and probably due to the elasto-capillary deflection of the fibres or the fact
that the swelling is not uniform across the fibre cross-section. Our poro-elastic model can
predict the imbibition velocity accurately in the absence of elasto-capillary deflection. To
estimate this deflection, it is key to understand the evolution of the fibre tension throughout
the experiment. In section (3.2.3), we solve our equations with a variable tension, which
allows us to predict the evolution of the fibre tension over time. This will also allow us to
understand the acceleration of the meniscus observed before the zipping transition.
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2R

z = 0 mm

0.2

0

–0.2

0 0.5 1.0 1.5

z (cm)

x 
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m
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2.0 2.5 3.0
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z

(a)

(b)

(c)

Figure 7. Simulated fibre profiles. (a) Fibre profiles obtained with our full poroelastic model. Coloured lines
represent the inner edge of each fibre at different times (regular intervals, see hatched region of the schematic
above). Grey lines denote the meniscus position. We can reproduce the swelling-induced imbibition. The fibre
radius close to z = 3 cm increases as the swelling causes the tension to decrease. This leads to a progressive
acceleration of the meniscus. (b) Overlap of simulated profiles and experimental pictures for different meniscus
positions. Simulation and experiment are in good agreement. Differences exist at the outer edges of the fibres
since the model does not take the asymmetry of the problem into account. (c) Zoom on the meniscus (red
square in (b)) showing the complex three-dimensional shape of the contact line.

3.2.3. Solving the equations with a time-dependent tension
In our experiments, as the fibres swell and expand both radially and axially, the tension
in the fibre decreases over the course of the imbibition since its total stretched length is
maintained constant. To quantify the effects of this decrease in tension we solve (3.6)
with a time-dependent tension using a finite difference scheme of order 1. Note that, in
this case, the fibres still stay straight and are not deflected by capillary forces. Figure 7(a)
shows fibre profiles at regular intervals during the imbibition. Lighter curves correspond
to later times. The meniscus position at each step is represented by the vertical grey lines.
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Figure 8. Simulated values of zm and tension. (a) Simulated meniscus position for different values of d/R0
obtained with an initial stretch ε0 = 0.3 with a time-dependent tension. For d/Rs = 0.67 the simulation stops
once d/R = 0.57 in the non-swollen region of the fibres. Dashed lines correspond to the constant-tension
case. Panel (b) shows a close-up of the initial minutes of the simulation. A small portion of the fibres (2 mm)
is in contact with the fluid bath and swells but zm remains constant. As soon as Princen’s criterion is met,
the imbibition starts. The initial slopes (thus the values of vswell) match for the constant and time-dependent
tension experiments as the initial values of stretch are the same. (c) Corresponding values of the normalized
axial stress as a function of time. The further the fibres are apart, the slower the imbibition and the slower the
tension decrease. (d) Normalized axial stress as a function of the meniscus position. All the curves seem to
collapse onto the same curve. Slight differences come from the difference in swelling at the meniscus position,
which is necessary to start the imbibition process. Once the fibre relaxes enough, d/R in the dry region comes
closer to 0.57, speeding up the meniscus, leading to a deviation from the common curve.

By looking at the position of the fibre/air interface at large values of z we can see that
the fibre radius increases far away from the meniscus. This is due to the relaxation of the
axial constraint (3.8) induced by the absorption of liquid. This relaxation will effectively
increase R and decrease d over time, both in the swollen and in the dry regions of the
fibre. This time evolution explains the acceleration of the meniscus observed numerically
and experimentally. The predicted meniscus position when including the effects of a
time-dependent tension in the model is plotted against time in figure 8(a) for different
values of d/R0 (solid lines). The dashed lines correspond to simulations at a constant
tension, equivalent to the initial tension in the time-dependent tension calculation. Note
that, at constant tension, apart from the initialization at very small times, for which zm is
constant (figure 8b), the meniscus velocity is strictly constant. The initial plateau, both
for time dependent and constant tension, corresponds to the swelling of the small fibre
section initially touching the bath, which first needs to reach Princen’s criterion before
allowing a progression of the meniscus. As in the experiment, a smaller interfibre distance
leads to faster imbibition. For the smallest value of d/R0 (darkest curve), the simulation is
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stopped before the meniscus reaches the end of the model pore. We can stop the simulation
once d/R = 0.57 even in unswollen regions of the fibre since the imbibition then becomes
purely capillary. We also recover the fact that the imbibition happens at a quasi-constant
velocity at a small value of zm. We estimate the values of vswell by considering the slope
of zm = f (t) once the imbibition starts. In fact, it is identical to values obtained with
a constant tension, provided the initial values of ε0 are the same (cf. figure 8a). The
elastocapillary deflection being highly dependent on the fibre tension, we calculate the
predicted axial stress σzz within the fibres using (3.8). Figure 8(c) shows that the axial
stress reduces a lot during the absorption. This causes an overall increase in fibre radius,
as detailed before. When plotted against the meniscus position (figure 8c), all the values
of stress collapse, meaning that the stress depends only on the meniscus position zm. Since
the overall stress depends solely on the total amount of fluid absorbed by the fibre, this
can only be true if the size of the region of variable concentration (around the meniscus)
is very small compared with the overall fibre size. This further justifies the approximation
made for our scaling, where we suppose the transition between swollen and dry fibre to
be located exactly at the meniscus position. In reality, this is not entirely true. From the
profiles of figure 7 we see that the region in which 0 < c < cmax has a non-zero extension
(figure 7c). A slight deviation can also be observed in figure 8(d) for small values of d/R
(purple curve). If d/R is small, the progression of the meniscus is fast and the fibre has less
time to swell behind zm. In other words, the portion of the fibre with a spatially variable
concentration is larger).

A time-dependent tension thus tends to increase the imbibition velocity compared with
the constant tension case, an effect observed both in experiments and numerics. We have
seen in this section that our model including the tension tends to under-estimate the value
of vswell in all cases. It thus seems that, in our experiments, an additional effect leads to
an increase of the velocity. A good candidate for this is the elastocapillary deflection due
to the presence of fluid between the fibres. In the next section, we aim to estimate this
deflection and the position of the meniscus at which the zipping transition occurs using a
simple mechanical model.

4. Elastocapillary collapse

We mentioned several times that the fibres later on undergo an elastic collapse. We now
wish to describe this, as well as the rapid acceleration of the meniscus that occurs in the
final stages of most of our experiments. It is triggered once the capillary force exerted
by the meniscus overcomes the restoring tension force in the fibres. The elastocapillary
collapse of fibrous structures has been described on arrays of fibres exposed to fluid baths
(Bico et al. 2004; Bico, Reyssat & Roman 2018) or drops (Duprat & Protiere 2015) as well
as during the capillary imbibition between flexible plates (Aristoff et al. 2011; Duprat et al.
2011). In all cases, the capillary force exerted by the fluid overcomes either the bending
stiffness of the solid or a tension force that tends to keep the solids separated. In the case
of swelling PVS plates, the deformations induced by swelling can induce motion of a fluid
drop, which advances by swelling the elastomer and keeping the two plates together via
capillary forces (Holmes et al. 2016). The time scales of the elastic collapse are of the
order of a few seconds, which is much smaller than the typical time scales of swelling.
This collapse is thus a pure elasto-capillary effect. In this section, we wish to understand
the role swelling can play on the meniscus position at which the collapse can occur.

Over the course of the imbibition, the tension within the fibres will decrease due to
the swelling, while the capillary force increases as the overall length of the contact line
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Figure 9. (a) Notations used to calculate the deflection due to the capillary force. The fibre is assumed to be
composed of two rigid rods connected at z = zm. Here, φ1,2 are the deflection angles at z = 0 and z = L. To
predict the deflection we equal the moments exerted in 0 by the capillary force (green arrow) and the tension
T within the fibre (red arrow), which gives (4.3). (b) Estimated value of the length at which the imbibition
becomes elasto-capillary (lzip) for different values of ε and d/Rs. The points correspond to experimental values.
Here, lzip is fixed at the point of highest acceleration of the meniscus.

increases. We call lzip the position of the meniscus at which the zipping occurs. We define
it as the point of maximum acceleration of the meniscus (figure 4(b); details are given in
Appendix B).

To predict the position of the meniscus at which the zipping occurs, we calculate the
maximum deflection δ of the fibres (i.e. the deflection at the meniscus position). Our
zipping criterion is the following:

d − δ

R
< 0.57. (4.1)

In other words, the elastocapillary deflection alone is sufficient to allow the imbibition
without needing to further swell the fibres. Since the elastocapillary imbibition is much
quicker than the swelling-induced imbibition, the meniscus speeds up significantly. As it
progresses, the capillary force also continues to increase until, eventually, the fibres come
into contact. To predict the deflection analytically, we consider a fibre composed of two
rigid rods connected at the meniscus position (figure 9a). We estimate the capillary force
to be constant over the entire wetted length and neglect the saddle shape of the meniscus
(i.e. assuming zm � d) giving a force per unit length

dFc = 2γ. (4.2)

The factor 2 comes from the fact that there is one contact line on each side of the fibre.
When summing all forces, it becomes equivalent to a point force Fc = 2γ z exerted at the
centre of the left rod. A balance of moments gives us the following relationship between
capillary and axial tension forces:

T
√

z2 + δ2 sin(φ1 + φ2) =
√

z2 + δ2

2
2γ z cos φ1, (4.3)
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where T is the tension force within the fibre, and φ1,2 the angles between the fibre and
the horizontal position (as shown in figure 9). After expanding the sin and rearranging the
terms

tan φ1 cos φ2 + sin φ2 = γ z
T

. (4.4)

This gives, at first order in φ1,2 considering small angles (and thus small deflections
δ/L 	 1),

δ

z
+ δ

L − z
= γ z

T
, (4.5)

and finally the deflection depending on the meniscus position

δ(z) = γ z2(L − z)
LT

. (4.6)

An estimate of the fibre tension can be found by considering a fibre fully swollen for
z < zm and dry for z > zm. We can then estimate the change in unstretched length L0 using
the maximal swelling ratio λmax giving for the tension

T = EπR2
0ε = EπR2

0

(
L

L0 + (λmax − 1)zm
− 1

)
. (4.7)

Equation (4.7) is a simplified version of (3.8) but gives very similar results as shown in
figure 11; see Appendix C. We thus use it here for simplicity to find an estimation for lzip.
We can combine (4.1) and (4.7) to obtain the following equation for lzip:

γ l2zip(L − lzip)(L0 + λmax − 1)lzip)

LEπR2
0(L − L0 − (λmax − 1)lzip)

= d − 0.57R0. (4.8)

The solutions for (4.8) are shown in figure 9. Here, lzip is plotted against d/R0 for different
values of the initial stretch. All curves and data points are obtained for fibres having an
initial radius of 250 μm. The colours of the experimental points and modelled values
(lines) have matching colours corresponding to different values of ε; lzip is undefined for
d/R0 < 0.57 since the imbibition will then always be elastocapillary and lzip increases with
the stretch, which is intuitive as it then becomes more difficult to deflect the fibres. At high
stretches, the fibres will also have to be deflected more, explaining why lzip also increases
with d/R0. The data and curves are in good qualitative agreement. Several limitations
to our model might explain the discrepancies between model and experiment. First, the
definition of lzip is slightly ambiguous as elastocapillary imbibition will not cause the
fibres to collapse at z = 0. The estimation of the capillary force is also simplified. The
exact position of the triple line on the fibres is hard to determine and is highly dependent
on the local distance between the fibres. The exact radius of the fibres is also estimated
roughly here, as we consider a fibre fully swollen behind the meniscus and dry in front of
it. Finally, the exact shape of the meniscus is three-dimensional and thus the force exerted
on the fibres at z = zm is prone to errors here. For small values of d/R0, the imbibition
is relatively fast and the fibres may not have the time to swell completely behind the
meniscus. For small values of stretch (dark purple points in figure 9) in particular, the
assumption that the fibre is fully swollen behind the meniscus is certainly wrong as the
deflection of the fibres leads to relatively fast imbibition, even at small times. This could
explain why the experimental value of lzip is actually decreasing with d/Rs. For larger
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values of d/Rs, the fibres have the time to swell at an equivalent meniscus position, the
tension is actually lower than for small values of d/Rs. To correct this, the model would
need to include the transient swelling dynamics and couple it to the dynamics of the
capillary flow between two fibres, which is beyond the scope of this study.

5. Discussion and conclusion

In this study, we have described the elasto-capillary imbibition in a model pore composed
of two swellable fibres. We have shown that swelling enables imbibition even for fibres
that are a priori too far apart, i.e. above Princen’s criterion. The fibres are brought closer
together by swelling, leading to swelling-induced imbibition. By extending the imbibition
criterion established by Princen, we have found the upper limit for the interfibre distance
allowing this new kind of imbibition. Contrary to the purely capillary case, this imbibition
occurs at a constant velocity, which can be estimated via a scaling analysis. By deriving
and solving a more complex model based on linear poro-elasticity, we were able to
confirm the choices of length and time scales chosen for the scaling. The model is in
good agreement with the experimental data performed at a constant tension, for which the
elasto-capillary deflection is less important than for fibres kept at a constant length. The
deflection of the fibre is a result of the competition between the tension within the fibres
and the capillary forces exerted by the fluid. Its effect is to slightly accelerate the meniscus’
motion as the fibres are brought closer together. Eventually, it even leads to the elastic
collapse of the model pore (zipping of the fibres). To describe the deflection and predict
when zipping can occur, it is important to understand how the fibres’ tension decrease over
the course of the experiment. This evolution is well described with the poro-elastic model.
In a final section, we proposed an estimation of the deflection with a simplified model of
our fibres. In order to predict the precise imbibition velocities, a model coupling the precise
dynamics of the capillary flow with the swelling and the elasto-capillary deflection would
be needed. In real-life fibrous systems, such as paper sheets or fabrics, the fibres are often
much more constrained and therefore less deflection by the fluid is possible. In addition,
several pores can be adjacent and capillary forces exerted on a fibre might thus come from
both sides, limiting the deflection.

As mentioned, another limitation of our models comes from the wetting of the fluid
around and between the fibres. In our poro-elastic model, we consider a fluid source
surrounding the fibres, which is incorrect as the fluid is in reality located between the
fibres (Princen 1969). This non-symmetric location of the fluid leads to an asymmetric
swelling, (figure 7). Indeed, the inner part of the model pore swells at a slightly faster
pace than its outer part. Describing the exact position of the fluid around and within a
three-dimensional fibre is a challenging endeavour beyond the scope of our present study.
As the characteristic length scale of the meniscus is small compared with the length of
our fibre, we believe it could change the estimations of vswell but not affect the described
mechanisms for swelling-induced imbibition and elastic collapse of our structure. Again,
in the case of adjacent pores, this asymmetry might be lost as fluid could diffuse within
the fibre from both sides.

In this work, the time scales for the capillary imbibition and the swelling are different,
which allows for decorrelating of their effects in the models. A natural extension of this
work would be to consider different materials, for which the capillary and swelling time
scales become comparable.

Declaration of interests. The authors report no conflict of interest.
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Appendix A. Derivation of the poro-elastic equations

We model our experiment in the framework of linear poroelasticity. The fibre is considered
as a poro-elastic material, which can be described by three different quantities: the local
solvent concentration c, the chemical potential μ and a displacement field u. The initial
values in the absence of any mechanical load are c = c0 and μ = μ0. The chemical
potential in the fluid outside the fibre is set at μ = μb. When the fibre touches the solvent,
if μ < μb, solvent will flow into the poroelastic network. We will start by deriving the
equations describing the solvent motion within the network as well as the associated
deformations of the fibre. We will then add a source term to the equations, linked to the
presence of solvent at the outer boundary of the fibres.

Within the fibre, the conservation of the number of solvent molecules writes

∂c
∂t

+ ∇ · J = 0, (A1)

where J is the flux of the solvent in the gel, due to gradients in chemical potential. The
flux J of small molecules can be described by Darcy’s law

J = −
(

k
ηΩ2

)
∇μ, (A2)

where k is the permeability, η is the viscosity of the solvent and Ω is the molar volume of
the solvent.

The strain tensor ε is defined as

ε = 1
2

(∇u + (∇u)t) . (A3)

In the framework of linear poroelasticity, the stress tensor σ is given by

σ = 2G
(

ε + ν

1 − 2ν
Tr(ε)I

)
− μ − μ0

Ω
I, (A4)

where G is the shear modulus, ν is the poroelastic Poisson ratio and I is the identity
tensor. The poroelastic Poisson ratio describes how much fluid can be absorbed by a given
material. If ν = 1/2 there is no swelling. A direct measurement of this quantity is complex.
Most studies assume a value of ν = 1/3 for usual elastomers. We assume that solvent and
polymer molecules are incompressible. Thus any variation of the polymer volume can be
linked to the solvent concentration. The incompressibility condition writes

Tr(ε) = (c − c0)Ω. (A5)

The mechanical equilibrium in the bulk of the poroelastic material is described by the
Navier equations

∇ · σ = 0. (A6)

Combining the equations above we get

∂c
∂t

= D∗	c, (A7)
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where

D∗ = 2(1 − ν)Gk
(1 − 2ν)η

, (A8)

is an effective diffusion coefficient and Δ is the Laplace operator. The material parameters
G, k and thus D∗ are effective parameters that depend on the initial state of the gel. Finally,
combining (A3), (A4), (A5) and (A6), we get

GΩ

(
	u + Ω

1 − 2ν
c
)

= ∇μ. (A9)

To simplify this equation, we perform a dimensionality reduction by assuming our fibres
are thin (R 	 L) and consider time scales larger than R2/D∗. This is a time comparable
to the time scale τswell introduced in our scaling analysis, representing the time it takes
for solvent molecules to reach the fibre core. We will now consider that the concentration
and thus the chemical potential are approximately constant throughout the radius of the
fibre such that the problem will become effectively two-dimensional (z and time t). This
translates into the following assumptions:

c(r, z, t) = c̄(z, t), (A10)

μ(r, z, t) = μ(z, t). (A11)

For consistency with our approximation, we assume that physical quantities vary over a
typical length scale L in the axial direction z while they vary over a typical length scale
R in the radial direction r. At leading order in R/L, since R 	 L, the r-component of the
mechanical equilibrium equations (A9) thus implies

1
r

∂

∂r

(
r
∂ur

∂r
− ur

r2

)
= 0. (A12)

The only solution of (A12) that vanishes at r = 0 is of the form

ur(r, z, t) = rur(z, t). (A13)

The molecular incompressibility (A5) further implies that the axial displacement is
independent of r at leading order

uz(r, z, t) = uz(z, t). (A14)

From the results above, we deduce that the radial stress σrr and shear stress σrz are solely
functions of z and t, at leading order in R = L. The stress-free boundary condition at the
surface (σ · n = 0 at r = R) thus gives us

σrr = σrz = 0. (A15)

Therefore, we can obtain from (A9)

ur(r, z, t) = r
2(c̄ − c0)GΩ − σ zz(t)

6G
, (A16)

∂ ūz

∂z
= (c̄ − c0)GΩ − σ zz(t)

6G
, (A17)

μ̄(z, t) = μ0 + 2GΩ2(1 + ν)

3(1 − 2ν)
(c̄ − c0) − Ωσ zz(t)

3
. (A18)

If we find an expression for the stress σ and the concentration c, we will be able to find
the deformation field u. For now, we have not introduced the solvent source coming from
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the capillary flow. Here, c and σzz(t) can be calculated from the boundary conditions and
transport equation, which reads in cylindrical coordinates,

∂ c̄
∂t

+ 1
r

∂(rUr)

∂r
+ ∂Jz

∂z
= 0, (A19)

where Jz is the flux in the lengthwise direction. Integrating (A19) over the section of the
fibre gives

∂ c̄
∂t

+ 2Js
r

R
+ ∂Jz

∂z
= 0, (A20)

where Js
r is the surface flux of solvent coming into the fibre. It is present for all values

such that z < zm. We assume that the fluid surrounds the fibre completely (behind the
meniscus), even though in reality it sits only on the inner part of the fibres. This
approximation allows us to make the dimensionality reduction described above. Without
this, a complete three-dimensional model of the fibre would be necessary. We therefore
cannot here reproduce the exact asymmetric deformations observed in the experiments.
Nonetheless, this approach gives a good estimation of the overall deformations and
dynamics.

For z < zm, Js
r is simply proportional to the difference between the chemical potential in

the fluid μb and the chemical potential in the fibre μ. If z > zm, we assume that the fibre
is impermeable and this flux is zero. Utilizing (A18) we can write this flux as

Js
r = −k1d(z, t)

ηΩ2h
(μb − μ̄)

= −k1d(z, t)
ηΩ2h

(
μb − μ0 + Ωσzz(t)

3
− 2GΩ2(1 + ν)

3(1 − 2ν)
(c̄ − c0)

)
, (A21)

where h is a length (presumably microscopic) that characterizes the interface such that the
quantity k/2h is a surface permeability. The function 1d(z, t) is indicative of the source: it
is a function which value is 1 if there is a fluid in contact with the fibre at position z and
time t and which value is zero otherwise. We finally obtain the following equation, which
is essentially a diffusion equation with a source term wherever some solvent is touching
the fibres:

∂ c̄
∂t

= D
∂2c̄
∂z2 + 2D

Rh
(cmax(t) − c̄)1d(z, t), (A22)

where the time-dependent equilibrium concentration cmax(t) is

cmax(t) = c0 + 3(1 − 2ν)

2GΩ2(1 + ν)

(
μb − μ0 + Ωσzz(t)

3

)
. (A23)

The effective diffusion coefficient D appearing in (A22) is D = 2kG(1 + ν)/3η(1 − 2ν).
Interestingly, the maximal concentration within the fibres and thus the value of the
maximal swelling coefficient λmax depends on the current tension within the fibres. The
change in cmax over the course of the experiment has been described in a previous study
focusing on the absorption of drops (Van de Velde et al. 2022). The effect of this change
is less important for the capillary imbibition as elasto-capillary effects and the error due
to the symmetry assumption are significant.

The model also gives us an equation for the tension in the fibre. This equation is provided
by the boundary condition at the end of the fibre. For the experiments at constant length,
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Figure 10. Acceleration of the meniscus (black) as a function of time for the experiment shown in figure 4(b).
Here, lzip is defined as the meniscus position at the peak acceleration.
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Figure 11. Variation of the stress tensor within the fibre normalized by the initial stress estimated by
performing the full poroelastic simulation (blue) or with (4.7) (red). Both curves are estimated for an initial
stretch of ε = 0.3, R0 = 250 μm and d/R = 1.19.

the initial displacement of the fibre is known from the pre-stretch and writes uz(0, 0) =
uz(L, t) = ε. Integrating (A16) with respect to z in the interval [0, L] we obtain

σzz(t) = 3Gε − GΩ

2L

∫ L

0
(c̄ − c0) dz. (A24)

For the experiments at constant tension, we can write

σzz(t) = 3Gε0, (A25)
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at all times. The value of cmax is thus also constant which allows us to solve the equations
analytically, as shown in § 3.2.2.

Appendix B. Acceleration of the meniscus

Figure 10 shows the acceleration and the position of the meniscus for the experiment
shown in figure 4(b). Here, lzip is defined as the meniscus position at the peak acceleration.
This point marks the transition from the slow swelling-induced imbibition to the fast
elastocapillary imbibition (zipping).

Appendix C. Simplified expression for the fibre tension

Figure 11 shows the estimated tension obtained with the simplified expression of (4.7)
with the result of the poroelastic simulation.
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