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1. Introduction

Let G be a group with identity 0 and let si be a group of automorphisms of G. The
centralizer near-ring determined by G and si is the set C(si;G) = {f:G-*G\fa. = a.f for
all aesi and /(0) = 0}, forming a near-ring under function addition and function
composition. This class of near-rings has been extensively studied (for example see [1],
[2], [5] and [6]) and it is known that every finite simple near-ring with identity which
is not a ring is isomorphic to C(si;G) for a suitable pair (si,G) see [6] page 131,
Corollary 4.59 and Theorem 4.60.

As illustrated in [1] a key to the study of the near-ring C(s#; G) is the orbit structure
of G determined by si. For each veG the stabilizer of v is stab(u) = {aesi \av = v}, a
subgroup of si'. If v, weG belong to the same j^-orbit then there exists a /?esi such
that w = f}v and we have stab(w) = )3stab(i;)jS~1. So two elements of G from the same
orbit have conjugate stabilizers.

Definition 1. Let G be a group and si a group of automorphisms of G. We will call
the pair {si, G) normal if

(a) G has finitely many «s/-orbits, and

(b) if v,weG belong to the same ,s/-orbit and if stab(u)£stab(w) then stab(u) =
stab(w).

We remark that if G is a finite group then (si, G) is normal. Also we note that (b) is
the finiteness condition used by Meldrum and Zeller in [5].

Although near-rings of the form C(si; G) are of fundamental importance in the theory
of near-rings, it is difficult to decide whether or not a given near-ring is isomorphic to
C(si; G) for some group G and group of automorphisms si ([2], [4]). In this paper a
class JV of near-rings is defined which contains all centralizer near-rings of the form
C(si; G) where (si, G) is normal. It will be shown that many of the results on centralizer
near-rings are true for the near-rings in JV. Moreover to decide whether or not a near-
ring belongs to Jf is in general easier than deciding whether or not it is a centralizer
near-ring C(s/; G).

2. Generalized centralizer near-rings

Let N be a near-ring with identity 1. An element eeN is idempotent if e^O and
e2 = e. If c, and e, are idempotents in N we will let N^ denote the set Nij=eiNeJ=
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{etnej\neN}, a subset of N. The idempotents et and es are orthogonal if eiej = ejei = 0.
Finally an idempotent eeN is primitive if e is not the sum of two orthogonal
idempotents in N.

Definition 2. Let AT be a zero symmetric near-ring with 1 then N is a GC near-ring
(generalized centralizer near-ring) if the following six axioms are satisfied.

(i) There is a finite number of idempotents el,...,eseN such that \ = e^ + ••• +es,
e-fij = 0 for all i, j with i =f j and et + es = e;- + et for all i, j .

(ii) For i = l , . . . , s the set (eiNei)* = Nf:
i = Nu — {0} is a group under multiplication

having identity et.

(iii) Let niiJieNiiJi,...,nijseNiJs with {j1 ) . . . , ; 5} = {l , . . . J s} , then for every feN,

f
(iv) For every fe N and nkJ- e Nkj then /nfcJ- belongs to Ntj for some t (t depends on /

and nkj).

(v) For every n y e N y and nkJeNkj then ny + wfcj-£ iVy for some t (t depends on ny and

(vi) If NytiO} and ^ . ^ { 0 } then i V ^ f {0}.

For convenience we make the convention that N = {0} is a GC near-ring.

Proposition 1. Let N be a GC near-ring using idempotents el,...,es. Then each et is a
primitive idempotent.

Proof. Suppose ei = f1+f2 where / i and f2 are idempotents such that fif2=fifi = Q-
We have ei/1 = ( / 1 + / 2 ) / 1 = / ? + / 2 / 1 = / i - Similarly eJ2=f2. Also ( M ) 2 = M M =
flflei = flei, an element of Nit. By axiom (ii) either /iC.— e; or f^e^O. Since 0̂ = /x =
fl = etfieifi t n e n /l^.^O. s o fiei = ei- A similar argument shows j1ei = ei. But then
ei = ef = (fl+ f2)el = flei + f2ei = ei + ei which implies e, = 0, a contradiction. So e, is
primitive.

Our first main result implies that the set of idempotents {e^.. . ,^} in axiom (i) for a
GC near-ring is unique.

Theorem 1. Suppose N is a near-ring satisfying axioms (i)-(v) using idempotents in
the set E = {eu...,es}, and N also satisfies axioms (i)-(v) using idempotents in the set
F = {fl,...,f,},thenE = F.

Proof. For k = l,...,t we have fk=fk{ex+ ••• +es)fk=fkejk+ ••• +fkejk using
axioms (i) and (iii). Since /fc=/=0 then / f ce , / t^0 for some j . By axiom (iv) there is an i such
that ejfkeN'ik = fiNfk, and since fkejk^ then e}fkeN'kk, that is i = k. We now have
fkejfk = ejfk. The element ejk is idempotent since {e}fk)

2 = ejfkejfk = ejejfk = ejfk. Since
ejfkeN'kk axiom (ii) implies ejfk = fk.

We have now shown that for each fe, fc = 1,..., t, there is a ;', depending on k, such that
fkCjfk--•••*jfk = fk- Moreover this ; is unique, for if fkejk = ejk = fk then fk = ejfk = ejk and
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1 = j . Similarly for each j,j=l,...,s, there exists a unique c = c(j) such that e,/ce,=
fce~ej. Hence s = t. The maps are universes of each other since fk=fkejfk=fkfcejfk im"
plies k = c. We may reorder the e;'s if necessary so that 1 = / i + • • • + fs = ex + • • • +es with
eJi=fi and fe^e^ For i=\,...,s we have / • = / • ( « ! + ••• +es)=fjlel + --- +fjses=
fife; = et. This shows E = F.

Proposition 2. Let N be a GC near-ring with respect to the set of idempotents
E = {e1,...,es}. Suppose I is an ideal of N which is a near-ring with identity f. Then
/ = « , - , + • • • + eh where {eh,..., e j £ E.

Proof. Suppose that fe{ =f 0 where ei e E. Then /e, e / since / is an ideal. Also (/<?,)2 =
feifei = fe^i = fet using the fact that / is the identity on /. By axiom (iv), fet belongs
to Nki for some k. Since fet is idempotent then k = i and fe{ = et using axiom (ii). So if
/e,=/=0 then fe—e^Bl. Let eit,...,eit be the idempotents in E such that /e;.^=0. We have
/ = / ( e 1 + ••• +es)=fe1+ ••• + / e s = e;i + ••• +e,r

The following theorem indicates that the class J/~ of GC near-rings is a "large" class
with nice properties.

Theorem 2. Let Jf be the class of GC near-rings. The following are properties of Jf.

(a) Jf contains all near-rings of the form C(s/;G) where (jrf,G) is normal.

(b) If N ejV and I is an ideal of N which is a near-ring with identity then I e Jf.

(c) IfNl,N2eJfthenNl@N2eJf.

(d) IfNeJf and if I is an ideal of N such that IeJf, then N/IeJf.

Proof, (a) Suppose N = C(s#;G) with nonzero j^-orbits 6U...,9S. For i = l , . . . , s let
et:G^yG be the function which is the identity on orbit 0, and zero elsewhere. Then e.eJV
and e, is idempotent. We have l = el+ ••• +es and it is straightforward to check that
axioms (i)-(vi) are satisfied.

(b) Let N satisfy axioms (i)—(vi) using idempotents in the set E = {e1,...,es}. By
Proposition 2 the identity element / of / may be written / = e(i + • • • + eit where
F = {eii,...,eii} is a subset of E. The near-ring / is a GC near-ring using F.

(c) Since NxeJf there are idempotents el,...,eseNi such that axioms (i)-(vi) are
true. Similarly for N2 using idempotents e\,...,e't. In Nt@N2 we have I=e 1 +- - - - I -
es + e\+ ••• +e't and axioms (i)-(vi) are easily verified.

(d) If Af satisfies axioms (i)—{vi) using idempotents in E = {el,...,es} then Proposition
2 implies / is a GC near-ring using F = {e , i , . . . , e i i }s£ . Without loss of generality we
may assume F = {el,...,e,}. We claim that N/I is a GC near-ring using idempotents
E = {e,+!,...,es} where e, = e, + Z. Axioms (i)—(v) are obviously true. To check axiom (vi)
suppose Ny=/:{0} and Njk^{0} 'where NiJ=eiNej, etc. In N we have NjjNJk^{0} by
axiom (vi). Since {0} =f NyATytcNik and NiknI = {0} then J9yJVit^{0} as desired.

Theorem 3. A GC near-ring N is a ring if and only if N is a {finite) direct sum of
division rings.
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Proof. Suppose AT is a ring which is also a GC near-ring using idempotents eu...,es.
We will show that if i^j then Ary={0}. Assume by way of contradiction that JV,-,-=/={()}
and select a nonzero element nyeA?y. By axiom (v) n^+ej belongs to Ntj for some t. We
have nij + ej = e,(nij + ej) = e,nij + etej since N is a ring. If t = i then «y + eJ = ny and e, = 0,
impossible. If t=j then nij+ej = ei and ny=0, a contradiction. Finally, if t^r',j then
nij + ej=0 and ny= —ejSNn which is not possible since Nijr\Njj={Qi\. Hence iVy = {0}
whenever i =f=j and using axiom (ii), N is a direct sum of division rings.

It is clear that a division ring is a GC near-ring and by Theorem 2 Jf contains all
finite direct sums of division rings.

We note that Jf is a larger class of near-rings than the class of centralizer near-rings
C(s/; G) with (stf, G) normal, for it was shown in [4] that not every direct sum of fields
is a centralizer near-ring C(s/; G).

It is trivial to verify that every nonzero homomorphic image of a near-ring N
satisfying axioms (i)-(v) also satisfies axioms (i)-(v). However, a nonzero homomorphic
image of a GC near-ring need not be a GC near-ring as the following example shows.
Thus the hypotheses in Theorem 2, part (d) are necessary.

Example. Let G — Z8, the additive group of integers modulo 8. Let si' =
{a1,a3,a5,a7|aj:G^G defined by a,(a) = ia}, a group of automorphisms of G. Finally
let N = C(jtf;G). The nonzero ^-orbits of G are 0(1) = {1,3,5,7}, 0(2) = {2,6}, and
0(4) = {4}. The set 7 = {/eiV|/(l)e{0,4},/(2) = 0,/(4) = 0} is an ideal of AT.

We claim that N = N/I is not a GC near-ring. Let e1,e2,e4 be the idempotents in N
that are the identity on 6(1), 6(2), 6(4) respectively and zero elsewhere. Then A7 is a GC
near-ring using eue2,eA and N satisfies axioms (i)-(v) using e1,e2,e4. By Theorem 1
{e1>e2,e4} is the only set of idempotents for which N satisfies axioms (i)-{v). It suffices
now to show that N does not satisfy (vi) using {el,e2,e4.}. Let n4.2eN42 = e4Ne2 and
n21eN21 = e2Ne1, then n42n21el so NA2N2lSl. Also Af42n/ = {0} and AT21n/ = {0}.
In N we have #42 = e4Ne2 =/= {0}, N21 =f {0} and yet ^42^21 = {$}, violating axiom (vi).

3. Structure theorems

In this section we investigate the structure of GC near-rings. In particular we
determine when a GC near-ring N is simple and when it is semi-simple. Moreover we
present a decomposition theorem for left ideals in N. These results generalize results
known for centralizer near-rings ([1], [5], [6] and [7]).

Theorem 4. A GC near-ring N is simple if and only if ATŷ = {0} for all i and j .

Proof. Assume ATy =/={()} for all i,j where N is a GC near-ring using E = {el,...,es}.
Let / be a nonzero ideal of N and select g i=- 0 in /. Using axioms (i) and (iii) we have
g=(ex+ ••• +es)g(e1+ ••• +es) = Yjej8ei- Since g ^ O then ejge^O for some j,i. Also
ejSei = nji e / n Nji. By axiom (vi) N^N^ £ {0} so there exists my e ATy such that
0 =j= m^njielnNu. This means e(eI. For each k and for each nkieNki we have
nkiet = nkiel n Nki. As above this implies ekeI. So et + • • • + es = 1 e / and I = N.
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For the converse assume Af(j = {0} for some i,j where i£j. Let 7 = Ann(ATeJ), the
annihilator of Ney The set / is a left ideal of N since it is the annihilator of a set of
elements in N. Since N- Nej^Nep I is an ideal of N. We have Ij={0} since e,e/ and

since efil. So N is not simple.

Theorem 5. A GC near-ring N is J2-semisimple if and only if whenever Ntj={0} then

Proof. Assume N is semisimple. Suppose N,7 = {0} but JV,-, =£{()}. Select a nonzero
element n^eN^ and let M = Nnjh an JV-subgroup of N. For ge N we have gn^eM n JVfci

for some k using axiom (iv). We claim the product of any two elements in M is 0.
Clearly {fn^gn^) = 0 if /c^i. If k = i then gnJt = eignjiei = eigejnjlei and ejge,= 0 since Ny =
{0}. Hence gn}i=Q when /e = i. This shows M is nilpotent and N is not semisimple since
the J2"radical of N contains all nilpotent N-subgroups ([6], page 153).

For the converse we may assume ^ = {0} for some i^j. (For if N,7^={0} for all i,j
then N is simple by Theorem 4.) Let Sj={k\NkJ=f={0}}, and if Sj=(ku...,kt} let 7 =
Neki + ••• +Nekt, a left ideal of N. We claim that / is an ideal of N. To prove the claim
it suffices to prove that (nleki+ ••• +n,ek)nklsl for all nl,...,nteN and all k, I. If
(ntek{ + ••• +ntek)nkl£0 then keSj and nkl=fc0. Since nt(=/=0 then Nkl^{0} and N,k^{0}.
So NlkNkjj=[0} and /eSj . Since /eSj , / contains every element in Nit, i=l,2,...,s and
/ contains (n ic t l + ••• +M(eJ[i)nH = n1ek i«w+ ••• +n,etin)i,. Hence / is an ideal of N.

Let SJ = { 1 , . . ! , S } - S J and let T=Neti+ ••• +Ne^'where Sj= {ils ,»'«,}- The set / is a
left ideal of N and we want to show it is an ideal. As before if (n1ei+ ••• +nvei)nki^0
then keSj and n t , ^0 . I f /eSj then #„•=/= {0} and {0}^NklN,j^Nkj. But N w f {0} implies
/eeS,, a contradiction. Hence leSj and (/j1e,i+ ••• +nuc,o)nwe7. So / is an ideal of N
with / n / = {0}. If / is not a simple near-ring the above process may be repeated.
Ultimately we obtain N as a direct sum of finitely many simple near-rings, and N is
semisimple.

We next establish a decomposition theorem for left ideals in a GC near-ring. This
theorem is established with the aid of two propositions which are similar to results
found in [7] for centralizer near-rings. The proofs are different and seem less technical
than those for centralizer near-rings. In what follows N is a GC near-ring using
idempotents e1,...,es.

Proposition 3. Let L be a left ideal of a GC near-ring N. If feL with fe}eNkJ, k =f= j ,
and if fej+ej€Nkj then ejsL.

Proof. We have ekfej=fei and ekfej+e}=/e, + e,-e Nkj. Since ekfsL we may assume
ekf=f. Using the left ideal property of L we have ek(f + ej) — ekej=ek(f + ej)eL. Let
g=ek(f + ej) then gei = ek(fej+ej)=fej+e,- since fej + ei e Nkj. If i ± j then get = eje, = feh

We have -f+geL and -f+g = (-f+g){el+---+e,) = (-fel+gel)+--- +
(-fes+ges)=0+ ••• +(-f

Proposition 4. Let L be a left ideal of a GC near-ring N. Suppose feL such that
fe^O and there exists an myeNy with niifje—ei, then eteL.
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Proof. Let nyi — e,/e;, then m^feL, ei(mijf) = mijf, and mijfei = mijejfei = ei. So we
may assume i = j and that / e L is such that e , / = / a n d /e, = e,-. We may also assume
fek=/=0 for some k^i or else / = e,- e L and we are done.

Among those / e L with eif=ffei = ei select one such that the number of k with
fek ± 0 is minimal. Now let fc be such that k ̂  i and fek =/= 0.

Case 1. Suppose there exists a g e N such that eigek = 0 and fek+gek$Nik. Let
h = ei{f+gek)-ejgek = ei{f+gek). We have /ieL, /ie, = e; and eth = h. Moreover if _/=/=&
then hej=fej and /jet = O. This contradicts the minimality o f /

Case 2. Assume fek+gekeNik for all g such that e;get=0. Let g=ek. Then
feL, fekeNik and fek+gek = fek + ekeNik. By Proposition 3, e t eL . This means
f-fek = heL. We have he~{f - fek)e~fei = ei. Also eih = e-{f-fek)(el+---+ek +
•••+es) = ei(fel-0)+---+ei(fek-fek)+--+ei(fes-0) = eife1+

• • • + 0 + • • • + /es. This shows e{h = ft. We also have hek = 0 and this contradicts the
minimality of / So e, e L as desired.

Theorem 6. Let L be a left ideal of N, where N is a GC near-ring using idempotents
ey,...,es. Then for each i, Let £ L. Also L = Le1 + • • • + Les.

Proof. For the first part we need to show that if feL then feteL, i=l,...,s. We
have fe{ e Nki for some k and so ekfet = fet. This shows we may assume ekf = f. If /e ; = /
we are done so we may assume /e,=£0 for some j±i. If we can show that f — fe^eL
then we have / ( 1 ) = / — fe}eL with / i I )e ; = /ej and / < 1 ) e / = 0. So / ( 1 ) has one fewer ;
such that f(1)ej^0. This process can be continued until we have f(t)eL such that f(t)e{

= fe, and /(t)ej;=0 for all j±L Then fet = fmel = fm(el+-- +es) = fmeL.
So it remains to show that f—fe}eL. If ; = fc then Oj=ekfej=ekfekeNkk and

Proposition 4 applies. So ej = ekeL and f—fe^L.
If j^k we have two cases to consider.
Case 1. Assume ek(f + ej)ej^Q. By axiom (v) we have (f + eJ)ej=fei + eieNtj for some

t. We must have t = k and so e t ( / + e J )e J =( / + eJ)ey. Let g = ek(f + ei) — ekeJ=ek(f + ej),
an element of L. Note that gej=ek(f+e])ej = {f + ej)ej = fej + ej and if l^j then ge( =
/e( . We have -f+geL and ( - / + g ) = ( - / + g ) ( e 1 + ••• +es)= -fej+fej + ej = ejeL.
So f—fejSL as desired.

Case 2. Assume ek(f + ej)ej = 0. Let g = e t ( / + ej)—ekej = ek(f + ej), an element in L.
We have ge, = fet for t^_/ and ge} = Q. Using axiom (i), ^=^(6! + ••• +ey-+ ••• +es) =
ge t + - - - +geJ_1+geJ+l+ ••• +ges = / e t + ••• + / e / _ 1 + / e J + 1 + ••• +/e s+/e J— /e^ = / ( « i +
••• + e , _ 1 + e J + 1 + ••• +es + e}) — fej = f — fep an element in L.

We have now shown that / e , eL for every / e L . It remains to prove that
L = Lex ©••• ®Les. We note that Lei is a left ideal of N since Le,=
L n A n n { e 1 , . . . , e f _ l J e j + 1 , . . . , e n } and that Le j nLe J = {0} if i ^y since Le^e^Lei and
LeJ-ei = {0}. Since Le{<=,L for each i, then L e x + • • • + L e s s L . On the other hand if
g e L t h e n g = g ( £ i + ••• + e s ) = g e 1 + ••• + g e s w h i c h i m p l i e s L ^ L e 1 + ••• + L e s . S o
£ = £ £ ! © • • • © Les.

Our final theorem gives more information about left ideals in a GC near-ring and has
relevance to Theorem 2.
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Theorem 7. Suppose N is a GC near-ring using idempotents eY,...,es. The following
are equivalent.

(a) N contains no nonzero nilpotent left ideals.

(b) Net is a minimal left ideal for each i.

(c) Every nonzero left ideal of N is generated by an idempotent.

(d) / / L is a nonzero left ideal then there exist idempotents eti,...,eik such that

Proof. We will prove a=>b=>d=>c=>a.

a=>b. Assume Net is not minimal, say {0} =/= LcATe, where L^Net. Then L=Lei by
Theorem 6, and if leL then l = leteNki for some k where Nik — {0}. So if 11,12BL then
/1/2 = 0 and L is nilpotent, a contradiction. So Ne, is minimal.

b=>d. Let L be a nonzero left ideal of N. Then L=Lel © • • • © Len where Let is a left
ideal of N contained in Net. Since Ne{ is minimal then either Let = Nei or Le, = {0}.

d=>c. If L is a nonzero left ideal of N then L=Neii© • • • © Neik = N(eii + • • • + eik).

c=>a. Obvious.

If N is a GC near-ring satisfying any of the conditions a-d in Theorem 7 then every
ideal of N and every homomorphic image of N is a GC near-ring.

Acknowledgements. The author thanks the referee for pointing out that the finiteness
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pointed out simplifications in several proofs, especially the proof of Theorem 1.
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