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1. Introduction

Let G be a group with identity 0 and let &/ be a group of automorphisms of G. The
centralizer near-ring determined by G and & is the set C(#;G)={f:G—G|fa=af for
all aes/ and f(0)=0}, forming a near-ring under function addition and function
composition. This class of near-rings has been extensively studied (for example see [1],
[2], [5] and [6]) and it is known that every finite simple near-ring with identity which
is not a ring is isomorphic to C(«/;G) for a suitable pair («/,G) see [6] page 131,
Corollary 4.59 and Theorem 4.60.

As illustrated in [1] a key to the study of the near-ring C(«#/; G) is the orbit structure
of G determined by /. For each veG the stabilizer of v is stab(v)={aeo/|av=v}, a
subgroup of &/. If v, we G belong to the same &7-orbit then there exists a fe.o/ such
that w=pv and we have stab(w)=Bstab(r)f~!. So two elements of G from the same
orbit have conjugate stabilizers.

Definition 1. Let G be a group and </ a group of automorphisms of G. We will call
the pair (&, G) normal if

(a) G has finitely many «/-orbits, and

(b) if v,weG belong to the same /-orbit and if stab(v) =stab(w) then stab(v)=
stab(w).

We remark that if G is a finite group then (&, G) is normal. Also we note that (b) is
the finiteness condition used by Meldrum and Zeller in [5].

Although near-rings of the form C(s#; G) are of fundamental importance in the theory
of near-rings, it is difficult to decide whether or not a given near-ring is isomorphic to
C(#;G) for some group G and group of automorphisms & ([2], [4]). In this paper a
class A" of near-rings is defined which contains all centralizer near-rings of the form
C(+; G) where («, G) is normal. It will be shown that many of the results on centralizer
near-rings are true for the near-rings in A", Moreover to decide whether or not a near-
ring belongs to A" is in general easier than deciding whether or not it is a centralizer
near-ring C(<; G).

2. Generalized centralizer near-rings

Let N be a near-ring with identity 1. An element ee N is idempotent if e#0 and
e’=e. If ¢; and ¢; are idempotents in N we will let N;; denote the set N;;=e;Ne;=
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{e;ne;|ne N}, a subset of N. The idempotents e; and e; are orthogonal if e;e;=e;e;=0.
Finally an idempotent ee N is primitive if e is not the sum of two orthogonal
idempotents in N.

Definition 2. Let N be a zero symmetric near-ring with 1 then N is a GC near-ring
(generalized centralizer near-ring) if the following six axioms are satisfied.

(i) There is a finite number of idempotents e,,...,e,€ N such that 1=e,+ - +e,,
e;e;=0 for all i, j with i# j and e;+e;=¢;+e¢; for all i, j.

(i) For i=1,...,s the set (¢;Ne)*=N}%=N;—{0} is a group under multiplication
having identity e;.

(i) Let m;; €N, ;,....n; €N;; with {j,,...,j}={l,...,s}, then for every feN,
f(niljl +o +nisj;)=fni1f1 + +fnisis'

(iv) For every fe N and n;e N,; then fn,; belongs to N,; for some ¢ (t depends on f
and ny;).

(v) For every n;;e N;; and ny;€ Ny; then n;;+ny ;€ N,; for some ¢ (¢ depends on n;; and
;).

(vi) If N,;#{0} and N, #{0} then NN, +{0}.

For convenience we make the convention that N={0} is a GC near-ring.

Proposition 1. Let N be a GC near-ring using idempotents e,,...,e,. Then each e; is a
primitive idempotent.

Proof. Suppose ¢;= f, + f, where f; and f, are idempotents such that f, f, = f,f; =0.
We have ef,=(fi+))i=f1+2fi=/ Similatly e,f,=/,. Also (fie)’=fie.fie;=
fifie;= fie;, an element of N By axiom (ii) either fie;=e; or fie;=0. Since 0+ f, =
fi=e;fie.f, then fie;#0, so fie;=e;. A similar argument shows f,e;=e; But then
e;=el=(f1+ fr)e;=fie;+ fre;=e;+e; which implies ¢;=0, a contradiction. So e¢; is
primitive.

Our first main result implies that the set of idempotents {e,,...,e,} in axiom (i) for a
GC near-ring is unique.

Theorem 1. Suppose N is a near-ring satisfying axioms (i)~(v) using idempotents in
the set E={e,,...,e;}, and N also satisfies axioms (i){v) using idempotents in the set
F={f\,....f;}, then E=F.

Proof. For k=1,...,t we have fi=fi(e;+ - +e)fi=fe S+  + fie, [, using
axioms (i) and (iii). Since f, #0 then fie;f, #0 for some j. By axiom (iv) there is an i such
that e;f,€ Ni = fiNf;, and since fie;f,#0 then e;f,e N}, that is i=k. We now have
feifi=ejfi. The element e;f, is idempotent since (e;f;)> =e;fie;fi=ese;fi=e;f; Since
e;fr€ Ny, axiom (ii) implies e;f, = f,.

We have now shown that for each k,k=1,...,t, there is a j, depending on k, such that
fiejfv=-eify=fi- Moreover this j is unique, for if fie;fy=e;fi=f; then fy=e;f,=e,f, and
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i=j. Similarly for each j,j=1,...,s, there exists a unique c=c(j) such that e;fe;=
f.e;=e;. Hence s=t. The maps are universes of each other since f, = fie;f,= fif.e;f, im-
plies k=c. We may reorder the ¢;’s if necessary so that 1=f,+ --- + f;=e, + --- + ¢, with
efi=1; and fe;=e,. For i=1,...,s we have fi=file,+ - +e)=fifie,+ - + fif.es=
fifie;=e;. This shows E=F.

Proposition 2. Let N be a GC near-ring with respect to the set of idempotents
E={e,,...,e,}. Suppose I is an ideal of N which is a near-ring with identity f. Then
f=e,+ - +e; wherele;,...,e;} <E.

Proof. Suppose that fe;#0 where e;e E. Then fe;el since I is an ideal. Also (fe;)’=
feife;= fe.e;= fe; using the fact that f is the identity on I. By axiom (iv), fe; belongs
to N,; for some k. Since fe; is idempotent then k=i and fe;=e; using axiom (ii). So if
fe;#0 then fe;=e;el. Let e;,...,¢e; be the idempotents in E such that fe,-l_#O. We have
f=fles+ - te)=fe,+ -+ fe,;=¢;, + " +e;.

The following theorem indicates that the class A" of GC near-rings is a “large” class
with nice properties.

Theorem 2. Let A be the class of GC near-rings. The following are properties of N .

(a) A contains all near-rings of the form C(<#; G) where (4, G) is normal.

(b) If Ne AN and I is an ideal of N which is a near-ring with identity then e V.
(¢ IfN,N,e N then NJ®N,eN.

(d) If Ne ANV and if I is an ideal of N such that le A", then N/Ie 4.

Proof. (a) Suppose N=C(«/;G) with nonzero «/-orbits 8,,...,0,. For i=1,...,s let
e;:G—G be the function which is the identity on orbit 6; and zero elsewhere. Then e¢;e N
and e; is idempotent. We have 1=e,+ --- +e, and it is straightforward to check that
axioms (i)—(vi) are satisfied.

(b) Let N satisfy axioms (i)—(vi) using idempotents in the set E={e,,...,e}. By
Proposition 2 the identity element f of I may be written f=e; + ' +e;, where
F={e,-1, ...,€;} is a subset of E. The near-ring I is a GC near-ring using F.

(c) Since N,e A there are idempotents e,,...,e;e N; such that axioms (i)-(vi) are
true. Similarly for N, using idempotents ei,...,e;. In N;@ N, we have 1=¢;+ - +
e, +e |+ - +e; and axioms (i)—(vi) are easily verified.

(d) If N satisfies axioms (i)~(vi) using idempotents in E={e,,...,e,} then Proposition
2 implies I is a GC near-ring using F={e; ,...,e;} SE. Without loss of generality we
may assume F={e,,...,e,}. We claim that N/I is a GC near-ring using idempotents
E={é,,,...,&} where &;=e;+ 1. Axioms (i) —(v) are obviously true. To check axiom (vi)
suppose N;#{0} and N #{0} where N;;=¢é,N¢;, etc. In N we have N;N,#{0} by
axiom (vi). Since {0} # N;N; SN, and Ny n1={0} then N;;N; # {0} as desired.

Theorem 3. A GC near-ring N is a ring if and only if N is a (finite) direct sum of
division rings.
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Proof. Suppose N is a ring which is also a GC near-ring using idempotents e,,...,e,.
We will show that if ij then N;;={0}. Assume by way of contradiction that N;# {0}
and select a nonzero element n;;e N;;. By axiom (v) n;;+e¢; belongs to N,; for some t. We
have n;j+e;=e(n;;+e;)=en;+ee; since N is a ring. If t=i then n;+e;=n;; and e;=0,
impossible. If t=j then n;;+e;=e; and n;=0, a contradiction. Finally, if t+#i,j then
n;;+e;=0 and n;;= —e;e N;; which is not possible since N;; N;;={0}. Hence N;;={0}
whenever i#j and using axiom (ii), N is a direct sum of division rings.

It is clear that a division ring is a GC near-ring and by Theorem 2 A" contains all
finite direct sums of division rings.

We note that .4 is a larger class of near-rings than the class of centralizer near-rings
C(«#; G) with (&, G) normal, for it was shown in [4] that not every direct sum of fields
is a centralizer near-ring C(</; G).

It is trivial to verify that every nonzero homomorphic image of a near-ring N
satisfying axioms (i)—(v) also satisfies axioms (i){v). However, a nonzero homomorphic
image of a GC near-ring need not be a GC near-ring as the following example shows.
Thus the hypotheses in Theorem 2, part (d) are necessary.

Example. Let G=Z;, the additive group of integers modulo 8. Let &=
{oy, 03, 05,0,|0;:G—>G defined by «;(a)=ia}, a group of automorphisms of G. Finally
let N=C(«;G). The nonzero /-orbits of G are 8(1)={1,3,5,7}, 6(2)={2,6}, and
6(4)={4}. The set I={f eN|f(1)€{0,4}, f(2)=0, f(4)=0} is an ideal of N.

We claim that N=N/I is not a GC near-ring. Let e,,e,,e, be the idempotents in N
that are the identity on (1), 8(2), 6(4) respectively and zero elsewhere. Then N is a GC
near-ring using e, e,,e, and N satisfies axioms (i)«(v) using &,,é,,é,. By Theorem 1
{é,,€,,é,} is the only set of idempotents for which N satisfies axioms (i)~(v). It suffices
now to show that N does not satisfy (vi) using {¢,,€,,é,}. Let n,,e Ny, =e,Ne, and
n, €N, =e,Ne,, then nyyn,, €l so NyyN,y <1 Also Nyy n1={0} and N,, nI1={0}.
In N we have N,,=¢,Né,+{0}, N,,+#{0} and yet N,,N,, ={0}, violating axiom (vi).

3. Structure theorems

In this section we investigate the structure of GC near-rings. In particular we
determine when a GC near-ring N is simple and when it is semi-simple. Moreover we
present a decomposition theorem for left ideals in N. These results generalize results
known for centralizer near-rings ([1], [5], [6] and [7]). -

Theorem 4. A GC near-ring N is simple if and only if N;;# {0} for all i and j.

Proof. Assume N;;#{0} for all i, j where N is a GC near-ring using E={e,,...,¢}.
Let I be a nonzero ideal of N and select g#0 in I. Using axioms (i) and (iii)) we have
g=(e1+"'+es)g(e1+---+es)=2ejge,-. Since g#0 then ege;#0 for some j,i. Also
ejge;=ny€I NNy By axiom (vi) N;N;#{0} so there exists m;eN; such that
0#m;n;el NNy This means e;el. For each k and for each n;eN,; we have
nge;=n; €I N Ny As above this implies ¢,€I. So e; + --- +e;,=1€l and I=N.
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For the converse assume N;;={0} for some i, j where i#j. Let I=Ann(Ne;), the
annihilator of Ne;. The set I is a left ideal of N since it is the annihilator of a set of
elements in N. Since N-Ne;SNe;, I is an ideal of N. We have I#{0} since e;el and
I# N since e;¢ I. So N is not simple.

Theorem 5. A GC near-ring N is J,-semisimple if and only if whenever N;;={0} then
Nj;;={0}.

Proof. Assume N is semisimple. Suppose N;;={0} but N+ {0}. Select a nonzero
element n;e N; and let M=Nnj, an N-subgroup of N. For ge N we have gn;e M n Ny,
for some k using axiom (iv). We claim the product of any two elements in M is 0.
Clearly (fn;)(gn;)=0if k#i. If k=i then gn; =egn;e,=ege;n;e; and ege;=0 since N;;=
{0}. Hence gn;;=0 when k=i. This shows M is nilpotent and N is not semisimple since
the J,-radical of N contains all nilpotent N-subgroups ([6], page 153).

For the converse we may assume N;;={0} for some i#j. (For if N;# {0} for all i, j
then N is simple by Theorem 4.) Let S;={k|N,;#{0}}, and if S;=(k,,....k} let I=
Ne, + -+ Ne,, a left ideal of N. We claim that I is an ideal of N. To prove the claim
it suffices to prove that (ne, + - +ne)n,el for all n,,...,n,eN and all k, I If
(niex, + -+ +ne)n,#0 then ke S; and ny, #0. Since n,;#0 then N, # {0} and N, +{0}.
So NyN,;#[0} and l€S;. Since le§;, I contains every element in N, i=1,2,...,s and
I contains (n,e,, + - +me )ng=n,e, ng+ - +nen, Hence I is an ideal of N.

Let S§;={1,...,s}—S; and let I=Ne; + --- + Ne;, where S;={i,,...,i,}. The set I'is a
left ideal of N and we want to show it is an ideal. As before if (n,e;+ --- +n,e;)n,#0
then keS; and ny,#0. If I€ S; then N;;# {0} and {0} # N,;N;;=N,;. But N,;+# {0} implies
keS;, a contradiction. Hence leS§; and (n,e; + - +n.e; )n,€l. So I is an ideal of N
with InI={0}. If T is not a simple near-ring the above process may be repeated.
Ultimately we obtain N as a direct sum of finitely many simple near-rings, and N is
semisimple.

We next establish a decomposition theorem for left ideals in a GC near-ring. This
theorem is established with the aid of two propositions which are similar to results
found in [7] for centralizer near-rings. The proofs are different and seem less technical
than those for centralizer near-rings. In what follows N is a GC near-ring using
idempotents e,,...,e,.

Proposition 3. Let L be a left ideal of a GC near-ring N. If f €L with fe;e Ny;, k# j,
and if fe;+e;e€ N,; then e;e L.

Proof. We have ¢, fe;= fe; and e, fe;+e;= fe;+e;e N,;. Since e, f € L we may assume
e.f =/ Using the left ideal property of L we have e(f +e;)—ee;=e,(f+e)eL. Let
g=e(f +e;) then ge;=¢,(fe;+e;)= fe;+e; since fe;+e;e N,;. If i+ j then ge;=e, fe;= fe;.
We have —f+gel and —f4g=(—f+g)es+ ' +e)=(—fe,+ge)+ "+
(—fes+ge)=0+ - +(— fe;+ fe;+e;)+ -+ +0=e;.

Proposition 4. Let L be a left ideal of a GC near-ring N. Suppose felL such that
e;fe;#0 and there exists an m;;€ N;; with m;e; fe;=e;, then e;e L.
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Proof. Let n;=e;fe;, then m;;feL, e(m;f)=m;;f, and m;;fe;=me;fe;=e;. So we
may assume i=j and that felL is such that ¢;f=f and fe;=e¢;, We may also assume
fe, #0 for some ki or else f =e¢;e L and we are done.

Among those feL with e, f =/, fe,;=e; select one such that the number of k with
Je, #0 is minimal. Now let k be such that k=i and fe, +0.

Case 1. Suppose there exists a geN such that ege,=0 and fe,+ge,¢N,. Let
h=¢e,(f+ge)—ege,=e(f+ge). We have heL, he;=e; and e;h=h. Moreover if j#k
then he;= fe; and he, =0. This contradicts the minimality of f.

Case 2. Assume fe,+ge, €N, for all g such that ege,=0. Let g=e, Then
feL, fe,eNy and  fe,+ge,= fe,+e,eNy,. By Proposition 3, e,eL. This means
f—fe,=heL. We have he;=(f— fe,)e;= fe;=e;. Also eh=e(f— fe,)e,+ - +e+
rte)=elfe,—0)+ - +elfe— fo )+ +elfe,—0)=efe, + - +0+ - +e fe,= fe, +
-+ +0+ -+ fe,and h=h{e, + - - +e,+ - +e)=he;+ - - +he,+ -+ +he,= fe, +
-+ 40+ -~ + fe,. This shows e;h=h. We also have he,=0 and this contradicts the
minimality of f. So e;€ L as desired.

Theorem 6. Let L be a left ideal of N, where N is a GC near-ring using idempotents
€y,...,es. Then for each i, Le;= L. Also L=Le,+ - + Le,.

Proof. For the first part we need to show that if feL then fe,elL, i=1,...,s. We
have fe,e Ny; for some k and so e, fe;= fe;,. This shows we may assume ¢, f = f. If fe;=f
we are done so we may assume fe;#0 for some j#i. If we can show that f— fe;eL
then we have f=f— fe;e L with f{Y¢;= fe, and fMe;=0. So f has one fewer j
such that fe;#0. This process can be continued until we have f®eL such that f®e,
= fe; and f@¥e;=0 for all j#i Then fe;=fVe,;= (e, + - +e)=fPeL.

So it remains to show that f—fe;eL. If j=k then O#e fe;=¢, fe,e N, and
Proposition 4 applies. So e;=¢e,e L and f— fe;e L.

If j#+k we have two cases to consider.

Case 1. Assume ¢,(f +e;)e;#0. By axiom (v) we have (f +e;)e;= fe;+e;e N,; for some
t. We must have t=k and so e,(f +e))e;=(f +e))e;. Let g=e,(f +e)—ee;=e(f +e)),
an element of L. Note that ge;=e,(f +e;)e;=(f +e¢;)e;= fe;+e; and if I+ j then ge,=
fe,. We have — f+geL and (—f+g)=(—f+g)e,+ " +e)=—fe;+ fe;+e;=e¢;eL.
So f— fe;e L as desired.

Case 2. Assume e (f +e;)e;=0. Let g=¢,(f +e;)—ee;=e(f +e;), an element in L.
We have ge,=fe, for t#j and ge;=0. Using axiom (i), g=gle; + -~ +e;+ - +¢))=
ge + - tgej_t+gej + - tge,=fe,+ - +fe;_ 4+ fe;i+ + fe+ fej— fej=f(er +
e +ei + 0 +e+e)— fe;= f— fe;, an element in L.

We have now shown that fe,eL for every feL. It remains to prove that
L=Le,® --®Le,, We note that Le; is a left ideal of N since Le¢;=
LnAnn{e,,...,e;_;,€41,...,e,} and that Le;n Le;={0} if i# j since Le;"e¢;=Le; and
Le;-e;={0}. Since Le;=L for each i, then Le,+ - +Le,cL. On the other hand if
geL then g=g(e,+ - +e)=ge,+ - +ge, which implies L<Le +---+Le,. So
L=Le,® @ Le,.

Our final theorem gives more information about left ideals in a GC near-ring and has
relevance to Theorem 2.
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Theorem 7. Suppose N is a GC near-ring using idempotents e,,...,e,. The following
are equivalent.

(a) N contains no nonzero nilpotent left ideals.

(b) Ne; is a minimal left ideal for each i.

(c) Every nonzero left ideal of N is generated by an idempotent.

(d) If L is a nonzero left ideal then there exist idempotents e; ,...,e; such that
L=Ne,® - ®Ne,.

Proof. We will prove a=>b=d=c=-a.

a=b. Assume Ne; is not minimal, say {0} # Lc Ne; where L# Ne;. Then L=Le; by
Theorem 6, and if /e L then I=le;e N; for some k where N, ={0}. So if I;,l,eL then
I,1,=0 and L is nilpotent, a contradiction. So Ne; is minimal.

b=>d. Let L be a nonzero left ideal of N. Then L=Le, @ --- @ Le, where Le; is a left
ideal of N contained in Ne;. Since Ne; is minimal then either Le;=Ne; or Le;={0}.

d=-c. If L is a nonzero left ideal of N then L=Ne; ® - @® Ne;, =N(e; + - +e,).

c=a. Obvious.

If N is a GC near-ring satisfying any of the conditions a—d in Theorem 7 then every
ideal of N and every homomorphic image of N is a GC near-ring.

Acknowledgements. The author thanks the referee for pointing out that the finiteness
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