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BOUNDEDNESS CRITERIA FOR GENERALIZED 
HANKEL CONJUGATE TRANSFORMATIONS 

R. A. KERMAN 

1. Introduction. This paper completes a study, begun in [7], of conditions 
under which a generalized Hankel conjugate transformation Hx is bounded 
between a pair of ^-rearrangement invariant function spaces, the measure ju« 
being defined by dna(t) = ta~ldt. Examples of such spaces are the Lv{ixa) of 
Lebesgue and generalizations of them due respectively to Orlicz and Lorentz. 

A generalized Hankel conjugate transformation H\, X > —1, is defined by 

(1.1) (tfx/) (y) = lim f " <2x (x, y, z)f(z)z2Xdz, 
z-»0+ «̂  0 

the kernel Q\(x, y, z) having the following expression in terms of Bessel 
functions 

(1.2) Qx(x,y,z) = -Cv*r x + 1 / 2 F e-xtJx+1/2(yt)Jx-1/2(zt)tdt. 
J o 

T h e / in (1.1) is assumed to belong to the class M(0, oo ) of functions which 
are Lebesgue-measurable on (0, oo ). It is understood there is a set E of Lebes
gue measure zero (depending on/ ) so that for fixed y Q E the integral in (1.1) 
is defined for all x > 0; furthermore, the resulting function of x has the indi
cated limit. 

Our aim is to prove the continuity of the H\ is equivalent to that of simpler 
operators T of the general form 

(1.3) (27)(0 = / a(s)f(st)dt, t>0, 
J o 

whose domain consists of all functions in M(0, oo ) for which the required 
integral exists a.e. More specifically, denote by [X, Y] the space of linear 
operators bounded between the Banach spaces X and F with [X] an abbrevia
tion for [X, X]; let Pp, Qq be the operators of form (1.3) with kernels a (I) 
equal to 

(1.4) J ^ X C O . D C ) , 1 ^ P < °° and / ] /^x ( i , r a ) (0, 1 < 5 ^ °° , 

respectively; then the main result, Theorem 2.1, may be stated as follows: 

Let pi and p2 be \ia-r ear rangement invariant norms on M (0, oo ), generated by 
o-i and C2 respectively. Then Hx G \Lpl, L»2] if and only if Pv + Qq 6 [Lai, La2]. 
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The values of p and q depend on the relationship between a and X. For 
example, in [7], it was shown that p = 1 and q = co when X > — \ and 
— 1 <, a ^ 2X + 1. We remark that the notations P and P' were used there 
in place of P\ and Qœ. 

In Theorem 2.2 the results are specialized to the case <s\ = a2 = a. Here 
the boundedness criteria may be expressed in terms of the Boyd indices of the 
space L\ These indices have been calculated for the Lorentz and Orlicz spaces. 
See [2] and [6]. 

The operators Pv + QQ can be used to determine the possible range and 
domain spaces of a fixed Hx and indeed to construct the optimal continuous 
partner of a suitable range or domain space. We will report on this in another 
paper. 

For background on rearrangement invariant spaces and operators of the 
form (1.3)—in particular the Pv and QQ—the reader is referred to the papers 
[2; 3; 4 and 5] of Boyd. Observe that wre use the definitions of Pv and Qq given 
in [3] rather than those of [4]. As in [7], Lebesgue measure on (0, oo ) is denoted 
by m rather than /xi. Lastly, the operators T and T' will be called a-associates 
if for all Lebesgue-measurable subsets E and F of (0, GO) with na(E), /xa(F) 
< oo 

(1-5) f XFTXE^U = I XET'xFdfia. 
J o •/ o 

If T is of form (1.3) and the measure is Lebesgue's—in which case Tf will also 
be of this type, the kernel being \/t a(\/t)—the equation in (1.5) holds for all 
non-negative/, g in M(0, oo). 

2. The boundedness criteria. As our starting point we give certain esti
mates for the kernel Q\(x, y, z) which were established (for Q\t(x(x, y, z) = 
z2X+l~aQ\(x, y, z) rather than Qx(%, y, z)) in Lemma 2.1 of [7] in the special 
case k = 2. Those estimates were a somewhat sharpened version of ones given 
in [8] for X > 0. 

LEMMA 2.1. If \ > —1, k > 1, then 

(i) Q\(x,y,z) = 0(y-2X~l), if 0 < z < k~ly, 
= 0(^- 2 X~ 2 ) , ifz^ky; 

tf k~ y = z = ky. 

Proof. Essentially the same as for Lemma 2.1 of [7]. 

Remarks. 1. The results of Lemma 2.1 yield their counterparts for the ath 
associate kernels Q\,J(x,y,z) = y2X+l~aQ\(x, z, y). Indeed, one can give an 
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analysis of H\i0! entirely similar to that given below for H\. However, as this 
operator will not play as great a role as in [7] we do not deal with it here. 

2. As in [7] (see the remark following Lemma 2.1), the first inequality in (i) 
can be improved when X = — \. The consequences of this will be discussed 
at the end of the section. 

On the basis of Lemma 2.1 we write Hx = S i = i #x,*(m\ with HXik
(m) being 

defined as in (1.1), Q\,k(m) replacing Q\(x, y, z), where 

(?A,*(1)(*, y , z) = Q\(x,y,z)x(o,y/k)(z), 

Q\J2)(x,y,z) = Q\(x,y,z)x(jcy,oo)(z), 

(2.1) (4)/ v _x _x y — z ,, 
Q\,k (X, y', Z) = CXy Z - 2 ~ + / _ zy X(y/k,ky) (Z), 

Q\,k^(x,y,z) = Q\(x,y,z)x(V/k,kv)(z) - Q\,kA)(x,y,z). 

Boundedness properties of the first three iiZx>A
(m) will be stated, in Lemma 2.3 

below, in terms of certain operators Tx,k
{m) (m = 1, 2, 3), whose definition is 

motivated by the estimates of Lemma 2.1. In fact, l\tk
(m) is an operator of form 

(1.3) having kernel ax,k
{m)(z), 

(1)/ \ 2X / N 

&\,k (z) = z X(o,i/k)(z), 

/ o o N aXtk
(2)(z) = z~2

X(k,œ)(z), 
(2.2) / z \ 

0X,*C3)(S) = 2X~ 1 / 2^1 + log"*"?! _ zs2jX(l/k,k)(z). 

Criteria for the continuity of the T\ik
{m) are given in 

LEMMA 2.2. Let pi and p2 be ^-rearrangement invariant norms on M (0, oo ) 
(a ^ 0), generated by a\ and <r2 respectively. Then, for X > — 1, k > \, /3 = 
a/(2X + 1), 

(i) a necessary and sufficient condition that Tx,k
(1) G [Lpl, Lp2] is 

Qp G [L'i, I/*], a < 2X + 1 < 0, and 

P0 G [L°i,L°*] a > 2X + 1 > 0; 

(ii) a necessary and sufficient condition that T\ik
(2) G [Z/1, Lp2} is 

P_ a G [Lal,La2] when a < — 1; 

(iii) Tx,k
(3) G [Lp\ Z>«] if and only if Lp> C Lp2. 

Proof. In Andersen [1], it is shown that, for a > 0, the membership in 
[Lpl, Lp2] of a positive operator of form (1.3) with kernel a(t) is equivalent to 
that in [Lai, Z/2] of another such operator whose kernel is 

(2.3) \a\-Hl/«-hi(t1/a). 

The proof easily extends to the case a < 0. Up to a constant multiple, the 
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function (2.3) corresponding to T\<k^
l) is 

(2.4) ^ - W . c o ^ O , i f « < 0 , and J ^ x c o W ) , if a > 0. 

The proof of (i) will be complete for the case a < 2X + 1 < 0 once it is shown 
the operator T with kernel a(t) = /1//3-1xu,A;-a)(0 belongs to \Lffl, Z/72] whenever 
one of Q/3 or the operator with kernel (2.4) does. But , if either of these operators 
is in [La\L°2], it then follows from [2, Lemma 3.3(b)] tha t L*1 C L*2. In view of 
[2, Lemma 3.2(c) and Theorem 3.1], this means T £ [LCI, La2\. A like approach 
disposes of the case a > 2X + 1 > 0. 

T h e proof of (ii) is similar to t ha t of (i). 

Another appeal to Lemma 3.2(c) and Theorem 3.1 of [2] suffices to establish 

(Hi). 

LEMMA 2.3. Let pi and p2 be \xa-r ear rangement invariant norms on M(0, oo), 
generated by a\ and o-2 respectively. Then, for X > — 1, k > 1, 

(i) Hx,k
{m) (m = 1, 2, 3) belongs to \Lp\ Z/2] whenever Tx/m) does. In par

ticular, Hx,k
{d) d [Lpl, Lp2] whenever Lpl C Lp2. 

(ii) HxjS^ is defined for all locally \xa-integrable functions (a any real number) 

and it belongs to [Lpl, Z/2] whenever Pi + Qœ G [L a i , La2]. 

Proof. The first assertion in (i) follows from the est imates of Lemma 2.1 
and the use of Lebesgue's theorem on dominated convergence. See the argu
ments around (2.26) and (2.32) in Lemma 2.4 and Theorem 2.1 of [7]. 

Z/\ ,A ( 4 ) has essentially been dealt with in [7]—more precisely, it was the 
operator defined as in (1.1) with Q\(x, y, z) replaced by 3/2X+1-0!(2\,2(4)-
(x, y, z)za~2X~1. (All references, bu t one, in the remainder of the proof will be 
to [7].) Thus , the proof tha t HXyk

U) and its a th associate (see corollaries 2.1.1 
and 2.1.2) are defined a.e. [m] is readily extracted from the discussion sur
rounding (2.27). Again, considerations like those of Theorem 2.1 from (2.33) 
on, as well as their counterpar ts in Theorem 2.2, yield, as in Lemma 3.1, tha t 
if/ G M(Q, (X)) satisfies 

(2.5) I /* ( / ) s i n i r 1 (l/t)dt < oo , 
«/ o 

then Hx,k
{4)f is defined and 

(2.6) (Hx.* (4)/)**(0 ^ c r CP-^du, 

where c is a positive constant independent of/. One may now complete the proof 
of (ii) using the argument of [2, Theorem 2.1]. 

T H E O R E M 2.1. Let pi and p2 be ^-rearrangement invariant norms on M(0, GO ), 
generated by ai and a2 respectively. Then H\ Ç [Lpl, Lp2\ if and only if Pv + 
Qq Ç [L°\ La2], where 
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(i) p = —a, q = a/(2X + 1) in case — 1 < X < — \, a < — 1; 
(ii) p = l,q = a/(2X + 1) incase - l < X < - | , - l ^ a < 2 X + l ; 

(iii) £> = —a, q = CQ w case X > — | , a < — 1 ; 
(iv) p = 1, q = co w case X> — ^, — 1 ^ a ^ 2X + 1 ; 
(v) p = a/(2X + 1), q = oo in case X > - | , a > 2X + 1. 

Proof, We first prove the if parts. To start, observe that in each case the 
proposed condition implies (keeping Lemma 2.2 in mind) that Pi + Qœ Ç 
[L'\ Z/*] and Px,2

(1) + Px,2(2) G [L'1, i>2]. Thus, for example, in case (i) 
elementary inequalities involving their kernels ensure that Pi + Qœ G [Lffl, Lff2] 
along with P p + Qq. Now, Pi + <2œ € [TA £*2] implies L"1 C £p2. (See [7, 
Theorem 4.1].) Therefore, by Lemma 2.3, #x,2

(3), #x,2
(4) G [L'1, L'2]. Finally 

Px,2(1\ Px>2
(2) G [J>, L'«] yields Hx € [£" , £" ] • 

As for the only if parts, observe firstly that from (2.3) and (2.8) of [7] 
together with (16.5') on page 84 of [8] 

Ç2X + 2) o-(x+i/2)„ P g ^ x + i ^ n - x - i ^ 
J o 

Q,(0,y,z) = - ^n ^ X> 2~(x+1/2)y sin™+1 tD^d* 

/O T \ ! ^ ( X + 1 ) 2 1 • 2X+1 , T A - A - ^ 7 , 

(2.7) + yz I sin 0P> a<£ 
~ •/ o 
7T • / o 

2(X + 1) 2 1 ^ , . 2X+l, rx-X-2, 

J o 
-3/2 I cos 0 sin 0l> d(t>, 

where D = y2 + z2 — 2yz cos </>. Thus, if / = z/y and £ = 1 + t2 — 2/ cos </>, 
Q\(0, y, z) may be expressed in the form i^x(/)y~2X_1, 

Xx(/) = -ex J sin2X+1 <i>E-*-ld<t> - L x ' J cos 0sin2X+1 4>Erx~2d4>\t 

(2.8) ° r ° r . -1 
+ r x ' J 0

 s i n 2 X + 1 * £ ~ x ~ 2 ^_p 2 ' 
with cx = (2X + l)2-(X+1/2)/7T (not the same as in Lemma 2.1) and c\ = 
2(X + 1)/TT. Again, if r = y/z and P = 1 + r2 - 2r cos 0, then Çx(0, y, z) 
may be expressed in the form L\(t)yz~2X~2, where 

L\(t) = —c\ I sin2X+1 </>P~x-1d<£ + c\ I sin2X+1 4>F~X~2 d<j> 
J 0 •/ 0 

(2.9) r p ^ i _̂ _2 -. 

— c\\ I cos 0 sin2X+1 </>P X 2 <̂/> r. 

Hence, for each X > — 1, X 5̂  — §, there exists k(\) > 1 so that 

(2.10) 

Çx(0, y, z) ^ (dx/2)y-^~\ - 1 < X < - | , 
-Gx(0,y,2) ^ (4 /2)y- 2 X - \ x > - ï , 

for 0 < z/y < [Jfe(X)]-1, while 

(2.11) Qx(P,y,z) è (ex/2)y2-2^2 
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forO < y/z < [k(\)]-\ Here 

(2.12) dx = \cx\ I sin2X+1 4>d(j> and 0 < ex = W - cx\ I sin2X+1 (j>dcj>. 
J 0 ^ 0 

Next, the first remark following Corollary 3.1.1 of [7] yields P i + Qœ Ç 
[Z/1, Z/2] whenever iîx Ç [LP1, Z>2]. This completes the proof of (iv). In addi
tion, it means that Hx G [LP1, Z>2] necessitates ffxiA:

(3\ ZZXifc
(4) £ [£p l , £P21 for 

all k > 1, as follows from Lemma 2.3. 
We now treat case (iii) which is similar to both (ii) and (v). For these 

values of the parameters Qœ 6 [Z/1, Z/2] implies the operator with kernel a(t) 
given by (2.4) also belongs to that class. Hence T\tk

{l) (and so, by Lemma 2.3, 
Hx,k

{l)) is in [LP1, LP2] for all k > 1. It follows that ^X,A;(2) must be in [Lpl, Z>*1 
for all & > 1. Given non-negative/ Ç -M(0, oo ) vanishing outside a compact 
interval, it is seen from (2.11) that for y > 0 

(0 , ^ 0 £ (7\,ux)(2,/)(3<) ^ (2/ex) f" Qx(0,y,«)/(8)«tt& 

= (2/ex)(ffx,,(x)
(2,/)(^). 

Its kernel being positive, we get Z\,*(X)(2) £ [Z/1, Z>2] and so, by Lemma 2.2, 

Finally, consider (i). Given such restrictions on the parameters, we have, 
for all non-negative/ £ M(0, oo ) which vanish outside a compact interval, 

0 £ ( [7W) ( 1 ) + 7\ lW» (2)]/)(y) g (2/dx) Qx(0,;y,2)/(S)2
2\/2 

(2.14) 
2X 

+ (2Ax) J Qx(0,y,s) / (zyAdz. 

The righthand side of (2.14) is bounded by a constant times (H\ — H\tk^
3) — 

flx,*(X)(4)) which is in [LPI, L P 2 ] . Hence rx,fc(x)(1) + Z\,*(x)(2) is in [Z>, Lp2]— 
that is, Pp + Qq e IL*1, Z/"] for £ = - a , q = a/(2X + 1). 

Remark. For the values of the parameters not considered in Theorem 2.1, 
namely — 1 < X < — | and a ^ 2 \ + 1, Hx (L \Lpl, LP2] for any /^-rearrange
ment invariant norms pi and p2. This follows once it is seen that H\ (? [L\oc, L loc]. 
For, as shown in [7], the space L loc of locally jua-integrable functions is the 
largest /^-rearrangement invariant space while its associate space Z/loc is the 
smallest. 

Suppose, if possible, that H\ Ç \L\0CJ L loc]. An argument using (2.10) and 
(2.11) as in the proof of Theorem 2.1 yields Tx,k{\)

{l), Z\,*(x)(2) G [L\oc, Lloc], 
But for a > 2X + 1 the function zmX(o,i)(z), max [0, -a] < m g - (2X + 1), 
is in Z/loc while for 0 < y < 1 

(2.15) (n,, (M
(1)/)(y) =3--2 X _ 1 *B+2X<fe = oo. 
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Again, when a = 2X + 1, the boundedness of H\ entails tha t 

(2.16) g(t) = ]f(tu)du 
J 0 

must be locally ra-integrable for a l l / £ L\oc. This is not so iif(u) = X(O,D(W). 

Restricting at tent ion to the case pi = p2, we obtain 

T H E O R E M 2.2. Let p be a pa-r ear rangement invariant norm on M(0, GO), 

where Lp has upper index y and lower index <5. Then H\ G [Lp] if and only if 

(i) (2X + l ) ^ - 1 < ô g 7 < - a ' 1 incase - 1 < X < -\anda < - 1 ; 

(ii) (2X + l ) ^ - 1 < ô S 7 < 1 in case - 1 < X < - \ and - 1 ^ a < 2X + 1 ; 

(iii) 0 < ô ^ 7 < —a~l in case X > — J and a < — 1 ; 

(iv) 0 < ô g 7 < 1 in case X > - % and - 1 ^ a ^ 2X + 1 ; 

(v) 0 < h ^ 7 < (2X + l ) ^ - 1 in case X > - \ and a > 2X + 1. 

Proof. Argue as in Lemma 3.6 of [2] using [4, Theorem 1]. 

Remark. The results of Theorems 2.1 and 2.2 can be obtained for the operator 

H-i/2 in the same way as for the other H\. In this case, though, the sharper 

inequalities satisfied by the kernels allow 2X + 1 (equal to zero in this instance) 

to be replaced by 2 in all the relevant conditions. 
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