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Abstract

The Frobenius number F (a) of a lattice point a in Rd with positive coprime coordinates,

is the largest integer which can not be expressed as a non-negative integer linear

combination of the coordinates of a. Marklof in [The asymptotic distribution of

Frobenius numbers, Invent. Math. 181 (2010), 179–207] proved the existence of the limit

distribution of the Frobenius numbers, when a is taken to be random in an enlarging

domain in Rd. We will show that if the domain has piecewise smooth boundary, the

error term for the convergence of the distribution function is at most a polynomial in

the enlarging factor.

1. Introduction

1.1 Some results before 1980

Let Ẑd = {a = (a1, . . . ad) ∈ Zd : gcd(a1, . . . , ad) = 1} be the set of primitive lattice points,

and Ẑd>2 be the subset of Ẑd with coordinates ai > 2. For any a ∈ Ẑd>2, there exists a largest

natural number F (a) that is not representable as a linear non-negative integer combination of

the coordinates of a. The number F (a) is called the Frobenius number of the vector a, i.e.

F (a) = maxN\{k · a : k = (k1, . . . kd) ∈ Zd, ki > 0}.

The Frobenius number problem is also known as ‘the Coin Exchange Problem’. It has

been studied extensively in the past 50 years using various techniques, such as combinatorics,

probabilistic methods, geometry of numbers, and more recently homogeneous dynamics. The

book [Ram05] contains a good amount of information on the study of the Frobenius numbers.

It is known that F (a) = a1a2 − a1 − a2 for d = 2, and no explicit formula is known when d > 3.

Several upper bounds of the Frobenius numbers were obtained by the 1980s. With a ∈ Ẑd>2 and

a1 < a2 < · · · < ad, the estimates include the work by Erdős and Graham [EG72]

F (a) 6 2ad−1

[
ad
d

]
− ad, (1.1)

and the work by Selmer [Sel77]

F (a) 6 2ad

[
a1

d

]
− a1. (1.2)
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Effective limit distribution of the Frobenius numbers

1.2 The average behavior of the Frobenius numbers
There are also results on the limit distribution of Frobenius numbers from different perspectives.
In dimension d = 3 using continued fractions, Bourgain and Sinai [BS07] showed that for
ensembles ΩN = {a ∈ Ẑd>2 : ai 6 N}, the limit distribution of F (a)/N3/2 exists. Marklof
in [Mar10] generalized their result to higher dimensions. Before stating his results, let us first
recall the notion of the covering radius. A lattice L in Rd−1 is a discrete additive subgroup of
Rd−1 with finite covolume det (L), which equals the volume of the fundamental domain of the
L action on Rd−1. The covering radius Q0 of the standard simplex ∆d−1 = {x ∈ Rd−1 : xi > 0,∑d−1

i=1 xi 6 1} with respect to the lattice L ⊂ Rd−1 is by definition

Q0(L) = inf {t ∈ R+ : t∆d−1 + L = Rd−1}. (1.3)

Lattices of covolume 1 are called unimodular. Let G0 = SLd−1(R), Γ0 = SLd−1(Z); then
Ω0 = G0/Γ0 can be identified with the space of unimodular lattices in Rd−1 (gΓ0 ↔ gZd−1). Let
us fix a right invariant Riemannian metric on G0, giving rise to a metric and a left G0-invariant
probability measure µ̄0 on Ω0. Let us recall the following theorem.

Theorem 1.1 [Mar10, Theorem 1]. Let d > 3 and ER = {L ∈ Ω0 : Q0(L) 6 R}. Then:

(i) for any bounded set D ⊂ Rd>0 with boundary of Lebesgue measure zero, and any R > 0,

lim
T→∞

1

T d
#

{
a ∈ Ẑd>2 ∩ TD :

F (a)

(a1 · · · ad)1/(d−1)
6 R

}
=

vol(D)

ζ(d)
µ̄0(ER); (1.4)

(ii) Q0 is a continuous function on Ω0;

(iii) µ̄0(ER) is continuous in R, i.e. µ̄0({L ∈ Ω0 : Q0(L) = R}) = 0 for any R > 0.

1.3 Some explanation of Marklof’s work
We now briefly explain the existence of the limit distribution based on our private correspondence
with Marklof. This is what we are going to follow in this paper which is more suitable for
the purpose of ‘effectivization’, and is slightly different from [Mar10]. The method is based on
homogeneous dynamics, which is also combined with the geometry of numbers. Here are the
main ideas: Aliev and Gruber showed in [AG07] that for any a ∈ Ẑd>2, one associates a d − 1
dimensional unimodular lattice La ∈ Ω0 (see Theorem 2.6) with

F (a) +
∑d

i=1 ai

(a1 · · · ad)1/(d−1)
= Q0(La). (1.5)

This is essentially due to a geometric interpretation of the Frobenius numbers found by
Kannan [Kan92]. For this reason it will be more convenient for us to work with F (a) +

∑d
i=1 ai

instead of F (a). It is easy to see that the result in (1.4) is not affected if F (a) is replaced by
F (a) +

∑d
i=1 ai. Notice that for every bounded connected non-empty open subset D ⊆ {x ∈ Rd :

0 < xd < 1; 0 < xi < xd (i = 1, . . . , d− 1)} with boundary of Lebesgue measure zero,

|TD ∩ Ẑd| ∼ T dvol(D)

ζ(d)
. (1.6)

As we will see in § 4, the set of lattices {La : a ∈ TD ∩ Ẑd} appearing in (1.5) becomes
equidistributed in Ω0 as T →∞, i.e. for any bounded continuous function φ on Ω0, we have

lim
T→∞

1

T d

∑
a∈TD∩Ẑd

φ(La) =
vol(D)

ζ(d)

∫
Ω0

φdµ̄0. (1.7)
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As ER = {L ∈ Ω0 : Q0(L) 6 R} has boundary of measure zero, with a standard approximation
argument Theorem 1.1 can be deduced by applying χER

to (1.7) in the place of φ.
Theorem 1.1 also implies that for large enough R, and large enough T (depending on

the choice of R), the probability that a random lattice point a ∈ TD ∩ Ẑd satisfies F (a) <
R(a1 · · · ad)1/(d−1) is greater than 99%. This gives a somewhat better estimate compared
with (1.1) and (1.2), for most a ∈ TD ∩ Ẑd.

1.4 Statement of the results
The aim of this paper is to estimate the decay of the function Ψ(R) = 1− µ̄0(ER) and the error
term of (1.4).

Theorem 1.2. There exists a constant C > 0 dependent only on d, such that for any R > 0 we
have Ψ(R) < CR−(d−1).

Theorem 1.2 improves the exponent compared with [AHH11, Theorem 1]. After this paper
was completed, Marklof, in an unpublished work, proved that there exists a constant cd > 0, so
that Ψ(R) > cdR

−(d−1). Therefore our bound is actually sharp. An asymptotic formula for Ψ(R)
has recently been obtained by Strömbergsson in [Str12].

Definition 1.3. Let M be a connected smooth manifold. We say that a subset of M has thin
boundary if the boundary is contained in a union of finitely many connected smooth submanifolds
of M , and each of them has dimension < dimM .

Theorem 1.4. There exists κ > 0 dependent only on the dimension d satisfying the following
property. For any R > 0, and any non-empty connected open subset D ⊆ {x ∈ Rd : 0 < xd < 1;
0 < xi < xd (i = 1, . . . , d − 1)} which has thin boundary as a subset of the manifold Rd, there
exists a constant CR,D > 0 such that for every T > 1∣∣∣∣ 1

T d
#

{
a ∈ TD ∩ Ẑd>2 :

F (a) +
∑d

i=1 ai

(a1 · · · ad)1/(d−1)
6 R

}
− vol(D)

ζ(d)
µ̄0(ER)

∣∣∣∣ < CR,D
T κ

.

When d = 3 Ustinov [Ust10] has proved the existence of the limit distribution in Theorem 1.1
(with the average taken over only two of the three variables) and the polynomial convergence
to the limit distribution. He has also obtained an explicit formula for the limit density function
(see also [Str12, pp. 2–3] for a discussion).

1.5 Organization of the paper
In § 2 we will use the geometry of numbers to prove Theorem 1.2. We will also give an explicit
description for the La appearing in formula (1.5). Sections 3 and 4 are devoted to proving
effective equidistribution of the expanding horospheres, and a Farey sequence on a specified closed
horosphere, respectively, under the translation of a one-sided diagonal flow. We will give an error
term estimate of (1.7) for non-negative compactly supported C1 test functions (Theorem 4.13).
Using a standard approximation argument, we will prove Theorem 1.4 in § 5 by showing that
ER = {L ∈ Ω0 : Q0(L) 6 R} has thin boundary as a subset of Ω0. We will borrow many ideas
from [Mar10, § 4] to formulate a series of equidistribution results which lead to Theorem 4.13.

1.6 Notational convention
Throughout the paper we assume that the dimension d > 3, and always work with column vectors
in Euclidean spaces. We use A� B to represent inequalities 0 6 A 6 cB in which the implicit
constant c depends on the underlying Lie groups or Euclidean spaces. In a metric space X,
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BX(x, r) stands for the open ball of radius r centered at x. On a Lie group G, BG(r) = BG(e, r)
with a specified metric on G; in Rn, B(r) = BRn(0, r) with Euclidean norm. The exponents
α1, α2, . . . in §§ 3 and 4 depend only on the dimension d.

2. Covering radius and the Frobenius numbers

2.1 Preliminaries
We call a subset K of Rd−1 a convex body if K is a compact convex set with non-empty interior.
A convex body is called centrally symmetric if it is symmetric with respect to the origin. For
a centrally symmetric convex body K, its polar K∗ is also a centrally symmetric convex body
defined by K∗ = {x ∈ Rd−1 : x · y 6 1, for any y ∈ K}.

We now recall the notion of dual lattice. Let L = AZd−1 ∈ Ω0 where A ∈ G0, and let A∗

be the inverse transpose of A. We call the lattice L∗ = A∗Zd−1 the dual lattice of L. One can
readily verify that the definition of L∗ is independent of the choice A, and moreover the map
L → L∗ is a diffeomorphism of Ω0 which preserves µ̄0.

The covering radius Q(K,L) of K ⊆ Rd−1 with respect to a lattice L in Rd−1 is defined by

Q(K,L) := inf {t ∈ R+ : tK + L = Rd−1}.
Clearly the function Q0 defined in (1.3) satisfies Q0(L) = Q(∆d−1, L) for any lattice L in Rd−1.
(We will abbreviate ∆d−1 as ∆ in what follows.)

2.2 Minkowski’s successive minima and the covering radius
The covering radius is related to Minkowski’s successive minima. Let K ⊆ Rd−1 be a centrally
symmetric convex body, and L a lattice in Rd−1. The ith minimum (1 6 i 6 d − 1) of K with
respect to L is defined by

λi(K,L) := min{t ∈ R+ : dim(span (tK ∩ L)) > i}.
Clearly 0 < λ1(K,L) 6 λ2(K,L) · · · 6 λd−1(K,L).

Lemma 2.1 (Minkowski’s second theorem). Let K ⊆ Rd−1 be a centrally symmetric convex body
and L be a lattice in Rd−1. Then

2d−1

(d− 1)!
6

vol(K)

det (L)

d−1∏
i=1

λi(K,L) 6 2d−1.

Lemma 2.2 [KL88, Lemma 2.4, Corollary 2.8]. Let K be a convex body and L be a lattice in
Rd−1, and set K −K = {k1 − k2 : k1,k2 ∈ K}. Then:

(i) λd−1(K −K,L) 6 Q(K,L) 6
∑d−1

i=1 λi(K −K,L);

(ii) there exists a constant Cd > 0, so that λd−1(K −K,L)λ1((K −K)∗, L∗) < Cd.

Lemma 2.3. The function Q0 defined in (1.3) is proper on Ω0, i.e. ER = {L ∈ Ω0 : Q0(L) 6 R}
is a compact subset of Ω0 for any R > 0.

Proof. By Lemmas 2.1 and (i) of 2.2, λ1(∆ − ∆, L) is positively bounded below for L ∈ ER.
Mahler’s Criterion implies that ER is relatively compact in Ω0. Since Q0 is continuous (see (ii)
of Theorem 1.1), ER is compact. 2

Lemma 2.4 [AM09, Lemma 4.1]. For any centrally symmetric convex body K in Rd−1, there
exists a constant CK > 0 so that for any r > 0,

µ̄0({L ∈ Ω0 : λ1(K,L) < r}) < CKr
d−1.
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2.3 Proof of Theorem 1.2

Proof. By Lemma 2.2, for any R > 0,

{L ∈ Ω0 : Q0(L) > R} ⊆
{
L ∈ Ω0 : λd−1(∆−∆, L) >

R

d− 1

}
⊆
{
L ∈ Ω0 : λ1((∆−∆)∗, L∗) <

(d− 1)Cd
R

}
.

Since the map L 7→ L∗ preserves µ̄0, by Lemma 2.4

Ψ(R) = µ̄0({L ∈ Ω0 : Q0(L) > R})�d R
−(d−1). 2

2.4 An interpretation of a result of Kannan and Aliev–Gruber
For T > 0, x ∈ Rd−1 and y ∈ Rd−1 with each coordinate yi 6= 0, we define

D(T ) =

(
T−1/(d−1)1d−1 0

0 T

)
n(x) =

(
1d−1 0
xt 1

)
m(y) =

(
m′(y) 0

0 1

)
where

m′(y) = (y1 · · · yd−1)−1/(d−1) diag(y1, . . . , yd−1).

It is clear that D(T ), n(x), and m(y) all belong to SLd(R).

Definition 2.5. For every a ∈ Zd with ad 6= 0, we associate a vector â ∈ Rd−1 by

â =

(
a1

ad
, . . . ,

ad−1

ad

)t
.

For any a ∈ Ẑd>2 let Ma be the lattice

Ma :=

{
b ∈ Zd−1 :

d−1∑
i=1

aibi ≡ 0 (mod ad)

}
.

Since a is primitive, Ma has determinant ad. Aliev and Gruber, based on the work of Kannan
[Kan92], have shown in [AG07] that the Frobenius number F (a) satisfies

F (a) +
∑d

i=1 ai

(a1 · · · ad)1/(d−1)
= Q0(m′(â)(a

−1/(d−1)
d Ma)). (2.1)

This enables us to present an explicit description of the lattice La in formula (1.5).

Theorem 2.6. For any a ∈ Ẑd>2 the Frobenius number F (a) satisfies

F (a) +
∑d

i=1 ai

(a1 · · · ad)1/(d−1)
= Q0(m(â)D(ad)n(â)Zd ∩ e⊥d ), (2.2)

where ed = (0, . . . , 0, 1)t, and we identify Rd ∩ e⊥d with Rd−1 in the obvious way. In other words,
La = m(â)D(ad)n(â)Zd ∩ e⊥d .

Proof. Note that for any y = (y1, . . . , yd)
t ∈ Rd with y · a = 0, we have

n(â)y = (y1, . . . , yd−1, 0)t.

Therefore Ma = (n(â)Zd) ∩ e⊥d . The conclusion follows immediately from (2.1). 2
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3. Translations of horospheres and effective equidistribution

3.1 Subgroups of SLd(R) and their Haar measures
Let us fix the notation for the Lie groups which will be frequently used in what follows:

G = SLd(R), Γ = SLd(Z), G0 = SLd−1(R).

We will identify G0 with the image of the embedding A→
(
A 0
0 1

)
. We denote by F = {D(s) : s > 0}

the subgroup of G, and set F+ = {D(s) : s > 1}. For the subgroups of G

H = {n(x) : x ∈ Rd−1}, H− = {n(x)t : x ∈ Rd−1}, H0 =

{(
A 0
0 c

)
: det (A)c = 1

}
,

their Lie algebras are invariant subspaces of the adjoint action of F on g = Lie (G).
We identity the Lie algebra g with the space of d× d traceless matrices, and define an inner

product on g by setting

〈X,Y 〉 = tr(XtY ), X, Y ∈ g.

This gives rise to a right invariant Riemannian metric on G, and hence a metric dS on any closed
subgroup S of G. We have an orthogonal decomposition of g into linear subspaces

g = Lie(H) + Lie (H−) + Lie(G0) + Lie(F ).

We fix an orthonormal basis of g coming from a basis of those subspaces

X = {Xi : i = 1, 2, . . . , d2 − 1}. (3.1)

We define for every s > 0 a map φs : G → G by

φs(g) = D(s)gD(s−1). (3.2)

The restriction of φs(s > 1) on H ′ = H0H
− is thus contracting in the sense that, for any r > 0,

φs(BH′(r)) ⊆ BH′(r).

The group H is called the expanding horospherical subgroup with respect to F+ as

H = {g ∈ G : D(s−1)gD(s) → 1d, as s → +∞}.

Let Ω = G/Γ with the metric dΩ coming from G. Every H-orbit in Ω is called an expanding
horosphere (with respect to F+). We specify a closed horosphere

Y = {hΓ : h ∈ H} = {n(x)Γ : x ∈ Td−1} ⊆ Ω.

By µ and ν we denote the left Haar measures on G and H respectively, with the induced measures
on Ω and Y satisfying µ̄(Ω) = 1 and ν̄(Y ) = 1 (which means ν and ν̄ correspond to the Lebesgue
measures on Rd−1 and Td−1 respectively). We choose a left Haar measure ν ′ on H ′ so that µ is
locally the product of ν and ν ′. This means, in view of [Kna02, Theorem 8.32], for any f ∈ L1(G):∫

H′H
f(g) dµ =

∫
H′×H

f(h′h) dν ′(h′) dν(h). (3.3)
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3.2 Decay of matrix coefficients and its consequences
A rich literature on the theory of ‘the decay of the matrix coefficients’ has evolved since the work
of Harish-Chandra, including the works by Cowling [Cow79], Howe [How82], Moore [Moo87],
Katok and Spatzier [KS94], and Oh [Oh02], to just mention a few. Let ρ be a (strongly continuous)
unitary representation of G on a Hilbert space H. We say that a vector v ∈ H is Lipschitz if (the
metric d below refers to the fixed metric on G)

Lip(v) := sup

{
‖ρ(g)v − v‖
d(e, g)

: g 6= e

}
<∞.

Based on previous works on the decay of the matrix coefficients, Kleinbock and Margulis proved
a quantitative decay of matrix coefficients for Lipschitz vectors. For our purpose we only need the
following theorem which follows from [KM96, Theorem A.4], combined with Kazhdan’s property
(T) for the groups G = SLn(R) (n > 3).

Theorem 3.1. There exists α1 > 0 so that for any unitary representation (ρ,H) of G without
G-invariant vectors, any Lipschitz vectors v, w ∈ H and every s > 1, we have that

|〈ρ(D(s))v, w〉| � s−α1(Lip(v) + ‖v‖)(Lip(w) + ‖w‖).

Remark 3.2. Following [KM96, Theorem A.4] and the work of Oh [Oh02] one can give an explicit
exponent α1 in Theorem 3.1. It should in principle give an explicit exponent κ in Theorem 1.4
following the results in §§ 3 and 4. However, we shall not do this, to keep the computation simpler
in this article.

Definition 3.3. We say that a real-valued function ψ on a metric space X (with metric ‘dist’)
is Lipschitz if

‖ψ‖Lip := sup

{
|ψ(x)− ψ(y)|

dist(x, y)
: x, y ∈ X,x 6= y

}
<∞.

The space of Lipschitz functions on X is denoted by Lip(X).

Remark 3.4. If X is a Riemannian manifold with distance coming from the Riemannian metric
and ψ a real-valued smooth function on X, then ‖ψ‖Lip = sup{‖dψx‖ : x ∈ X}, where dψx is the
tangent map of ψ at x, and its norm comes from the Riemannian metric on X.

We specify a metric on H×Ω by setting d((h1, z1), (h2, z2)) := dH(h1, h2)+dΩ(z1, z2), where
h1, h2 ∈ H and z1, z2 ∈ Ω. In what follows, the metrics on the product spaces are all defined in
the same way. We now fix a subset

U = {n(x) : x ∈ (−2, 2)d−1} ⊂ H.

Consider the action of G on H×Ω by g.(h, z) = (h, gz) and the associated unitary representation
of G on L2(H × Ω). In this case any Lipschitz function on H × Ω which is supported on
U × Ω is a Lipschitz vector in L2(H × Ω), and moreover Lip(ψ) �U ‖ψ‖Lip. Notice that
H0 = {ϕ : ϕ(h, z) = f(h), for some f ∈ L2(H)} is the linear subspace of the G-stable vectors in
L2(H × Ω). Considering the representation of G on H⊥0 , we obtain the following corollary.

Corollary 3.5. Let P : L2(H × Ω) → H0 be the orthogonal projection. Then for any s > 1
and functions ϕ,ψ ∈ Lip(H × Ω) ∩ L2(H × Ω) which are supported on U × Ω, we have that

|〈D(s)ϕ,ψ〉 − 〈Pϕ,Pψ〉| �U (‖ϕ‖L2 + ‖ϕ‖Lip)(‖ψ‖L2 + ‖ψ‖Lip)s−α1 . (3.4)
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3.3 Effective equidistribution and F+-translations

Definition 3.6. Let M be a smooth manifold on which G acts by diffeomorphisms. We define
for every X ∈ g a vector field on M by

∂X(f)(m) := lim
t→0

f(exp(tX)m)− f(m)

t
for all f ∈ C∞(M),m ∈M.

The corresponding tangent vector ∂mX at m ∈M is by definition

∂mX(f) = ∂X(f)(m) for all f ∈ C∞(M).

We are going to present a quantitative equidistribution result of the F+-translations of the
H-orbit {(h, hx) : h ∈ H} (where x ∈ Ω) in H ×Ω. The method in our approach is by no means
new. The proof here is a modification of the proofs for the equidistribution of the F+-translations
of {hx : h ∈H} in Ω (cf. [KM96, KM12]). The technique is sometimes known as ‘equidistribution
via mixing’, which originated in Margulis’ thesis. In contrast to [KM96, KM12], the additional
variable on the horosperical subgroup H deserves special care when we do the ‘thickening’. First
we recall a well-known result.

Lemma 3.7. For any 0 < r < 1, there exists a non-negative function θ ∈ C∞(Rn) supported in
B(r), such that θ(0) = 1,

∫
Rn θ = 1, ‖θ‖L2 � r−n/2, ‖θ‖L∞ � r−n and ‖θ‖Lip � r−n−1.

We remark that the lemma will be used in what follows to thicken the functions, which are
defined on submanifolds, in the transversal directions so as to get new functions defined on larger
spaces which also satisfy certain norm bounds. The condition θ(0) = 1 in the lemma will be used
specifically in the proof of Theorem 4.5.

Theorem 3.8. Let f ∈ C∞(H), 0 < r < 1 be such that BH(r) supp(f) ⊂ U , and let x ∈ Ω
be such that πx : G → Ω, πx(g) = gx is injective on BG(r) supp(f). Then for any T > 1 and
ϕ ∈ C∞(H × Ω) with supp(ϕ) ⊆ U × Ω, we have that (the α1 below is as in Theorem 3.1)∣∣∣∣∫

H
f(h)ϕ(h,D(T )hx) dν(h)−

∫
H×Ω

f(h)ϕ(h, z) dν(h) dµ̄(z)

∣∣∣∣
� ‖ϕ‖Lip · r · ‖f‖L1 + r−d

2‖f‖C1‖ϕ‖C1T−α1 . (3.5)

The C1 norms here for smooth functions on various manifolds are taken to be ‖f‖∞ + ‖f‖Lip.

Remark 3.9. We assume here that ‖ϕ‖C1 <∞, as there is nothing to prove otherwise. The same
assumption applies to Theorems 3.11, 4.5, Proposition 4.6, Corollary 4.9 and Proposition 4.13.

Proof. Replacing ϕ by ϕ(h, z)−
∫

Ω ϕ(h, z) dµ̄(z) if necessary, we may assume
∫

Ω ϕ(h, z) dµ̄(z) = 0
for every h ∈ H. We choose non-negative functions θ′ ∈ C∞(H ′), θ1 ∈ C∞(H) supported in
BH′(r) and BH(r) respectively by Lemma 3.7. We define a function ψ on H ×G by setting

ψ(h1h2, h
′h2) = θ′(h′)θ1(h1)f(h2) for all h1, h2 ∈ H,h′ ∈ H ′,

and setting ψ(h, g) = 0 outside the open subset H ×H ′H of H × G. Since
∫
H′ θ

′ =
∫
H θ1 = 1,

[Kna02, Theorem 8.32] and formula (3.3) implies∫
H
f(h)ϕ(h,D(T )hx) dν(h) =

∫
H×H′×H

ψ(h1, h
′h2)ϕ(h2, D(T )h2x) dν(h1) dν ′(h′) dν(h2).
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Let us define a function ψx on H × Ω by setting ψx(h, gx) = ψ(h, g) for (h, g) ∈ H ×
(BG(r) supp(f)), and ψx(h, z) = 0 outside the open subset H × BG(r) supp(f)x ⊆ H × Ω.
The definition makes sense because of the injectivity assumption. It is easy to check that
ψx ∈ C∞(H × Ω), and supp(ψx) ⊆ U × Ω. As the maps φs defined in (3.2) are contractions
on H ′, one has that∣∣∣∣∫

H
f(h)ϕ(h,D(T )hx) dν(h)− 〈D(T )ψx, ϕ〉

∣∣∣∣
=

∣∣∣∣∫
H×H′×H

ψ(h1, h
′h2)(ϕ(h2, D(T )h2x)− ϕ(h1, D(T )h′h2x)) dν(h1) dν ′(h′) dν(h2)

∣∣∣∣
� ‖ϕ‖Lip · r · ‖ψ‖L1

= ‖ϕ‖Lip · r · ‖f‖L1 . (3.6)

On the other hand

‖ψx‖Lip � ‖θ′(h′)θ1(h1)f(h2)‖C1 � r−d
2‖f‖C1 , ‖ψx‖L2 � r−d

2/2‖f‖L2 .

Let P : L2(H × Ω) → H0 be the orthogonal projection as in Corollary 3.5. Then

P(ϕ) =

∫
Ω
ϕ(h, z) dµ̄(z) = 0

by our assumption. It follows from (3.4) that

|〈D(T )ψx, ϕ〉| � r−d
2‖f‖C1(‖ϕ‖Lip + ‖ϕ‖L2)T−α1 � r−d

2‖f‖C1‖ϕ‖C1T−α1 .

The theorem follows immediately. 2

Remark 3.10. It is the estimate (3.6) that makes us use the Lipschitz norm in (3.5), instead of

the ‘Sobolev norm’ which is very common in the recent literature.

The following theorem concerns the equidistribution of F+-translations of the Lebesgue

measure on {(x, n(x)Γ) : x ∈ Id−1} where I = (0, 1). The result without the additional variable

on Id−1 is the classical equidistribution of large closed horospheres. The reason that we also

consider a variable on Id−1 here is that the matrix m(x), which is related to Frobenius numbers

via Theorem 2.6, is defined for x ∈ Id−1. This will be relevant in Proposition 4.6.

Theorem 3.11. There exists a constant α2 > 0 so that for any φ ∈ C∞(Id−1 × Ω) and T > 1,∣∣∣∣∫
Id−1

φ(x, D(T )n(x)Γ) dx−
∫
Id−1×Ω

φ(x, z) dx dµ̄(z)

∣∣∣∣� ‖φ‖C1T−α2 . (3.7)

Here dx is the Lebesgue measure, and

‖φ‖C1 := ‖φ‖L∞ + max

{∥∥∥∥ ∂

∂xi
φ

∥∥∥∥
L∞
, ‖∂X(φ)‖L∞

}
,

where ∂/∂xi are the standard Euclidean vector fields for the Id−1 factor, and the X ∈ X are

vector fields for the Ω factor. (See (3.1) and Definition 3.6.)
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Proof. To outline the idea of the proof, we will approximate χId−1 , φ by smooth functions on
Rd−1, Rd−1×Ω respectively. This enables us to apply Theorem 3.8 and get an error term estimate.

Let’s fix a partition {Ei : 1 6 i 6 N} of Id−1 with the interior of each Ei being an open cube,
and choose r0 > 0 so that for each i we have that BH(r0){n(x) : x ∈ Ei} ⊆ U , and the restriction
of π : G → Ω, π(g) = gΓ to {gn(x) : g ∈ BG(r0),x ∈ Ei} is injective. For every 0 < r < r0 and
1 6 i 6 N , we fix a function pi ∈ C∞(Rd−1) supported in Ei,

0 6 pi 6 χEi , vol({x ∈ Ei : pi(x) 6= 1})� r, ‖pi‖C1 � r−1.

We fix also a function p ∈ C∞(Rd−1) supported in Id−1 with

0 6 p 6 χId−1 , vol({x ∈ Id−1 : p(x) 6= 1})� r1/2, ‖p‖C1 � r−1/2.

Letting φ̃(x, z) = p(x)φ(x, z) ∈ C∞(Rd−1 × Ω), we then have∣∣∣∣∫
Rd−1

χEi(x)φ(x, D(T )n(x)Γ) dx−
∫
Rd−1

pi(x)φ̃(x, D(T )n(x)Γ) dx

∣∣∣∣� ‖φ‖L∞r1/2,∣∣∣∣∫
Rd−1×Ω

(χEi(x)φ(x, z)− pi(x)φ̃(x, z)) dx dµ̄(z)

∣∣∣∣� ‖φ‖L∞r1/2.

As pi(x) and φ̃(x, z) satisfy the assumptions of Theorem 3.8, we have that∣∣∣∣∫
Rd−1

pi(x)φ̃(x, D(T )n(x)Γ) dx−
∫
Rd−1×Ω

pi(x)φ̃(x, z) dx dµ̄(z)

∣∣∣∣
� ‖φ̃‖Lip · r + r−d

2−1‖φ̃‖C1T−α1

� ‖φ‖Lip · r + ‖φ‖L∞r1/2 + r−d
2−3/2‖φ‖C1T−α1 .

Setting r = r0T
−2α2 for some appropriate α2 > 0, we get (r0 depends only on the dimension)∣∣∣∣∫
Id−1

φ(x, D(T )n(x)Γ) dx−
∫
Id−1×Ω

φ(x, z) dx dµ̄(z)

∣∣∣∣� ‖φ‖C1T−α2 . 2

4. Translations of a Farey sequence and effective equidistribution

4.1 Description of the F+-translations of a Farey sequence
The Farey fractions on the torus Td−1 are those points whose coordinates are rational numbers.
We already know that the expanding horosphere Y = {hΓ : h ∈ H} becomes equidistributed
under F+-translations. We are going to study the equidistribution property of Farey fractions
on Y in this section. We denote by K the subgroup

K =

{
An b :=

(
A b
0 1

)
: A ∈ G0, b ∈ Rd−1

}
⊆ G.

Let Λ = {D(s)kΓ : s > 1, k ∈ K}. This is an embedded submanifold of Ω by [Mar10, Lemma 2].
For any element λ ∈ Λ, there exist unique s > 1 and z ∈ KΓ/Γ such that λ = D(s)z. Let

D0 = {x ∈ Rd : 0 < xd < 1; ∀ i < d, 0 < xi < xd}.

Marklof in [Mar10] proved that under F+-translation, the Farey fractions {n(â)Γ : a ∈ TD0∩Ẑd}
on the closed horosphere {n(x)Γ : x ∈ Td−1} become equidistributed on Λ. We will prove an
effective version of this result in Theorem 4.5. The following lemma, which describes the behavior
of F+-translations of the Farey fractions, is also hinted at in [Mar10].
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Lemma 4.1. For any T > 1, the lattice points in TD0 ∩ Ẑd are in one-to-one correspondence
with the intersection of {D(T )n(x)Γ : x ∈ Id−1} with the submanifold Λ. More precisely,{

â =

(
a1

ad
, . . . ,

ad−1

ad

)t
: a ∈ TD0 ∩ Ẑd

}
= {x ∈ Id−1 : D(T )n(x)Γ ∈ Λ}.

Proof. (‘⊆’) In view of Theorem 2.6, for every a ∈ TD0 ∩ Ẑd, one has that

D(ad)n(â)Γ ∈ KΓ.

It follows that D(T )n(â)Γ ∈ Λ.
(‘⊇’) For every x ∈ Id−1 with D(T )n(x)Γ ∈ Λ, there exists T ′ > 1 such that

D(T/T ′)n(x)Γ ∈ KΓ/Γ.

For any lattice in KΓ/Γ, the last coordinates of its lattice points form the set Z. This means
that

T

T ′
(x1, . . . , xd−1, 1)t ∈ Ẑd.

Hence x = â for some a ∈ TD0 ∩ Ẑd. 2

4.2 Transversal injectivitity radius of Λ ⊆ Ω
To study effective equidistribution of the Farey sequence, we need to introduce the following.

Definition 4.2. Let π : G → Ω be the natural projection given by π(g) = gΓ. For g ∈ G and
x ∈ Ω, we set

|g|∞ := max {|aij | : g = (aij)}, |x|∞ := inf {|g|∞ : π(g) = x}.

Let C ⊆ Ω be a Borel subset; we define

|C| := max (1, sup{|x|∞ : x ∈ C}).

Remark 4.3. It follows from the definition that for every g ∈ G,A ∈ G0, x ∈ Ω and b ∈ Rd−1:

(i) |gx|∞ � |g|∞|x|∞;

(ii) |(An b)Γ|∞ � |AΓ0|∞; (as (An b)Γ = (An b′)Γ for some ‖b′‖ � |A|∞);

(iii) |C| <∞ for every relatively compact subset C ⊂ Ω.

Lemma 4.4. Let π̃ be the map Rd−1 × F+ ×KΓ/Γ → Ω defined by π̃(x, D(s), z) = n(x)D(s)z,
and C be a relatively compact subset of KΓ/Γ. Then the restriction of π̃ on B(1/(4d|C|))×F+×C
is injective.

Proof. Let r = 1/(2d|C|). It is enough to show that if n(x)D(T )k1Zd = k2Zd for some x ∈ B(r),
T > 1, k1Γ, k2Γ ∈ C, then x = 0, T = 1. To prove this, we choose k1, k2 so that |k1|∞, |k2|∞ < 2|C|,
and let k1 = An b. The last coordinates of the lattice points in k2Zd form the set Z, so does the
Z-span of the entries in the last row of n(x)D(T )k1, i.e.

T−1/(d−1)(Zx · a1 + · · ·+ Zx · ad−1) + Z(T−1/(d−1)x · b + T ) = Z,

where the ai are the columns of A. By the choice of r we have |x · ai| < 1, so x = 0, T = 1. 2
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4.3 The main equidistribution result
Let dk be the left Haar measure on K such that dk = dµ0db, where db is the Lebesgue measure
on Rd−1, and let dk̄ be the induced probability measure on KΓ/Γ. According to Siegel’s volume
formula (cf. [Sie45, Mar10]) and [Kna02, Theorem 8.32], for any f ∈ L1(G)∫

HFK
f(g) dµ(g) =

1

ζ(d)

∫
H×R+×K

f(hD(s)k) dν(h)
ds

sd+1
dk. (4.1)

This naturally defines a Borel measure on Λ : dλ = s−(d+1) ds dk̄. We also consider for every
smooth function φ on Id−1 × Λ the C1-norm given by

‖φ‖C1 := ‖φ‖L∞ +

d−1∑
i=1

∥∥∥∥ ∂

∂xi
φ

∥∥∥∥
L∞

+
∑
X

‖∂X(φ)‖L∞ , X ∈ X ∩ (Lie (F ) + Lie (G0) + Lie (H−)).

Theorem 4.5. There exists a constant α3 > 0 satisfying the following property. Let C be any
relatively compact, open subset of KΓ/Γ, and C′ be a compact subset of C. For every ϕ ∈
C∞(Id−1 × Λ) with supp(ϕ) ⊆ Id−1 × F+C′, and T > 1 we have∣∣∣∣ 1

T d

∑
a∈TD0∩Ẑd

ϕ(â, D(T )n(â)Γ)− 1

ζ(d)

∫
Id−1×Λ

ϕ(x, λ) dx dλ

∣∣∣∣� |C|d‖ϕ‖C1T−α3 .

Proof. Step (i). Thicken an approximation of ϕ to a function ψ ∈ C∞(Id−1 × Ω).
Let 0 < r < r0 = 1/(4d|C|). In the proof of this Theorem, we temporarily set BH(r) :=

{n(x) : x ∈ B(r)}. We choose θ ∈ C∞(Rd−1) supported in B(r) according to Lemma 3.7; and
β ∈ C∞(F ) so that 0 6 β 6 1, supp(β) ⊆ {D(s) : s > er/2}, β = 1 on {D(s) : s > er}, and
‖β‖C1 � r−1. We define a function ψ on the open submanifold Id−1 ×BH(r)F+C of Id−1 × Ω:

ψ(x, n(y)D(s)z) = β(D(s))θ(y)ϕ(x, D(s)z) for all x ∈ Id−1,y ∈ B(r), s > 1, z ∈ C.

The function ψ is well-defined by the injectivity result proved in Lemma 4.4 and the fact that
r < r0. By [Mar10, Lemma 2], {D(s) : s > s0}KΓ/Γ is a closed embedded submanifold of Ω for
any s0 > 0. It follows that BH(r) · {D(s) : s > s0} · C′ is a closed subset of Ω; hence the support
of ψ in Id−1 ×BH(r)F+C is a closed subset of Id−1 ×Ω. Therefore if we extend ψ to a function
on Id−1 × Ω by setting ψ = 0 outside the open subest Id−1 × BH(r)F+C ⊆ Id−1 × Ω, we get a
smooth function which we, with abuse of notation, also denote by ψ. Moreover

‖ψ‖C1 � (‖β‖L∞‖θ‖C1 + ‖β‖C1‖θ‖L∞)‖ϕ‖C1 � r−d‖ϕ‖C1 . (4.2)

Notice that we have ∫
Id−1×Λ

|ϕ(x, λ)− ψ(x, λ)| dx dλ� r‖ϕ‖L∞ . (4.3)

If T > erad, then
ϕ(â, D(T )n(â)Γ) = ψ(â, D(T )n(â)Γ).

On the other hand,
#{a ∈ TD0 : T < erad} � rT d.

It follows that ∑
a∈TD0∩Ẑd

|ϕ(â, D(T )n(â)Γ)− ψ(â, D(T )n(â)Γ)| � T dr‖ϕ‖L∞ . (4.4)
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Step (ii). Compare the average of ψ over the Farey sequences and horospheres.
Let T > 1,a ∈ TD0 ∩ Ẑd, and set r′ = r/T d/(d−1) where r < r0 as before. Let

Er = {x ∈ Id−1 : dist(x, ∂Id−1) > r}, MT,r = {a ∈ TD0 ∩ Ẑd : â ∈ Er′ , D(T )n(â)Γ ∈ F+C}.

By our construction ψ(â, D(T )n(â)Γ) 6= 0 only if D(T )n(â)Γ ∈ F+C; hence∑
a∈TD0∩Ẑd,â∈Er′

ψ(â, D(T )n(â)Γ) =
∑

a∈MT,r

∫
B(r)

θ(y)ψ(â, D(T )n(â)Γ) dy.

Let us consider the subset ZT,r :=
⋃

a∈MT,r
{â+y : y ∈ B(r′)} of Id−1. Our injectivity assumption

implies that the union in ZT,r is disjoint. Hence we have that∣∣∣∣ 1

T d

∑
a∈TD0∩Ẑd,â∈Er′

ψ(â, D(T )n(â)Γ)−
∫
ZT,r

ψ(x, D(T )n(x)Γ) dx

∣∣∣∣
=

∣∣∣∣ ∑
a∈MT,r

∫
B(r′)

ψ(â, D(T )n(â + y)Γ) dy −
∑

a∈MT,r

∫
B(r′)

ψ(â + y, D(T )n(â + y)Γ) dy

∣∣∣∣
� T d‖ψ‖Lip

∫
B(r′)

‖y‖ dy � ‖ϕ‖C1T−d/(d−1). (4.5)

On the other hand, we have that {x ∈ E2r′ : ψ(x, D(T )n(x)Γ) 6= 0} ⊆ ZT,r. To see this, notice
that for any such x, we have n(x1)D(T )n(x)Γ ∈ F+C for some x1 ∈ B(r), because our function
ψ is supported in Id−1 × BH(r)F+C. By Lemma 4.1, n(x1)D(T )n(x)Γ = D(T )n(â)Γ for some
a ∈ TD0 ∩ Ẑd. As x ∈ E2r′ , we have that â ∈ Er′ . The above discussion implies that∣∣∣∣∫

Id−1−ZT,r

ψ(x, D(T )n(x)Γ) dx

∣∣∣∣� r′‖ψ‖L∞ . (4.6)

Because #{a ∈ TD0 ∩ Ẑd : â /∈ Er′} � T dr′, and r < r0 < 1 (as |C| > 1) we get that∣∣∣∣∫
Id−1

ψ(x, D(T )n(x)Γ) dx− 1

T d

∑
a∈TD0∩Ẑd

ψ(â, D(T )n(â)Γ)

∣∣∣∣
� r′‖ψ‖L∞ + (4.5) + (4.6)� r(1−d)‖ϕ‖C1T−d/(d−1). (4.7)

Step (iii). Apply the equidistribution result of expanding horospheres.
By (4.2) and Theorem 3.11∣∣∣∣∫

Id−1

ψ(x, D(T )n(x)Γ) dx−
∫
Id−1×Ω

ψ(x, z) dx dµ̄(z)

∣∣∣∣� r−d‖ϕ‖C1T−α2 . (4.8)

Let K be a Borel subset of K which is mapped bijectively onto C by π. By equation (4.1)∫
Id−1×Ω

ψ(x, z) dx dµ̄(z) =

∫
Id−1×BH(r)·F+·K

ψ(x, gΓ) dx dµ(g)

=
1

ζ(d)

∫
Id−1×Rd−1×R>1×K

θ(y)ψ(x, D(s)kΓ) dx dy
ds

sd+1
dk

=
1

ζ(d)

∫
Id−1×Λ

ψ(x, λ) dx dλ. (4.9)
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Setting r = 1
2r0T

−α3 for some suitable constant α3 > 0 and combining (4.3)–(4.9), we
conclude that for every T > 1∣∣∣∣ 1

T d

∑
a∈TD0∩Ẑd

ϕ(â, D(T )n(â)Γ)− 1

ζ(d)

∫
Id−1×Λ

ϕ(x, λ) dx dλ

∣∣∣∣� |C|d‖ϕ‖C1T−α3 . 2

4.4 Consequences of Theorem 4.5

Recall from Theorem 2.6 that for any primitive lattice point a ∈ Ẑd>2, the lattice La appearing

in (1.5) which produces the Frobenius number F (a) is given by La = m(â)D(ad)n(â)Zd ∩ e⊥d .

Let L′a = m(â)D(ad)n(â)Γ ∈ KΓ/Γ. Translating L′a by D(T/ad), we get

D(T/ad)L
′
a = m(â)D(T )n(â)Γ.

Moreover, we have D(T/ad)L
′
a ∈ Λ if and only if a ∈ TD0 ∩ Ẑd. The following theorem shows

that under this translation, the lattices {L′a : a ∈ TD0 ∩ Ẑd} become equidistributed in Λ.

Proposition 4.6. There exists a constant α4 > 0 with the following property. With C, C′ as in
Theorem 4.5, for any ϕ ∈ C∞(Id−1 × Λ) with supp(ϕ) ⊆ Id−1 × F+C′, and any T > 1, we have∣∣∣∣ 1

T d

∑
a∈TD0∩Ẑd

ϕ(â,m(â)D(T )n(â)Γ)− 1

ζ(d)

∫
Id−1×Λ

ϕ(x, λ) dx dλ

∣∣∣∣� |C|d‖ϕ‖C1T−α4 .

Remark 4.7. The non-effective result can be derived from Theorem 4.5 via the following simple

fact. Let µn, µ be Borel measures on Id−1 ×Λ so that µn converges to µ in the weak* topology.

Let T : Id−1 × Λ → Id−1 × Λ be a smooth map given by T (x, λ) = (x,m(x)λ). Then the

push-forward Borel measures T ∗(µn) also weak* converge to T ∗(µ).

Proof. Let T be as in Remark 4.7. Since ‖ϕ◦T ‖C1 is not necessarily finite, we need to approximate

ϕ ◦ T by compactly supported functions to get an error estimate. Recall that Er = {x ∈ Id−1 :

dist(x, ∂Id−1) > r}. Let θ ∈ C1(Id−1) be a function so that χEr 6 θ 6 χEr/2 and ‖θ‖C1 � r−1.

The function ϕ̃(x, λ) = θ(x)ϕ(x,m(x)λ) satisfies supp(ϕ̃) ⊆ Id−1×F+C′1 where C′1 is a compact

subset of C1 =
⋃

x∈Er/2 m(x)−1C. Since the entries of each m(x)−1 (x ∈ Er/2) are bounded by

2/r in absolute value, it follows from Remark 4.3 that |C1| � |C|r−1.

Claim. There exists n = n(d) > 0, such that ‖ϕ̃‖C1 � r−n‖θ‖C1‖ϕ‖C1 .

Proof of the claim. We take (x, λ) ∈ Er/2×Λ and consider the differential dT of T at this point.

We use ∂/∂xi as the usual Euclidean tangent vector at x ∈ Id−1, and let ∂λX denote a tangent
vector at λ ∈ Λ (see Definition 3.6 and Theorem 4.5). It is easy to check that

dT
(
∂

∂xi

)
=

∂

∂xi
+

1

(d− 1)xi
∂m(x)λEi, 1 6 i 6 d− 1

dT (∂λX) = ∂m(x)λAd(m(x))(X),

where Ei = diag(−1, . . . , d− 2, . . . ,−1, 0) with d− 2 in the (i, i)th entry. Hence the norm of dT
satisfies ‖dT ‖ � r−n for some n = n(d) at every (x, λ) ∈ Er/2 × Λ. 2
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Note that ϕ(â,m(â)D(T )n(â)Γ) = ϕ̃(â, D(T )n(â)Γ) if â ∈ Er. We thus have∣∣∣∣ 1

T d

∑
a∈TD0∩Ẑd

ϕ(â,m(â)D(T )n(â)Γ)− 1

ζ(d)

∫
Id−1×Λ

ϕ(x, λ) dx dλ

∣∣∣∣
6

∣∣∣∣ 1

T d

∑
a∈TD0∩Ẑd

ϕ̃(â, D(T )n(â)Γ)− 1

ζ(d)

∫
Id−1×Λ

ϕ̃(x, λ) dx dλ

∣∣∣∣
+

∣∣∣∣ 1

T d

∑
a∈TD0∩Ẑd,â∈Id−1\Er

(ϕ(â,m(â)D(T )n(â)Γ)− ϕ̃(â, D(T )n(â)Γ))

∣∣∣∣
+

∣∣∣∣ 1

ζ(d)

∫
Id−1×Λ

ϕ(x, λ) dx dλ− 1

ζ(d)

∫
Id−1×Λ

ϕ̃(x, λ) dx dλ

∣∣∣∣. (4.10)

Notice that the Haar measure dk̄ on KΓ/Γ is left-invariant, so∫
Id−1×Λ

ϕ̃(x, λ) dx dλ =

∫
Id−1×Λ

θ(x)ϕ(x, λ) dx dλ.

Applying Theorem 4.5 to the function ϕ̃ and using the claim above, we conclude that

(4.10)� |C|dr−d‖ϕ̃‖C1T−α3 + r‖ϕ‖L∞ + r‖ϕ‖L∞ � |C|dr−n−d−1‖ϕ‖C1T−α3 + r‖ϕ‖L∞ .

We complete the proof by setting r = T−α4 for suitable α4 > 0. 2

Recall that the space Ω0 is naturally embedded into KΓ/Γ. The map from KΓ/Γ to Ω0 given
by ι : kZd 7→ kZd ∩ e⊥d is smooth. (As before we identify Rd ∩ e⊥d with Rd−1 in the obvious way.)
We will use for every z ∈ KΓ/Γ the notations ι(z) and z ∩ e⊥d interchangeably. Consider the
product Riemannian manifold of D0 (Euclidean metric) and Ω0

MD0 = {(x, y, z) : (x, y) ∈ D0, z ∈ Ω0}. (4.11)

The product Borel measure on MD0 is written as dD0(x, y, z) = dx dy dµ̄0(z).

Notational Convention 4.8. To simplify the notation, whenever dD0 is used to abbreviate dD0(x,
y, z) we always assume implicitly that MD0 is parametrized as in (4.11).

We set for every smooth function f on MD0

‖f‖C1 := ‖f‖L∞ +
d−1∑
i=1

∥∥∥∥ ∂

∂xi
f

∥∥∥∥
L∞

+

∥∥∥∥ ∂∂yf
∥∥∥∥
L∞

+
∑
X

‖∂X(f)‖L∞ , X ∈ X ∩ Lie(G0).

Corollary 4.9. Let C be a relatively compact, open subset of Ω0, and C′ be a compact subset
of C. Then for any ψ ∈ C∞(MD0) with supp(ψ) ⊆ {(x, y, z) ∈ MD0 : z ∈ C′}, and for every
T > 1 we have (the α4 below is as in Proposition 4.6)∣∣∣∣ 1

T d

∑
a∈TD0∩Ẑd

ψ

(
a

T
,m(â)D(ad)n(â)Γ ∩ e⊥d

)
− 1

ζ(d)

∫
MD0

ψ(x, y, z)dD0

∣∣∣∣� |C|d‖ψ‖C1T−α4 .

Proof. Let Q be the smooth map from Id−1 × Λ to MD0 defined by

Q(x, D(y)−1z′) = (yx, y, z′ ∩ e⊥d ), (x, y) ∈ Id, z′ ∈ KΓ/Γ.
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Let ψ̃ = ψ ◦ Q be a smooth function on Id−1 × Λ. We are going to show that ‖ψ̃‖C1 <∞. Note
that for every A ∈ G0, b ∈ Rd−1

(An b)D(s) = D(s)(An (sd/(d−1)b)).

Thus at every w = (x, D(y)−1z′) ∈ Id−1×Λ, the directional derivatives (see Definition 3.6) satisfy
that ∂wZ(ψ̃) = ∂Q(w)Z(ψ) for every Z ∈ Lie(G0), and ∂wY (ψ̃) = 0 for every Y ∈ Lie(H−). Let
X = diag(1/(d− 1), . . . , 1/(d− 1),−1) ∈ Lie(F ). We have

dQ(∂wX) =
d−1∑
i=1

xiy
∂

∂xi
+ y

∂

∂y
.

It follows easily that ‖ψ̃‖C1 � ‖ψ‖C1 . Moreover,∫
Id−1×Λ

ψ̃(x, λ) dx dλ=

∫
Id−1×I×KΓ/Γ

ψ(yx, y, z′ ∩ e⊥d )yd−1 dx dy dk̄(z′)

=

∫
MD0

ψ(x, y, z) dD0 .

On the other hand, Mahler’s criterion implies that the set C1 = {z ∈ KΓ/Γ : z ∩ e⊥d ∈ C} is
a relatively compact, open subset of KΓ/Γ, and C′1 = {z ∈ KΓ/Γ : z ∩ e⊥d ∈ C′} is compact.
Moreover |C1| � |C| (Remark 4.3). Since supp(ψ̃) ⊆ Id−1 × F+C′1, by Proposition 4.6∣∣∣∣ 1

T d

∑
a∈TD0∩Ẑd

ψ

(
a

T
,m(â)D(ad)n(â)Γ ∩ e⊥d

)
− 1

ζ(d)

∫
MD0

ψ(x, y, z) dD0

∣∣∣∣
=

∣∣∣∣ 1

T d

∑
a∈TD0∩Ẑd

ψ̃(â,m(â)D(T )n(â)Γ)− 1

ζ(d)

∫
Id−1×Λ

ψ̃(x, λ) dx dλ

∣∣∣∣
� |C|d‖ψ‖C1T−α4 . 2

Remark 4.10. The equidistribution result in Corollary 4.9 enables us to derive (1.7). Indeed, for
any φ ∈ C(Ω0) let φ0 be the function on MD0 defined by φ0(x, y, z) := χD(x, y)φ(z). (Recall
that La = m(â)D(ad)n(â)Γ ∩ e⊥d .) Then

1

T d

∑
a∈TD∩Ẑd

φ(La)− vol(D)

ζ(d)

∫
Ω0

φdµ̄0 =
1

T d

∑
a∈TD0∩Ẑd

φ0

(
a

T
, La

)
− 1

ζ(d)

∫
MD0

φ0 dD0 . (4.12)

Suppose D ⊆ D0 has boundary of Lebesgue measure zero. We can apply Corollary 4.9 and a
weak* convergence argument to show that the above expression tends to zero as T →∞. This
completes the proof of (1.7).

4.5 Approximation of indicator functions by smooth functions
Our discussion suggests that to study the error of (4.12) we have to deal with the error term
in the equidistribution result of Corollary 4.9 when indicator functions are involved. Technically
we consider sets with thin boundary. Let us recall a well-known result.

Lemma 4.11. Let D be a bounded open subset of Rd with thin boundary, and m be the Lebesgue
measure. Then for every 0 < r < 1 there exist smooth functions f1, f2 so that 0 6 f1 6 χD 6 f2,
‖fi − χD‖L1(m) �D r, and ‖fi‖C1 � r−1 (i = 1, 2).
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Remark 4.12. The key fact which guarantees the approximation in Lemma 4.11 is that, for every
0 < r < 1, we have m({x ∈ Rd : d(x, ∂D) < r})�D r, where d is the Euclidean distance. In view
of [SV05, Lemma 1], the statement of Lemma 4.11 remains valid when (Rd,m) is replaced by
(Ω, µ̄).

Proposition 4.13. There exists a constant α5 > 0 with the following property. With C, C′ as in
Corollary 4.9, for any non-empty open subset D ⊆ D0 which has thin boundary as a subset of
Rd, any non-negative function φ ∈ C∞(Ω0) with supp(φ) ⊆ C′ and any T > 1, we have that∣∣∣∣ 1

T d

∑
a∈TD∩Ẑd

φ(La)− vol(D)

ζ(d)

∫
Ω0

φdµ̄0

∣∣∣∣�D |C|d‖φ‖C1T−α5 . (4.13)

Here ‖φ‖C1 := ‖φ‖L∞ +
∑

X∈(X∩Lie(G0)) ‖∂X(φ)‖L∞ .

Proof. For every function f on D0 and function ψ on Ω0, we denote by f ⊗ ψ the function on
MD0 defined by (f ⊗ ψ)(x, y, z) = f(x, y)ψ(z). Since D has thin boundary in Rd, for every
0 < r < 1 we take f1, f2 as in Lemma 4.11 and consider their restrictions to D0. By Corollary 4.9
and Lemma 4.11, for i = 1, 2∣∣∣∣ 1

T d

∑
a∈TD0∩Ẑd

(fi ⊗ φ)

(
a

T
, La

)
− 1

ζ(d)

∫
MD0

(fi ⊗ φ) dD0

∣∣∣∣� |C|dr−1‖φ‖C1T−α4 . (4.14)

Again by Lemma 4.11, we have that ‖(f1 ⊗ φ) − (f2 ⊗ φ)‖L1(MD0
) �D r‖φ‖L∞ . Notice that

f1 ⊗ φ 6 χD ⊗ φ 6 f2 ⊗ φ as φ is non-negative. It follows easily that estimate (4.13) holds. 2

5. The Proof of Theorem 1.4

Proof. Let Q0 be the covering radius function as before. For any fixed R > 0 we show that
{L ∈ Ω0 : Q0(L) < R} has thin boundary as a subset of Ω0. That is, the set ER = {L ∈ Ω0 :
Q0(L) = R} is contained in a union of finitely many bounded connected submanifolds of Ω0 of
dimensions < dim(Ω0). In fact the statement is ‘almost’ established in [Mar10, Lemma 7], and
we only need to provide some further explanation. In view of Remark 4.12, Theorem 1.4 can be
deduced with essentially the same argument as in Proposition 4.13.

Let Σ1, . . . ,Σd be the faces of the standard simplex ∆d−1. We fix a Borel Γ0-fundamental
domain F0 in G0 so that every compact subset in Ω0 corresponds to a relatively compact subset
in F0, and set LR = {A ∈ F0 : Q0(AZd−1) = R}. By [Mar10, Lemma 7],

LR ⊆
⋃

n1,...,nd∈Zd−1

{A ∈ F0 : there exists ζ ∈ Rd−1 so that Ani ∩ (RΣ◦i + ζ) 6= ∅ (i = 1, . . . , d)}.

As LR is a relatively compact subset in G0 (Lemma 2.3), there exists c > 0 so that BRd−1(c)
contains a fundamental domain of AZd−1 for every A ∈ LR. Hence LR is a subset of⋃

n1,...,nd∈Zd−1

{A ∈ F0 : there exists ‖ζ‖ < c so that Ani ∩ (RΣ◦i + ζ) 6= ∅ (i = 1, . . . , d)}. (5.1)

Since LR is relatively compact, we have that ‖Ani‖ �R ‖ni‖ whenever A ∈ LR. As the set
RΣ◦i +BRd−1(c) is bounded, it follows that in (5.1) LR is contained in a finite union. To complete
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the proof of the theorem, it suffices to show that for every fixed d integral vectors n1, . . . ,
nd ∈ Zd−1, the set

{A ∈ F0 : there exists ‖ζ‖ < c so that Ani ∩ (RΣ◦i + ζ) 6= ∅ (i = 1, . . . , d)} (5.2)

is contained in a union of finitely many bounded connected submanifolds of G0, and that each of
them has dimension < dimG0. Indeed, as the map π0 : G0 → Ω0 given by π0(g) = gΓ0 (g ∈ G0)
is a local diffeomorphism, we can further conclude that {L ∈ Ω0 : Q0(L) < R} has thin boundary
as a subset of Ω0.

It was shown in the proof of [Mar10, Lemma 7] that

(5.2) ⊆ {A = (aij) ∈ G0 : tr(LA) = R}, (5.3)

where L is the (n − 1) × (n − 1) matrix whose ith column is ni − nd. Because LR is relatively
compact, there is a constant CR > 0, so that (5.3) can be refined as

(5.2) ∩ LR ⊆ {A = (aij) ∈ G0 : |aij | < CR, tr(LA) = R}. (5.4)

The set {A = (aij) ∈ G0 : |aij | < CR, tr(LA) = R} is a semi-algebraic set, and standard results
in real algebraic geometry (see for example [BCR98, (2.9)]) imply that it can be written as a
union of finitely many bounded connected submanifold of G0 of dimensions <dimG0. 2

Acknowledgements
I would like to thank J. Marklof and J. Athreya for their discussions on the concepts and ideas
related to this project, and for their comments on the early draft of this paper. I am grateful
to Marklof for pointing out a problem in the original formulation of Theorem 1.4. I am deeply
indebted to my advisor Professor G. A. Margulis for suggesting this project as part of my
PhD thesis, and for his invaluable discussions and constant encouragement. I thank H. Oh and
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Mar10 J. Marklof, The asymptotic distribution of Frobenius numbers, Invent. Math. 181 (2010),
179–207.

Moo87 C. C. Moore, Exponential decay of correlation coefficients for geodesic flows, in Group
representations, ergodic theory, operator algebras, and mathematical physics (Berkeley,
California, 1984), Mathematical Sciences Research Institute Publications (Springer, New York,
1987), 163–181.

Oh02 H. Oh, Uniform pointwise bounds for matrix coefficients of unitary representations and
applications to Kazhdan constants, Duke Math. J. 113 (2002), 133–192.

Ram05 J. Ramirez Alfonsin, The diophantine Frobenius problem (Oxford University Press, 2005).

Sel77 E. Selmer, On the linear Diophantine problem of Frobenius, J. Reine Angew. Math. 293/294
(1977), 1–17.

Sie45 C. L. Siegel, A mean value theorem in geometry of numbers, Ann. of Math. (2) 46 (1945),
340–347.
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