
J. Fluid Mech. (2023), vol. 968, F1, doi:10.1017/jfm.2023.494

Towards a better understanding of granular flows
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Understanding the transport of particles immersed in a carrier fluid (bedload transport)
is still an exciting challenge. Among the different types of gas–solid flows, when the
dynamics of solid particles is essentially dominated by collisions between them, kinetic
theory can be considered as a reliable tool to derive continuum approaches from a
fundamental point of view. In a recent paper, Chassagne et al. (J. Fluid Mech., vol. 964,
2023, A27) proposed a two-fluid model based on modifications to a classical kinetic
theory model (Garzó & Dufty, Phys. Rev. E, vol. 59, 1999, pp. 5895–5911). First, in
contrast to the classical model, the model proposed by Chassagne et al. takes into account
the interparticle friction not only in the radial distribution function but also through an
effective restitution coefficient in the rate of dissipation term of granular temperature. As
a second modification, at the top of the bed where the volume fraction is quite small,
the model accounts for the saltation regime in the continuum framework. The theoretical
results derived from the model agree with discrete simulations for moderate and high
densities and they are also consistent with experiments. Thus, the model proposed by
Chassagne et al. (J. Fluid Mech., vol. 964, 2023, A27) helps provide a better understanding
of the combined impact of friction and inelasticity on the macroscopic properties of
granular flows.
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1. Introduction

It is well known that granular materials are ubiquitous in nature and play an important
role in many industrial processes, such as those involving pharmaceutical, agricultural
or construction products, among others. The fact that these materials are widely used
in industry is likely one of the main reasons why their understanding has attracted the
attention of physicists and engineers in the past few years. Apart from their practical
interest, their study is interesting by itself since they behave differently depending on the
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external conditions to which they are subjected. For instance, grains contained in a jar will
behave as a solid, liquid or gas depending on how they are shaken. Even when the motion
of grains is quite similar to the random motion of atoms or molecules of a molecular fluid
(rapid flow conditions), granular flows differ from conventional fluid flows since the size
of grains is macroscopic and hence, their collisions are inelastic.

In the dilute regime, rapid flow conditions can be achieved when the energy dissipated
by collisions is compensated for by the energy supplied to the system from external
excitations. In this regime, kinetic theory (which can be considered as a mesoscopic
description intermediate between statistical mechanics and hydrodynamics), conveniently
adapted to account for dissipative dynamics, has been employed in the past few years as
the starting point to derive hydrodynamic equations with explicit forms of the transport
coefficients. Usually, a simple model has been considered in the granular literature: a
gas of smooth hard spheres where the inelasticity in collisions is accounted for via a
(positive) constant coefficient of normal restitution e ≤ 1. The inelastic versions of the
classical Boltzmann and Enskog kinetic equations for dilute and moderate dense gases,
respectively, have been proposed to determine the dynamic properties of granular gases
(Garzó 2019). However, technical difficulties in the analysis of the above equations entailed
approximations that limited the applicability of the first attempts (Lun et al. 1984; Jenkins
& Richman 1985) to weakly dissipative granular flows (e � 1). Years later, Garzó & Dufty
(1999) (GD theory) solved the Enskog equation by means of the Chapman–Enskog method
and obtained expressions for the Navier–Stokes transport coefficients for the whole range
of values of the coefficient of restitution e.

Although grains in nature are usually surrounded by a fluid like water or air, all the
above models (Lun et al. 1984; Jenkins & Richman 1985; Garzó & Dufty 1999) neglect
the effect of the interstitial fluid on the dynamics of grains. Needless to say, understanding
the flow of solid particles immersed in one or more fluid phases is a very intricate problem.
Among the different types of multiphase flows, a particularly interesting set corresponds
to the so-called particle-laden suspensions, in which small, immiscible, and typically
dilute particles are immersed in a carrier fluid (for instance, fine aerosol particles in air)
(Subramaniam 2020). When the dynamics of grains is essentially dominated by collisions
among them, kinetic theory is again a convenient tool to describe this type of flow. Due to
complexity of the problem, a coarse-grained approach is usually adopted, where the effect
of the background fluid on grains is accounted for through an effective fluid–solid force.
In some situations (Tsao & Koch 1995), only a viscous drag force (proportional to the
instantaneous particle velocity) is considered, while other more realistic models (Garzó
et al. 2012; Gómez González & Garzó 2019) also incorporate a stochastic Langevin-like
term defined in terms of the background temperature Tb.

However, for dense granular flows, kinetic theory has been so far incapable of describing
this type of regime. These type of flows are generally described with the so-called μ(I)
rheology (Forterre & Pouliquen 2008), where a phenomenological law (obtained by fitting
experimental and discrete simulation data) relates the stress rate μ to the inertial number I.
Although this phenomenological theory gives good predictions in the dense regime, it fails
for dilute systems.

A recent paper by Chassagne, Bonamy & Chauchat (2023) proposes a frictional-
collisional two-fluid model based on kinetic theory for modelling bedload transport. The
proposed model (which employs the GD frictionless kinetic theory as a baseline) covers
dilute and dense regimes, and exhibits a good agreement with discrete element method
(DEM) simulations and experiments (Ni & Capart 2018).
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2. Overview

To mitigate the discrepancies observed between the theoretical predictions of the
frictionless GD theory with those obtained in DEM simulations, Chassagne et al. (2023)
(CBC theory) corrects the above kinetic theory in the following ways. First, since the
GD theory neglects the effect of the surrounding fluid, a drag force term between the
fluid and particle phases is introduced. This drag force leads to a dissipation term in
the balance equation for the granular temperature due to fluctuating particle motion.
Second, given that simulations clearly show that interparticle friction adds another source
of energy dissipation different from that of inelasticity, an effective restitution coefficient
eeff (Jenkins & Zhang 2002) is introduced in the expression of the rate of dissipation
of granular temperature. The effective coefficient eeff (μ

p) is smaller than the (constant)
coefficient of restitution e and depends on the friction coefficient μp. In addition, since
interparticle friction also affects the geometrical packing structure of the granular flow,
they modify the usual form of the radial distribution function g0 (which takes into account
spatial correlations) by adding a μp-dependent term adjusted to reproduce the discrete
simulations. A third modification to the GD theory refers to the saltation regime observed
at the top of the bed, where the volume fraction is small. Since this regime is essentially
dominated by the fluid drag force, it cannot be reproduced by the GD theory. Although in
most of the previous works, saltation is treated as a boundary condition, in the model of
Chassagne et al. (2023), saltation is treated in a continuum framework. While the saltation
contribution ηsalt to the shear viscosity η was obtained in previous works (Jenkins, Cantat
& Valance 2010), Chassagne et al. (2023) propose that the saltation contribution κsalt to the
thermal conductivity κ is simply given by κsalt = ηsalt/σ , where σ = 0.5 is an empirical
constant found by fitting to the DEM simulations.

To put the results in a proper context, it is interesting to compare the predictions for
the Navier–Stokes transport coefficients obtained from the GD theory, the CBC theory
and the GG theory (Gómez González & Garzó 2019). While the former theory is for a
dry (no fluid phase) granular gas, the latter two take into account the impact of the fluid
phase on grains. To perform a clean comparison between the CBC and GG theories, the
fluid drag force coefficient K appearing in Chassagne et al. (2023) may be related to the
Stokes drift coefficient γ of the GG theory by the relation γ = (1 − φ)K/ρp, where φ

is the solid volume fraction, ρp = m/(πd3/6) is the particle density, m is the particle
mass and d is the diameter of the sphere. In terms of the granular temperature T , the
transport coefficients can be written as η = dρp√T/m η∗, κ = dρp

√
T/m3 κ∗ and κφ =

T3/2/(d2φ
√

m)κ∗
φ . Here, κφ is the transport coefficient linking the heat flux to the solid

volume fraction gradient. This contribution (which vanishes for elastic collisions) to the
heat flux was neglected by Chassagne et al. (2023). Figure 1 shows the dependence of the
dimensionless coefficients η∗(e)/η∗(1), κ∗(e)/κ∗(1) and κ∗

φ(e) on e, as given by the three
theories. For this moderate value of the solid volume fraction (φ = 0.2), we observe that
the predictions of the (frictionless) GG theory for the coefficients η∗ and κ∗ agree well
(especially in the case of the shear viscosity) with those obtained from the CBC theory,
even for quite strong inelasticities (e � 0.5). This is likely due to the fact that while the
effect of the friction coefficient μp on g0 is relatively small, the impact of the fluid phase
on transport is quite important. This latter aspect is not considered in the GD theory and
hence, it exhibits differences with the CBC theory which are much more significant than
those found with the GG theory. Another interesting conclusion of the GG theory is the
negligible impact of the coefficient κ∗

φ on the heat transport (see figure 1c); this result
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Figure 1. Plot of the (reduced) coefficients η∗(e)/η∗(1), κ∗(e)/κ∗(1) and κ∗
φ(e) versus the coefficient of

restitution e for μp = 0.8 and T∗
b = Tb/md2γ 2 = 1. In the case of the coefficients η∗(e)/η∗(1) and κ∗(e)/κ∗(1)

in panels (a,b), the lines (i), (ii) and (iii) correspond to the results obtained from the CBC-theory, the
GG-theory and the GD-theory, respectively, for φ = 0.2. In the case of the coefficient κ∗

φ in panel (c), the
solid (dash–dotted) lines refer to the results obtained from the (i) GG theory and (ii) GD theory for φ = 0.1
(φ = 0.2).

clearly differs from that obtained in the GD model (where κ∗
φ can be even larger than the

thermal conductivity coefficient κ∗ in a frictionless dry granular fluid) but agrees with the
simulation data of Chassagne et al. (2023).

One of the weaknesses of kinetic theory is its inability to predict dense granular
flows. However, the results derived from the CBC theory (based on the combination of
kinetic theory with a frictional model) reproduces the μ(I) rheology in the dense regime.
Although recent attempts to model dense granular flows with kinetic theory have been
based on the introduction of a correlation length in the dissipation term, the results
obtained by Chassagne et al. (2023) suggest that dense granular flows are essentially
dominated by the competition between elastic-frictional and kinetic-collisional stresses
rather than the development of velocity correlations (breakdown of molecular chaos
hypothesis) for high densities.

Finally, a comparison with experiments (Ni & Capart 2018) of the two-fluid model
proposed by Chassagne et al. (2023), when turbulence is negligible, has also shown a
good agreement. In this sense, the present model can be taken as a starting point which
may be adapted for the study of more complex configurations.

3. Future

The paper by Chassagne et al. (2023) shows the potentiality of kinetic theory to accurately
describe bedload transport. Their results suggest that a complicated extension of the GD
frictionless kinetic theory to account for the combined effect of the coefficients of friction
and normal restitution on the transport coefficients may not be necessary to capture the
behaviour of granular flows in both dilute and dense regimes. As a potential extension
of the CBC theory to account for the effect of interparticle friction on transport in a
more rigorous way, one could consider a granular gas of inelastic rough hard spheres,
where a constant coefficient of tangential restitution characterizes the ratio between the
magnitude of the tangential component of the relative velocity before and after collision.
In this context, as a first step, one should extend the results derived by Kremer, Santos &
Garzó (2014) to moderate densities and consider this theory as a baseline to account for
the saltation regime in the continuum framework, as made by Chassagne et al. (2023).
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