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THE CARDINALITY OF THE SET OF LEFT INVARIANT
MEANS ON TOPOLOGICAL SEMIGROUPS

HENERI A.M. DZINOTYIWEYI

For a very large class of topological semigroups, we establish lower and upper bounds for
the cardinality of the set of left invariant means on the space of left uniformly continuous
functions. In certain cases we show that such a cardinality is exactly 22 , where 6 is the
smallest cardinality of the covering of the underlying topological semigroup by compact
sets.

1 INTRODUCTION

Let G be a non-compact locally compact topological group such that L°°(G)
admits a topologically left invariant mean, and let TLIM(G) be the set of all such
means. Various studies have looked at the size of such a set. In particular when G is
(7-compact, Chou [1] showed that card(T£/M(G)) > 2C, and when G is discrete, he
[2] showed that card(TL/M(G)) = 22 ° . (Here c is the cardinality of the continuum
and |G'| is the cardinality of G.) Generalising the latter result, Lau and Paterson
[10] proved that card(T£/M(G)) = 22HG) , where b(G) is the smallest cardinality of
a covering of G by compact sets. (The idea of employing b(G) has been used earlier
by Liu and van Rooij [11].) Also for certain discrete semigroups, 5 , Klawe [9] showed
that one may have the cardinality of the set of left invariant means on the bounded
functions equal to 2

Now let 5 be a topological semigroup, LUC(S) the space of left uniformly contin-
uous functions on 5 and M(S) the space of bounded Radon measures on 5. Let 6(5)
(or d{S)) be the cardinality of a covering of 5 by compact (or respectively, relatively
neo-compact) sets. (For definitions see section 2.) In this paper, for a large class of
5 , for which groups G (as mentioned above) are a very special case, we show that the
cardinality of the set of left invariant means on LUC(S), and that of topologically left
invariant means on M(S)*, lies between 22 and 22 . For many cases we also
have 6(5) = d(S).
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248 H.A.M. Dzinotyiweyi [2]

In section 2, we collect together some definitions and preliminary results, and then

formally state our results in section 3. Some results employed at critical points of our

proofs are collected into lemmas in section 4. Sections 5 to 7 contain proofs of the

results stated in section 3. We give a more detailed proof in section 5 upon which later

proofs are moulded. We conclude the paper with a few remarks in section 8.

For other results on sizes of sets of invariant means, the interested reader is referred

to [1], [2], [5], [9], [10], [12] and to the references mentioned therein.

2 PRELIMINARIES

2.1 Termino logy . By topological semigroup, we mean a semigroup S endowed with a
Hausdorff topology with respect to which the semigroup operation (x, y) —> xy defines
a jointly continuous mapping of S x S into S.

Let 5 be a topological semigroup throughout this section.

For any subsets A, B and {x} of S, we employ the following notation:

A~1B := {y 6 S : ay £ B for some a £ A}

x-1 B := {x}-1 B

By symmetry, one similarly defines right handed versions BA~^, Bx~x and xA~l .

In particular, if Ax,A2,...,An are subsets of 5 , we write

Ai®A2 :={A1A2,Al-1A2,A1A^1}

Ai © A2 © A3 := [U{^i © B : B 6 A2 ® A3}} U [u{B ®A3: B £ Ax © A2}}

and hence inductively define A\ © A2 © . . . © An .

Following [5] and [6], a subset B of 5 is said to be relatively neo-compact if
B is contained in a (finite) union of sets in A\ © A2 © • • • © An, for some compact
sets Ai,A2, • • • ,An of S. In particular if C~1D and DC~* are compact sets, for all
compact subsets C and D of 5 , then relatively neo-compact subsets are precisely the
relatively compact subsets. For brevity, we write B for the closure of a set B and \B\

for its cardinality.

Recall that b(S) (respectively, d(S)) is the smallest possible cardinality of a cover-
ing of 5 by compact (respectively, relatively neo-compact) subsets of S. We thus have
d(S) < b(S) always. Also the following result is evident; we quote it for easy reference.

2.2 PROPOSITION. Let S be non-rehtively neo-compact. Then

(a) if S is o- -compact, we have that 6(5) = d(S) = Ko .

(b) if the sets CD'1 and DC~1 are compact for all compact subsets C and
D of S, then b(S) = d(S).
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2.3 Notation. Let C(S) denote the space of all bounded continuous complex-valued
functions on 5 , and M(S) the set of all bounded complex-valued regular Borel measures
on S.

For every function / in C(S) and point x in 5 , we have the functions xf and
fx in C(S) given by

*f(y) := f{xy) and fx(y) := /(yz) (3/ £ 5).

The space of left uniformly continuous functions on S is

LUC(S) := {f E. C(S) : the map x —> xf of 5 into C(S) is norm-continuous}

Following [4] we say that S is C -distinguished if the real-valued functions in C(S)
separate points.

For a C-distinguished S we have M(S) a Banach algebra under the usual total
variation norm ||-|| and with convolution multiplication given by

:= JJ XA(xy)dv(x)dn(y)

for all v, fi £ M(S) and Borel subsets A of S; where \A denotes the characteristic
function of the set A. For h in M(S) and t/, /1 in M(S), we may then define 1/0/1,
/10/i and uohofi in M(S) by

1/0/1(77) == K^v), hofi(r)) := / I ( T ? »

and uohon(r]) := h(v*rj*n) for all 77 6 M(5).

In particular for x £ 5 and f £ C(S) we have that

where 6X denotes the point mass of x and / is identified with the functional in M(S)*
given by v —* J f(y)di/(y), for all v € M(S).

We define supp(/j.) := {x 6 5 : \pi\ (V) > 0 for every open neighbourhood V of 1} ,
for all f.i in M(5). In particular, for every subset Mo of M(S), by the foundation of
MQ , we mean the closure of the set U{supp(/x) : fj, £ Mo} .

For any 5 , we define the set of absolutely continuous measures, Ma(S), by

Ma(S) := {n £ M(S) : the maps x -> \/J,\ {x'1 K) and x -> |^| (iiTx"1) of 5

into R are continuous, for all compact K C 5}.

(Here |̂ t| denotes the measure arising from the total variation of /it.)
For semigroups 5 , Ma(S) plays a role analogous to that played by the group

algebra £1(G) for locally compact groups G. A comprehensive study of Ma(S) can
be found in [5].

The following definition is of particular importance in our paper:
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2.4 Definition. Let 5 be a topological semigroup with an identity element 1 and such
that , for every neighbourhood U of 1, we have

(a) x E intlU-^Ux) n {xU^-1} for all x in 5,

(b) 1 6 int(U~1v D wll~1) for some w and v in U .

Following [13], if S is also locally compact, we say 5 is a stip.

The class of semigroups called stips is very large—see for example [5] and [15].

Their importance partly arises from the fact that every topological semigroup, 5 , with

an identity element and such that S coincides with the foundation of Ma(S), satisfies

items (a) and (b) of Definition 2.4—see for example [5, Chapter 3, Theorem 1.2].

2.5 Some aspects of stips. For ease of reference we briefly list some results on stips.
Full details on these can be found in [13] and [5]. Let S be a stip with an identity
element 1, throughout this section.

(i) If W is a compact neighbourhood of 1, we can find a sequence of open
neighbourhoods of 1, {W f̂c}, and a pseudometric, p, such that

W-^(Wk+1x) C {y £ S : p(y,x) < 2~k+1 C W^{Wkx),

and p(xz,yz) < p(x,y)

for all x,y,z £ S and k £ N .

(ii) One can employ a standard argument to show that, for a function / in
C(S) we have that

/ £ LUC(S) if and only if, given e > 0 we can find a neighbourhood 0

of 1 s u c h t h a t Ox D Oy ̂  0 i m p l i e s \f(x) - f ( y ) \ <e ( x , y e S ) .

(iii) Let E be the set of all idempotent elements of 5 . For every e in E, we

have that eSe is a stip with identity element e. We say e is a S-isolated

idempotent if {e} is a G^-set in eSeflE.

2.6 Definitions. Let 5 be a C-distinguished topological semigroup.

P(S) := {M G M(S) : |HI

PC(S) := {y G P(S) : supp(i/) is compact}

and let A be a subspace of M(S)* such that fioh £ A for all fi in M(S) and h in A.

We say m 6 A* is a mean on A if

||m|| = m(e) = 1 and n i ( / ) JJ 0 for every non-negative / in A.

A left invariant mean (LIM) on A is a mean on A such that

m(8xoh) = m(h) for all x 6 5 and h £ A.
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A topologically left invariant mean (TLIM) on A is a mean m on A such that

m(fioh) = m(h) (M £ P(S) and h £ A).

We denote the set of all I / M s (respectively, TLIMs on A by LIM(A) (respectively

TLIM(A)).

3 STATEMENT OF RESULTS

3.1 THEOREM. Let S be a non-relatively neo-compact stip with LUC(S) admit-

ting a left invariant mean. Then

card(LIM(LUC(S))) > 22<i(5).

For certain stips we improve the preceding result as follows:

3.2 THEOREM. Let S be a non-reiativeiy neo-compact stip with LUC(S) admit-

ting a left invariant mean. Then

(i) 22<>(5) ^ card(LIM(LUC(S))) > 22<i(5) if S is either commutative or has

a 8 -isolated identity;

(ii) card(LIM(LUC(S))) = 22i>(S) if 5 is eitiier a -compact or as in (i) but

with C~1D and DC~1 compact, for all compact subsets C and D of

S.

For semigroups admitting absolutely continuous measures, we have the following

Theorem for more general topological semigroups—including cases where the semigroup

may not be locally compact.

3.3 THEOREM. Let S be a non-relatively neo-compact C -distinguished topologi-

cal semigroup such that Ma(S) is non-zero. Then

(i) if LUC(S) admits a left invariant mean we have that

card{LIM(LUC{S))) >

(ii) if M{S)* admits a left topologically invariant mean, we have that

22"iS> > card(TLIM(M{SY)) > 22<i(S).

In particular the inequalities in both (i) and (ii) reduce to equalities if, in addition,
either

(a) S is a -compact;

or (b) S is such that C~1D and DC~1 are compact, whenever C and D are

compact subsets of S.
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3.4 COROLLARY. Let S be a non-compact topological semigroup with an identity

element such that S coincides with the foundation of Ma(S), the sets C~1D and

DC*1 are compact whenever C and D are compact subsets of S. If LUC(S) admits

a left invariant mean, then

card(TLIM(M{S*))) = card(TLIM(Ma{S)")) = card(LIM(LUC(S))) = 2
,d(S)

In particular we have the following corollary which also contains the result of Lau

and Paterson [10].

3.5 COROLLARY. Let G be a non-compact locally compact group such that
LUC(G) admits a left invariant mean. Then

card(TLIM(M{G)*)) = card{TLIM(L°°{G))) = card{LIM(LUC(G))) = 2
,d(G)

The next result is of particular interest for situations where the underlying topolog-
ical semigroup S does not support absolutely continuous measures and does not have
the "nice" topological structure of a stip.

3.6 THEOREM. Let S be a C -distinguished topological semigroup that is a-

compact and not relatively neo-compact. Then, if M(S)* admits a topologically left

invariant mean, we have that

card(TLIM(M{S)*)) ^ 2C,

where c denotes the cardinality of the continuum.

4 SOME KEY LEMMAS

A proof of the following lemma can be found in [3] for the case of a locally compact

semigroup. However, one can easily note that the proof also holds for our case.

4.1 LEMMA. Let T be a Borel subset of a C -distinguished topological semigroup,

S , and suppose that M(S) admits a TLIM . Then the following items are equivalent:

(i) tiiere exists a TLIM, m, on M(S)* such that TTI(XT) = 1;
(ii) for each v in P(S) and e > 0, we can find a point x in S such that

A mild adjustment (which we omit) of the argument given in [3] yields the following
analogue of Lemma 4.1 for LIM on LUC(S).
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4.2 LEMMA. Let T be a, subset of a C -distinguished topological semigroup S and

suppose that LUC(S) admits a LIM. Then the following are equivalent:

(i) there exists a TLIM, m, on LUC(S) such that m(f) = 1, for every

f £ LUC(S) with 0 < / ^ 1 and / = 1 on T;

(ii) for each v in PC(S) and t > 0, we can find x in S such that v*6x(f) >

1 - e , for every f £ LUC(S) with 0 < / ^ 1 and / = 1 on T.

Our next two lemmas together generalise [10, Lemma 1 and Proposition 1].

4.3 LEMMA. Let S be a non-relatively neo-compact C-distinguished topological

semigroup and V be a compact subset. Let a be the smallest ordinal having cardinality

d(S) and {Cp : 1 < /? < a} be a family of relatively neo-compact neighbourhoods

covering S and closed under finite uiu'ons. Then

(i) there exists a subset {xpy : 1 ^ /? ^ 7 < a} of S such that the sets

{V~1(VC-,X/3-y) : 1 < /? ^ 7 < a} are pairwise disjoint;
(ii) if Tp :— u{C7x^7 : /3 ^ 7 < a} , we have that Tp satisfies item (ii) of

both Lemma 4.1 and 4.2.

PROOF: (i) (see [10]). We employ a transfinite inductive argument based on the

well-ordered set {(7,/?) : 1 ^ /? ^ 7 < a} where

(7i>/?i) < (72,^2) means 71 < 72 or 71 = 72 and /3i < /?2-

Let xn be an arbitarily chosen element of 5 . By the inductive hypothesis, suppose

that x/37 has been chosen for all pairs (j,f3) < (70^0) with 1 ^ /3 ^ 7 . Setting

H := U{VClXpy : (7,/?) < (7o,/?,,)} we have that H := {VC^)~\VH) admits

a covering, by relatively neo-compact sets, of cardinality less than d(S). So we can

choose xpoyo in S\H, which gives our inductive step and the result follows

(ii) Let u be any measure in PC{S) and choose 7 with (3 < 7 < a such that

supp(f) C Cy. Then for x = xpy we have

suw(v*6x) C closure(C7x) C Tp and so v*5x(Tp) = 1.

This completes our proof. |

4.4 LEMMA. Assume the notation of Lemma 4.3 and let T :=

{(3 : /? is an ordinal with 1 ^ (3 < a } . Then if S is either

(a) a stip

or (b) such that Ma(S) is non-zero,
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the subset V can be chosen so that for every Fi C F , defining T ^ ) := U{T/3 : /3 6 Fj}

we get:

(i) T ( r i ) = U { T ^ : 13 eT,};

(ii) there exists a function / r t in LUC(S) such that 0 ^ / r t < 1, /r , = 1

on T ( r i ) and for F2 C F with Fj D F2 = 0, we have / rx • fr2 = 0 .

PROOF: Let Fj C F be fixed.

(a) We now prove (i) and (ii) for the case where 5 is a stip. First, by [5, Chapter 3,

Theorem 2.6] or [13], we can choose sets V and W as follows:

(*)

Let Z and W be compact neighbourhoods of the identity

of 5 and z € Z such that

WC Z-*znZ.

We fix V := Z2 and W to be the set stated in 2.5(i).

To prove (i), let x be an element of I ^ p j . By definition of a stip, V 1{Vx) is a

neighbourhood of x and so, there exists ?? 6 Fi with V~1(Vx) D T^ ^ 0. So for some

7 with 77 ^ 7 < a , we have V~1(Vx) PI CyX^ ^ 0. Consequently

(1) xev

From (1) and Lemma 4.3(i), we must have

V'1(Vx)nCTx0T = <DbT/3^

and so

V-1(Vx)nT/3 = <l){or P^r,.

Thus, if 0(x) denotes the interior of V~1(Vx), then

T(r\in}) C S\0(x)

and so we must have

Hence T(rt) C U{T"̂  : ft G Fi} . The reverse inclusion follows trivially. This proves (i).

Next we prove (ii). Consider the function fr1 defined by

fTl(x) := 1 - m i n (/>(*, r ( r i ) ) , l ) (x £ 5)

where p is the pseudometric introduced in item 2.5(i). Trivially, we have that fcl is
continuous, 0 < frl ^ 1 and / r , = 1 on T
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[9] Invariant means on semigroups 255

To show that fTl is LUC(S), let e > 0 be given. By 2.5(i) and [13] (or [5,
Chapter 3]) we can choose open neighbourhoods of the identity, 0 and U, such that

{ 0 C U C W,

O-^Oz) C u'^Ux) for some u £ U,

and Oy n Ox ^ 0 implies p(x,y) < e(x,y £ S)

Now suppose Oj/OOx ^ 0, and consider the case where / r , ( x ) ^ 0. Then p(x,T(r1)) <
1 and so p(x,Tp) < 1 for some /? £ F i . So we can find a 7 with /? ̂  7 < a and
p(z,C7Xp7) < 1. By 2.5(i) and (*), we get

(3) x £ W-\WCyx^) C z

Since Ox D 0y ^ 0, we have (by (2) and (*)) that

ye 0-1(0x)Cu-1{Ux)Cu-1((Z-1z)x) C {Zu)~\zx).

So there exists Zj £ Z such that

(4) 2^1/ = zx.

From (3) and (4) we get z^uy £ VC7x^7 and, since z^u £ Z{7 C Z2 = V, we thus
have

(5) y £ F - I ( ^ C 7 x / 3 7 ) .

Hence (3) and (5) say that both x and y are in V~1(VCyxpy). Consequently, recalling
Lemma 4.3, if p{y,C^xpy) < 1 we get

and if p(y, C7x^7) > 1, we get fTl (y) = 0 and

l / r , ( x ) - fri{y)\ = |1 -p(x,C7x^7) | < |p(y,C7x;37)-/5(x,C7xJ87)| ^ p(x,y) < e.

Therefore Ox D Oy 9̂  0 and / r ^ x ) ^ 0 imply that l / r^z) - / r i (y ) | < e.

Now suppose Ox n Oy 9̂  0 and /rj(x) = 0. If fr1{y) = 0, there is nothing to
prove, while if fr^y) 7̂  0 then (as noted above) we can find 77 £ T\ , and suitable T
such that p(y, CTXVT ) < 1; leading to
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Hence Ox D Oy jt 0 implies | / r , (x) - /r , (y) | ^e (x , i /£ 5) ; and so / F l £ LUC(S), by
item 2.5(ii).

Next we consider the function / r t »/r2 where Fj and 1^ are given disjoint subsets
of F . Suppose

(hi • ht)(*) = faWhA*) ± 0 for some x £ S.

Then one can find (3 £ F] and 77 £ F2 such that

p{x,Tp) < l a n d ^ ( x , r , , ) < l .

This would lead to

(6) x e v-^vc^xfr) n v-\vcTx^T)

for some 7 and r with /? ^ 7 < a and 77 ̂  T < a. But (6) contradicts Lemma 4.3.
By this contradiction we conclude that the function fj-l • / r 2 is identically equal to the
zero function.

This completes our proof when 5 is a stip.

(b) Now we consider the case where Ma(S) is non-zero. By [5, Chapter 2, Theorems
1.14 and 2.3) or [4], we can find a measure v in Pc(S)n Ma(S) such that the mapping
x —+ is*6x of 5 into Ma(S) is norm continuous. Let D := supp(i/) and note that D is
compact.

We define V := D2 . By [4] or [5, Chapter 2, Lemma 1.9], we have V'^Vx) a

neighbourhood of x, for all x £ 5 . Hence, with our newly defined V, item (i) can be

proved as done in case (a) and so we omit the details.

To prove (ii), we define the function /rx by

fri(x):=v*6x(DTiri)) (xeS).

For any x,y £ S we have that

and so, by the norm continuity of the map 5 —> v*8, of S into M(S), we have f^1 in

LUC(S). It is also evident that 0 < / F l ^ 1 and fVl = 1 on T ( r i ) .

To complete the proof we now show that / r , • /r2 = 0 where F2 C F is disjoint

from Fi . To this end, suppose on the contrary there exists an i in 5 such that
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That /r t(a:) > 0 means

v*6x(DT{Tl)) = A ^ n D T ^ ) ) > 0,

since supp(v*8x) = Dx. By [4] or [5] (as similarly noted above) we have that

D~1(D2x) is a neighbourhood of Dx and so D~1(D2x) n DT(Tl) ^ 0 which implies

that

(7) xeD-2(D

Similarly, that fr2i
x) > 0 implies

(8) ^

By Lemma 4.3, we have

V~l (VT{ri)) DV-1 (VT{r2)) = %— contrary to (7) and (8). By this contradiction,
we conclude that /r^ • /p2 is the zero function on 5 . |

5 PROOF OF THEOREMS 3.1 AND 3.2

Throughout this section, S denotes a stip that is not relatively neo-compact.

5.1 PROOF OF THEOREM 3.1: We employ an argument along lines given in [9].
Let F be as stated in Lemma 4.4 and let U be the class of ultrafilters on T.

Corresponding to each A £ U we claim that there exists a LIM on LUC(S),
, such that

(1) rnA(fTl) = 1 for every Tt £ A

where frl is as in Lemma 4.4. To verify our claim, we first note that for each f3 £ F
we can find mp £ LIM(LUC(S)) such that

rn/3{f{/3}) — 1) by Lemmas 4.2 and 4.4.

So for each Fj £ A we can choose mp, £ LIM(LUC(S)) (for example mp1 = m^ for
any (3 £ Fi) such that

mr,( / r , ) = 1.

Since LIM(LUC(S)) is a weak *-compact subset of LUC(S)*, there exists a weak*-
limit point, m £ LIM(LUC(S)), of the net (mr i ) r , where the ordering on A is
backwards inclusion. One can easily note that m satisfies (1) and so we take TUA •= rn
and our claim is proved.
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Next we show that, for distinct ultrafilters A\ and Ai in U , we have mAl

To this end, fix disjoint subsets Fj and F2 of F with Fj G Aj and F2 £ A2. Let frl

and / r 2 be as in Lemma 4.4 and note that 0 ^ / r t + / r 2 ^ 1. So item (1) and Lemma

4.4 (ii) give

= mAl ( / r , ) + mAl ( / r , ) = 1 + mM, ( / r 2 )

and so mAl(frt) = 0, while mA2(fr2) = 1.

It follows that card(LIM(LUC(S))) > card([/). It is well-known that card(*7)

2 2 ' r ' (see for example [7]). As |F| = d(S), we have

card(L/M(LC/C(5))) > 22<i(5).

5.2 PROOF OF THEOREM 3.2: (i) By Theorem 3.1 we only need to show that

axd(LIM(LUC(S))) < 22"{S).

First we consider the case where the identity or S is 5-isolated. By [14] or [15, Chapter

3, Proposition 3.8(i)] we can find a compact subgroup G of S such that every compact

subset C of S contains a countable subset Be such that

C QG~BC-

Let 7T be normalised Haar measure on G and define the space

N(S) := {TTO/ : / G LUC(S)}.

For g G G and b G -Be ) w e have (by invariance of n)

Tof(gb) = Trof(b).

So each function in N(S) is uniquely determined by its value on

where a 1 is the smallest ordinal having cardinality b(S) and {Cy : 1 < 7 < a 1 } is a

covering of S by compact sets. Hence
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Therefore
\N(S)\ ^ cW < c6<s> =

and

(1)

Now for each m £ LIM(LUC(S)), we have that m is a TLIM by [5, Chapter 4,

Lemma 2.3], and so

m ( / ) = m(Trof) ( / e £17C(5)).

Thus m can be viewed as an element of N(S)* and, recalling (1), we get

ca.rd(LIM(LUC(S))) ^ card(7V(5)*)

For the case where S is commutative, let e be a 6 -isolated idempotent and note

that 7ii £ LIM(LUC(S)) gives m £ LIM{LUC(eSe)) since e / e = e / and m(ef) =

m(f). Since eSe is a stip (see [5] or [13]) with 8 -isolated identity e , our result follows

from the above argument.

(ii) If S is (7-compact, by [13] or [5, Chapter 3, Lemma 3.4] we can find x £ S and

a ^-isolated idempotent, e, such that

xS C eSe

and so each m G LIM(LUC(S)) gives rise to m e LIM(LUC(eSe)), leading to

ca.rd{LIM(LUC{S))) ^ 22"(5)

as noted above.

Recalling (i) and Proposition 2.2, our result follows. |

6 P R O O F OF THEOREM 3.3 AND COROLLARIES 3.4 AND 3.5

6.1 PROOF OF THEOREM 3.3: (i) The proof of Theorem 3.1 gives

c&rd{LIM(LUC(S)))

for our present semigroup 5 , and so we omit details.

To show that card(LIM(LUC(S))) < 2 2 K 5 ) we first develop a background that

would enable one to argue in a similar manner to the proof of Theorem 3.2(i). By [4]

or [5], we can find a measure v in P c ( 5 ) n Ma(S) such that the mapping x —> v*8x of
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S into M(S) is norm continuous. Hence each compact subset C contains a countable
subset Be such that

{v*8x : x € C} C closure{v*8X : x G Bc}-

Consequently, noting that vof(x) = u*8x(f), we have for all / G LUC(S),

(1) {vof(x) : x e C} C closure{i/o/(a;) : x £ 5 C } ,

Let

7V(S) := W : / G LUC(S)}

and note that m(i/o/) = m(f) for all / G L?7C(S) and m G LIM(LUC(S)). With
this and (1) in mind, the reader can mimic the argument in the proof of Theorem 3.2(i)
to complete the proof.

(ii) Note that for h G M{S)* and v as in the proof of (i), voh, viewed as a function

on 5 (given by uoh(x) = voh(6x)) is in LUC(S) since

\\x{uoh) - y{uoh)\\ ^ \\h\\ \\v*6x - v*6y\\ (x,y G S).

So each TLIM on M(S)* can be viewed as a LIM on LUC(S) and hence

card(TL/M(M(5)*)) ^ 22KS)

by (i). Also the proof of Theorem 3.1 can be mildly amended to give

card(TLIM(M(5)*)) ^ 22*S\

/
by using Lemma 4.1 in place of 4.2 and replacing the functions fc1 G LUC(S) by

functional fTl G M(S)* given by /ri(/*) := M ^ r j ) for all n G M(5) . (We omit
the details.)

Recalling Proposition 2.2, the proof of our Theorem is complete. |

6.2 PROOF OF COROLLARY 3.4: By restriction each TLIM on M(S)* gives rise
to a TLIM on Ma(S)* and on LUC(S). By [5, Chapter 4, Theorem 2.4] each LIM

on LUC(S) gives rise to a TLIM on M(5)*. With this in mind, the result follows
from Theorem 3.3. |

6.3 PROOF OF COROLLARY 3.5: Recalling that Ma(G) is identifiable with L(G)

and hence Ma(G) with L°°(G)—see for example [8], the result is a special case of
Corollary 3.4. |
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7 PROOF OF THEOREM 3.6

Since 5 is cr-compact, we have 6(5) = d(S) = No and the sets Cy mentioned in

Lemma 4.3 can thus be chosen to be compact, giving IT-compact sets Tp for 1 ^ /? < oo .

Hence mimicing the proof of Theorem 3.1, using Lemma 4.1 in place of 4.2 and replacing

functions frr by functionals given by /p, (ft) •— ^ ( T ^ ) ) for all fi £ M(S) and Fi C F,

we get

= 2 2 * 0 = 2C.

(We omit details.) |

8 SOME REMARKS

8.1. As noted in 2.4, interest in stips arose from the fact that every locally compact

topological semigroup, 5 , with an identity element and coinciding with the foundation

of Ala(S), is a stip. However, it is still not known whether every stip supports an

absolutely continuous measure—see [5] and [13]. Recently a number of studies have

shown that many results one can obtain for locally compact topological semigroups

supporting absolutely continuous measures remain valid for stips—see for example [5,

Chapter 3, Section 4] and [14]. To some extent out Theorems 3.1 and 3.2 belong to the

same sphere.

8.2. We strongly believe that Theorem 3.2(i) holds for all stips. A reader interested in

persuing this problem may find the studies in [5] and [13] of some use.

8.3. There are many semigroups satisfying the hypothesis of Theorem 3.6 which are

not stips and do not support absolutely continuous measures. One simple example is

S := [0,oo) with the relative line topology and maximum operation. We also feel that

Theorem 3.6 may be extendable to left invariant means on left uniformly continuous

functions as follows:

CONJECTURE. If S is a C -distinguished topological semigroup that is cr -compact

but not relatively neo-compact, and such that LUC(S) admits a left invariant mean,

then

card(LIM{LUC(S))) ^ 2C.
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