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Abstract

We zero in on the expected returns of long-short portfolios based on 204 stock market
anomalies by accounting for i) effective bid–ask spreads, ii) post-publication effects, and
iii) the modern era of trading technology that began in the early 2000s. Net of these effects,
the average anomaly’s expected return is a measly 4 bps per month. The strongest anom-
alies net, at best, 10 bps after controlling for data mining. Several methods for combining
anomalies net around 20 bps. Expected returns are negligible despite cost mitigations that
produce impressive net returns in-sample and the omission of additional trading costs, like
price impact.

I. Introduction

The literature on stock market anomalies has documented more than 100 pre-
dictors of the cross-section of stock returns.1 Using historical data, these papers
demonstrate market-neutral returns that average around 8% per year. These
anomalies range from those based on past return patterns, to those based purely

This article originated from a conversation with Svetlana Bryzgalova. We thank Marie Briere
(HFPE discussant), Jennifer Conrad (the editor), Victor DeMiguel, Yesol Huh, Markus Ibert, Nina
Karnaukh, Alberto Martin-Utrera (FDU discussant), R. David McLean (the referee), Andy Neuhierl,
Steve Sharpe, Nitish Sinha, Ingrid Tierens (Jacobs Levy discussant), Tugkan Tuzun, Michael Weber,
Haoxiang Zhu, and seminar participants at the Federal Reserve Board, Penn State University, Uni-
versity of Georgia, the 11th Annual Hedge Fund and Private Equity Research Conference, 2019
Finance Down Under Meetings, 2019 Eastern Finance Association Meetings, 2019 Jacobs Levy
Frontiers in Quantitative Finance conference, and 2020 INFORMS Annual Meeting for helpful
comments. We are grateful to Victor DeMiguel, Alberto Martin-Utrera, Francisco Nogales, and
Raman Uppal for making their data available to us and we thank Rebecca John for excellent research
assistance. The views expressed herein are those of the authors and do not necessarily reflect the
position of the Board of Governors of the Federal Reserve or the Federal Reserve System.

1Examining academic and industry publications, as well as working papers, Green, Hand, and
Zhang (2013), find 333 “return predictive signals” and Harvey, Liu, and Zhu (2016) list 316 “factors.”
However, many of these variables were not shown to predict the cross-section of stock-level returns.
Using more strict definitions, McLean and Pontiff (2016), Green, Hand, and Zhang (2017), and Chen
and Zimmermann (2022) identify and replicate 97, 94, and 205 of cross-sectional predictors, respectively.
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on accounting variables, and still others based on institutional stock holdings.
Few economic risk factors or behavioral theories are so broad that they canmake a
dent in this wide variety of return predictors.2

Anomalies’ expected returns, however, may be much lower than the mean
returns found in the literature. The literature largely ignores trading costs, which can
significantly reduce expected payoffs and thus expected returns. Moreover, the
historical data used in these papers are stale. The literature uses data going back to
the 1920s, raising questions about whether returns from so long ago are still
relevant. Indeed, data-mining bias and investor learning imply that returns in recent
years are much smaller (McLean and Pontiff (2016)). In addition, the early 2000s
saw a revolution in information and trading technologies that had similar effects
(Chordia, Subrahmanyam, and Tong (2014)). Taken together, these findings imply
that the data from earlier decades are not representative of the future.

In this article, we zero in on the expected returns of anomalies by accounting
for both trading costs and the staleness of historical data. Our main result is that, net
of these effects, expected returns are close to zero.

Figure 1 illustrates how we “zero in.” To generate this figure, we construct
long-short portfolios based on 204 return predictors from Chen and Zimmermann
(2022), optimize across cost-mitigation techniques, and reduce portfolio payoffs by
half of the effective bid–ask spread whenever a portfolio weight is adjusted. Each
bar, moving from left to right, provides a more refined estimate of the average
anomaly’s expected return.

The first bar is the mean return before trading costs (gross return) within the
original papers’ sample periods (in-sample), following the original implementa-
tions. In our data set, we find an impressive 68 bps per month. Accounting for total
trading costs (including cost mitigation) reduces the expected return to 44 bps,
which is still a notable 5.3% per year. Adding post-publication effects, however,
results in a measly 9 bps per month. Finally, adding the restriction that the sample

FIGURE 1

Anomaly Mean Long–Short Returns

The error bars in Figure 1 show 2 standard errors.
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2Cochrane (2017) provides an overview of asset pricing theory from a risk-based perspective.
Barberis (2018) provides a behavioral perspective.
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should only use the modern era of trading technology (post-2005) implies we
should expect just 4 bps per month.3 These results omit additional trading costs
such as price impact and short-sale fees. Indeed, short-sale costs average roughly
10–20 basis points per month (Cohen, Diether, and Malloy (2007), Drechsler and
Drechsler (2016)) and would likely wipe out the remaining profits.

Though the average anomaly is unprofitable, perhaps the strongest anomalies
still offer notable expected returns? Unfortunately, we find that this is not the case.

To zero in on the strongest anomalies, we begin with out-of-sample tests. We
replicate McLean and Pontiff’s (2016) well-known finding that the gross returns
of anomalies decay by roughly 50% post-publication. This decay implies that the
90th percentile anomaly still has a respectable return of about 56 bps per month
post-publication. However, if we limit post-publication data to post-2005 observa-
tions, the decay increases to 72%. Indeed, after total trading costs (including cost
mitigation), the decay is 93%, implying that the 90th percentile anomaly produces
an expected return of just 6 bps per month.4

Generalizations of the McLean and Pontiff (2016) test lead to similar results.
Sorting anomalies on in-sample net returns rather than running regressions
leads to similar results, as does sorting on in-sample net Sharpe ratios or turnover.
Indeed, none of these sorts produces a reliable pattern in post-publication and
post-2005 net returns.

Empirical Bayes estimators provide an intuition for why the strongest anom-
alies have negligible expected returns (Efron (2012), Azevedo, Deng,Montiel Olea,
and Weyl (2019), and Chen and Zimmermann (2020)). These estimators compare
the empirical distribution of anomalies to the distribution implied by pure chance, to
estimate how much of the heterogeneity is due to luck. We find that the distribution
of t-stats for post-publication and post-2005 net returns closely resembles a standard
normal, with only 7% of t-stats exceeding 2.0 in absolute value. Thus, the hetero-
geneity in mean net returns in recent data can largely be accounted for by luck, and
our empirical Bayes estimates imply that the 90th percentile anomaly has an
expected return of around 10 bps per month, consistent with our out-of-sample tests.

Even combining anomalies produces small expected returns. We combine
anomalies by sorting stocks on the fitted expected gross return fromFama–Macbeth
regressions, weighted-average predictor rank, Instrumented Principal Component
Analysis (IPCA, Kelly, Pruitt, and Su (2019)), and Least Absolute Shrinkage and
Selection Operator (LASSO). Despite the relative simplicity of these strategies,
they produce very impressive returns in the 1985–2005 sample. Three out of
4 methods produce a gross return of 380 bps per month, even with microcaps
excluded. For comparison, Freyberger, Neuhierl, and Weber’s (2020) nonlinear
group LASSO produces a gross return of 380 bps over the 1991–2014 sample.5

Net of trading costs and stale data, however, the best of our combination
strategies earn around 20 bps per month. This weak performance holds even if

3We thank Marie Briere for suggesting this analysis. Post-2003 and post-2004 samples lead to
similar results.

4In our data, the 90th percentile in-sample gross return is 127 bps per month, and the 90th percentile
in-sample net return (cost-mitigated) is 91 bps per month.

5This gross return does not exclude microcaps but does include the lower returns in post-2005 data.
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we optimize over cost mitigations using pre-2006 data, and even though this
optimization nets around 180 bps per month pre-2006.

In contrast to our results, Frazzini, Israel, and Moskowitz (2015), Novy-Marx
and Velikov (2016), Briere, Lehalle, Nefedova, and Raboun (2019), and DeMiguel,
Martin-Utrera, Nogales, and Uppal (2020) find that anomalies remain profitable
after trading costs. We reconcile with these studies by accounting for differences in
anomaly selection, sample periods, and trading cost measurement. For all of these
studies, we find that differences in sample periods account for most of the differ-
ences in results. The aforementioned papers all focus on net returns using sample
periods that include pre-2006 data, during which anomaly predictability was much
stronger.6

Our effective spread measurement leads to two additional results that are of
independent interest for microstructure researchers. The first is that low-frequency
(LF) effective spreads (i.e., spreads calculated from daily CRSP data instead of
high-frequency (HF) intraday data) are upward biased compared to the traditional
HF spreads by about 25–50 bps post-2005. This bias is seen in all four LF spreads
we examine: Hasbrouck (2009), Corwin and Schultz (2012), Kyle and Obizhaeva
(2016), and Abdi and Ranaldo (2017). In contemporaneous work, Jahan-Parvar
and Zikes (2019) find a similar bias and show that it is closely related to volatility.
Taken together, these results suggest that LF spread estimates may no longer be
valid in themodern era of electronic trading. Due in part to their accessibility, recent
papers in the anomalies literature have used exclusively LF spreads (Novy-Marx
and Velikov (2016), DeMiguel et al. (2020), and Freyberger et al. (2020)). To help
other researchers use the HF data, we provide easy-to-use code for generating HF
spreads that go back to 1983 at https://github.com/chenandrewy/hf-spreads-all.7

The second result of independent interest is that averaging LF effective
spreads provide a more accurate estimate of HF spreads than any individual LF
spread measure. This result is important because trade-level data is largely unavail-
able before 1983, making LF data the only option for measuring this fundamental
trading cost. This improvement is consistent with the literature on economic fore-
casting, which finds that simple averages of forecasts (or backcasts) often out-
perform individual forecasts (Bates and Granger (1969), Timmermann (2006)).
We make our combined low-frequency measure available at https://sites.google.
com/site/chenandrewy/.

The literature on the liquidity effects on anomalies is large,8 as is the literature
that finds that stale data may bias upward expected returns.9 Among these papers,

6We are grateful to Victor DeMiguel, Alberto Martin-Utrera, Francisco Nogales, and Raman Uppal
for making their data available to us, and helping us understand this reconciliation.

7This code generates HF spreads going back to 1983 in roughly 1 hour by combining WRDS’
calculations for TAQ (from the WRDS Intraday Indicators data set) with our own calculations for ISSM
spreads.

8See Schultz (1983), Stoll and Whaley (1983), Ball, Kothari, and Shanken (1995), Knez and Ready
(1996), Pontiff and Schill (2001), Korajczyk and Sadka (2004), Lesmond, Schill, and Zhou (2004),
Hanna and Ready (2005), McLean(2010), Frazzini et al. (2015), Hou, Kim, and Werner (2016), Briere
et al. (2019), Patton and Weller (2020), and Detzel, Novy-Marx, and Velikov (2021), among others).

9Schwert (2003), Marquering, Nisser, and Valla (2006), Huang and Huang (2013), Chordia et al.
(2014), Chen and Zimmermann (2020), and Jacobs and Müller (2020).
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ours is unique in that it applies high-frequency data, a very large set of anomalies,
and data-mining adjustments. All three of these elements are required to make
confident estimates of the expected returns on the best anomalies. Low-frequency
data overstates trading costs in recent data, a small set of anomalies leads to noisy
estimates after excluding stale data, and data-mining adjustments are required to
control for the bias that comes from examining the best performers. Huang and
Huang (2013) come the closest in spirit to our approach, but they impute trading
costs based on statistics reported in the literature and study only 14 anomalies.

We cannot rule out the existence of profitable long-short strategies. A perfectly
efficient market is impossible (Grossman and Stiglitz (1980)). Indeed, Freyberger
et al. (2020) show that a well-designed non-linear model can net 210 bps per month
in the 1991–2014 sample, if trading on microcaps is allowed. This result suggests
that profits can still be found in recent data, though they are not easy to find.

Code to reproduce our results is found at https://github.com/velikov-mihail/
Chen-Velikov.

Section II describes our methods. Section III presents results for the average
anomaly. Section IV examines the strongest anomalies, and Section V combines
anomalies. We reconcile our results with selected papers in Section VI. Section VII
concludes.

II. Data and Methods

In Section II we describe our anomalies data, trading cost measurement, and
portfolio implementation.

A. Anomalies Data

Our anomalies data come from Chen and Zimmermann’s (2022) “open
source” asset pricing project. This project shares code and data to reproduce
205 cross-sectional predictors. We refer to all of these predictors as “anomalies”
for simplicity. We exclude one anomaly because it relies on trading only a handful
of stocks (institutional ownership among stocks with very high short interest from
Asquith, Pathak, and Ritter (2005)), leading to our main data set of 204 anomalies.
We use the Apr 2021 data release, downloaded from www.openassetpricing.com.

The CZ data set aims to provide comprehensive coverage of published
anomalies. It covers all predictors in Hou, Xue, and Zhang (2020) and all but
two predictors from McLean and Pontiff (2016).10 The CZ data also covers 90%
of firm-level cross-sectional predictors with clear evidence of long-short signif-
icance from Harvey et al. (2016) and Green et al. (2017).

In contrast, the Novy-Marx and Velikov (NV) (2016) data have a more
limited scope, covering “23 of the best known, and strongest performing, anom-
aly strategies.” We will see that the anomalies literature as a whole (as drawn
from the CZ data) perform significantly worse than the anomalies selected by NV
(Section VI.A).

10Hou et al.’s (2020) 452 “anomalies” derive from only 240 characteristics, and only 118 of these
showed clear evidence of long-short significance in the original papers.
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B. Direct Trading Cost Measurement

We measure returns before trading costs using the ubiquitous monthly CRSP
data. To adjust for trading costs, we track portfolio weights, and each time a position
is entered or exited, we assume the effective half spread is paid. This notion of
trading costs is also studied in Korajczyk and Sadka (2004), Hanna and Ready
(2005), and Novy-Marx and Velikov (2016).

To understand this trading costmeasure, it helps to know that CRSP returns are
predominantly determined by closing auctions.11 The hypothetical anomaly strat-
egies studied by academics would have added additional demand or supply to these
auctions, increasing the prices for buys and decreasing the prices for sells. These
price deviations, then, would reduce returns compared to the CRSP benchmark.
Our trading cost aims to measure the minimum amount by which these prices
would have beenmoved.12 An alternativemethod formeasuring trading costs is to
exclusively use intraday data, as in Knez and Ready (1996), but this would deviate
significantly from the anomalies literature which is based on closing prices.

Ourmeasure of theminimal price deviation is the effective half bid–ask spread
(i.e., the absolute difference between the trade price and the prevailing quoted
midpoint). Supposing that the prevailing midpoint is an unbiased estimate of the
frictionless price, a buy trade “overpays” by the effective half spread, and a sell
trade receives too little by the same amount. Effective spreads use trades that are
actually executed and typically imply smaller spreads than quoted prices due to
price improvement (Stoll (2003)).

We use high-frequency (HF) data to compute spreads whenever it is available.
We coalesce daily spread average spreads from the Daily TAQ, Monthly TAQ, and
ISSM data sets. TAQ spreads are calculated by WRDS (from the WRDS Intraday
Indicators data set) and ISSM spreads use our own calculations. To match the
monthly data frequencies used in the anomalies literature, we first aggregate to a
daily level by taking a dollar-weighted average of intra-day spreads, and then
aggregate across days within each month by taking a simple average following
Abdi and Ranaldo (2017).

Anomaly returns aremeasured using end-of-month closing prices and thus one
may argue that end-of-month spreads are a better match. However, averaging across
the month ensures that our spreads are not sensitive to outliers. Moreover, this
method is used by previous papers that apply HF trading cost data to anomalies
(Hanna and Ready (2005)), and papers that study LF spreads typically compare to
monthly averages as well (Abdi and Ranaldo (2017)). For additional details, see
Appendix A or https://github.com/chenandrewy/hf-spreads-all.

Our HF data provide a mostly continuous history of transactions on the NYSE
and AMEX from 1983–2020.13 These data sets are sufficient for estimating trading

11The NYSE and NASDAQ closing auctions are described at https://www.nyse.com/article/nyse-
closing-auction-insiders-guide and https://www.nasdaqtrader.com/content/productsservices/Trading//
ClosingCrossfaq.pdf.

12We are grateful to Haoxiang Zhu for suggesting this interpretation.
13Data for NASDAQ stocks is somewhat shorter (1987–2020), as ISSM is missing NASDAQ data

before 1987. The older ISSM data also features several gaps in data. NASDAQ data is missing in Apr.
and May 1987, Apr. and July 1988, and Nov. and Dec. 1989. In addition, there are 46 trading days with
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costs of anomalies post-publication, as 97% of anomalies are published after 1983
(see Figure C3). However, we also wish to study the effects of cost optimization. To
avoid data-mining bias, we run our optimizations on pre-publication data.

Thus, we compute effective spreads pre-1983 (and whenever HF data is
missing) using low frequency (LF) proxies based on daily CRSP data. Rather than
choose any particular LF proxy, we compute four different LF proxies and use
the simple average as our spread. The four LF proxies we use are Hasbrouck’s
(2009) Gibbs estimate (Gibbs), Corwin and Schultz’s (2012) high-low spread (HL),
Abdi and Ranaldo’s (2017) close-high-low spread (CHL), and Fong, Holden, and
Tobek’s (2017) implementation of Kyle and Obizhaeva’s (2016) invariance-based
volume-over-volatility measure (VoV).

This approach is motivated by the idea that the LF proxies are a forecast
(or backcast) of the unobserved high-frequency effective spread. The literature
on economic forecasting has shown that a simple average of forecasts (a.k.a.
combination forecasts) significantly outperforms individual forecasts in a wide
variety of settings (Bates andGranger (1969), Timmermann (2006)). This improve-
ment can be understood from a simple diversification argument: the predictive
power of a particular forecast varies across observations and combining multiple
forecasts averages out these errors. The averaging of multiple LF illiquidity proxies
is also used in Karnaukh, Ranaldo, and Soderlind (2015), which finds that averag-
ing improves on using the constituent proxies alone. Indeed, we find that our LF
average outperforms any individual LF proxy in terms of its ability to match HF
data. For further details, see Appendix B.

Table 1 illustrates the performance of our LF average proxy. Panel A begins
by showing that our four LF proxies, while highly correlated, still contain distinct
information. The typical correlation is around 75% but can be as low as 0.5
(between HL and VoV). These results suggest that the logic of combination fore-
casts applies here: by combining proxies we can average out their errors.

Panels B and C of Table 1 show that this logic works. These panels compare
our LF average with HF spreads when they are available. The LF average has the
highest correlation with TAQ spreads, at 90%. For comparison, the best individual
LF proxy is VoV, which has an 85% correlation with TAQ. Panel C shows similar
results for ISSM. The LF average has a 92% correlation with ISSM spreads,
compared to 88% for the best individual LF proxy, Gibbs.

Though LF spreads are highly correlated with HF spreads, they exhibit
a strong bias, especially in recent data. This problem is shown in Figure 2, which
plots the median difference between LF and HF spreads over time. Post-2003,
spreads are biased upward by 25–50 basis points. This bias indicates that it is
important to use HF data to examine trading costs in recent years, and that the LF
trading costs used by Novy-Marx and Velikov (2016) overestimate expected costs
going forward.

Figure 3 illustrates how our combined effective spread measure has evolved
over time. Trading costs rise sharply in the early 1970s asNASDAQ stocks enter the
CRSP universe. Costs rise further in the late 1980s, a phenomenon which is seen in

no data for NASDAQ stocks between 1987 and 1991, and 146 trading days with no data for NYSE/
AMEX. These data gaps are also found by Barber, Odean, and Zhu (2008).
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TABLE 1

Correlations Between Low-Frequency Proxies and High-Frequency
Effective Bid–Ask Spreads

Table 1 examines four low-frequency proxies:Gibbs is Hasbrouck’s (2009)Gibbs estimate of the Rollmodel, HL isCorwin and
Schultz’s (2012) high-low spread, CHL is Abdi and Ranaldo’s (2017) close-high-low, and VoV (volume-over-volatility) is Fong
et al.’s (2017) implementation of Kyle and Obizhaeva (2016) microstructure invariance hypothesis. Correlations are pooled.
LF_AVE is the equal-weighted average of the four low-frequency proxies. TAQ and ISSM are computed from high-frequency
data. The low-frequency measures are imperfectly correlated, suggesting that they contain distinct information. LF_AVE has
the highest correlation with high-frequency spreads. Code is found at https://github.com/chenandrewy/hf-spreads-all and
https://github.com/velikov-mihail/Chen-Velikov. LF spread data is at https://sites.google.com/site/chenandrewy/.

Panel A. LF Spread Correlations (1926–2020)

Gibbs HL CHL VoV

Gibbs 1.00
HL 0.63 1.00
CHL 0.74 0.86 1.00
VoV 0.74 0.53 0.73 1.00

Panel B. Correlations with TAQ (1993–2020)

TAQ Gibbs HL CHL VoV LF_AVE

TAQ 1.00
Gibbs 0.84 1.00
HL 0.64 0.60 1.00
CHL 0.79 0.72 0.85 1.00
VoV 0.84 0.72 0.53 0.74 1.00
LF_AVE 0.90 0.89 0.82 0.93 0.86 1.00

Panel C. Correlations with ISSM (1983–1992)

ISSM Gibbs HL CHL VoV LF_AVE

ISSM 1.00
Gibbs 0.88 1.00
HL 0.77 0.74 1.00
CHL 0.83 0.78 0.88 1.00
VoV 0.86 0.81 0.62 0.74 1.00
LF_AVE 0.92 0.94 0.88 0.93 0.87 1.00

FIGURE 2

The Bias in Low-Frequency Effective Spread Proxies

In Figure 2, we take the difference between low-frequency effective spreads and TAQeffective spreads at the firm-month level
and then take the median across firms to calculate the median error in each month. Low-frequency spreads are from
Hasbrouck (2009) (Gibbs), Corwin and Schultz (2012) (HL), Abdi and Ranaldo (2017) (CHL), and Kyle and Obizhaeva
(2016) (VoV). Post-decimalization, low-frequency proxies are biased upward by roughly 25–50 bps. LF spread data are
found at https://sites.google.com/site/chenandrewy/, HF spread code is at https://github.com/chenandrewy/hf-spreads-all,
and replication code is at https://github.com/velikov-mihail/Chen-Velikov.
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other papers (Corwin and Schultz (2012), Abdi and Ranaldo (2017)). Trading costs
plummet in the 2000s as electronic trading and decimalization have improved
liquidity. Overall, our combined effective spread is consistent with key features
of stock market history.

C. Portfolio Implementations

We examine three implementations for each anomaly: i) the implementation
in the original paper, ii) a constrained cost optimization that allows for equal-
weighting, and iii) a constrained cost optimization that enforces value-weighting.

Implementation is important because trading costs include not only the direct
costs of trades (e.g., effective spreads), but also the lost returns that come from
avoiding the direct costs (Perold (1988)). Thus, a full accounting of trading costs
requires the study of cost optimization. Moreover, the relevant implementation
depends on the investor in question, so we study two versions of our constrained
optimized implementation.

The implementations used in the original papers are hand-collected by Chen
and Zimmermann (2022). The vast majority of the original papers use either equal-
weighted portfolios or simple regressions, which also imply equal-weighting (con-
sistent with Green et al. (2013)). Roughly half rebalance monthly, and roughly half
rebalance annually. About 20% are discrete signals, about 40% use decile
sorts, and the remainder mostly uses quintile sorts, though a few use more coarse
groupings. Only a handful use NYSE breakpoints. For further details, see the
SignalDoc.csv file in the Chen and Zimmermann (2022) Github repo (accessible
via www.openassetpricing.com).

To examine indirect trading costs, we study constrained cost-optimized imple-
mentations. For each anomaly, we examine up to 21 cost-mitigated implementa-
tions that build on the techniques studied in Novy-Marx and Velikov (2019). The
number of cost-mitigated implementations depends on the anomaly, as some cost
mitigations are not applicable to the original strategy. For each anomaly, we select
the implementation that produces the highest in-sample net return, while including

FIGURE 3

Combined Effective Spreads over Time

Spreads in Figure 3 combine high-frequency and low-frequency data. We use high-frequency Daily TAQ (DTAQ), Monthly
TAQ (MTAQ), and ISSM when available. Otherwise, we use the average of four low frequency proxies: Gibbs (Hasbrouck
(2009)), HL (Corwin and Schultz (2012)), CHL (Abdi and Ranaldo (2017)), and VoV (Kyle and Obizhaeva (2016)). The combined
spread tracks well-known structural changes like the entry of NASDAQ (early 1970s) and decimalization (early 2000s).
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the original paper implementation in this choice set. We call this “constrained cost
optimization,” because we optimize over many cost-mitigation techniques, but do
not do a full-blown optimization to maintain transparency and limit overfitting.

The cost-mitigated implementations we optimize over include equal- and
value-weighted versions of the following three techniques:

• Low-cost universe: This technique limits trading to stocks in the bottom n-tile of
trading costs within each NYSE size decile. We consider both the bottom tercile
and bottom half of trading costs.

• Reduced rebalancing: This technique simply reduces the rebalancing frequency
relative to the one used in the original paper. We consider 3-, 6-, and 12-month
rebalancing frequencies.

• Buy/hold spreads (a.k.a. banding): This technique is best described with an
example: a 20/40 buy/hold spread goes long stocks with signals that are in the
top 20th percentile, but only exits stocks that have signals below the top 40th
percentile (and similarly for the short end). The buy/hold spreads we consider
depend on whether we are examining equal-weighting or value-weighting. For
value-weighted implementations, we examine four buy/hold spreads: 10/20,
10/30, 10/40, and 10/50. For equal-weighted implementations, we examine
20/25, 20/30, …, and 20/50 buy/hold spreads, since equal-weighted 10/20
implementations may overemphasize stocks with very high effective spreads.
This technique can only be applied to continuous predictors.

We examine two optimizations: the first choose the implementation with
the highest in-sample net return across all implementations described above. The
second limits the choices to value-weighted implementations.

Our cost optimizations are clearly constrained, as there are manymore ways to
implement each individual predictor. Optimizing over additional choices would, by
construction, improve performance in-sample, but would lead to more overfitting.
We will see, however, that our constrained optimization dramatically improves
net returns in-sample, suggesting that the cost of more overfitting outweighs the
benefits. These costs tend to be large in portfolio choice (e.g., DeMiguel, Garlappi,
and Uppal (2009)).

We emphasize that our cost optimizations use only in-sample information, for
similar reasons. Our main object of interest is the mean net return post-publication
and post-2005. Optimizing using only in-sample information ensures that our main
object of interest is not affected by data-mining bias coming from optimization.
Further details are in Appendix C.

III. Zeroing In on the Average Anomaly

Havingdescribedourmethods,we can nowzero in on expected returns.Webegin
with the original paper implementations because they are widely understood. We
then present our first main result, which examines cost-mitigated implementations.

A. The Average Academic Implementation

Table 2 shows that the original papers’ implementations offer no expected
returns at all. Though the historical gross return (in-sample) was 68 bps per month,
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one should expect �1 bps per month going forward (net of costs and post-
publication). Notably, our large set of anomalies produces a standard error on the
post-publication net return of just 5 bps.

Table 2 offers a few decompositions for understanding this lack of expected
returns. The post-publication row shows that roughly half of the in-sample gross
returns are eliminated by data-mining bias and changes in the investing environ-
ment, consistent with McLean and Pontiff (2016). Though this decay is large, post-
publication data still imply a notable 28 bps per month of expected returns (4% per
year) before trading costs.

Trading costs wipe out the remaining expected returns, however. A second
decomposition shows that this return reduction (column d) is roughly equal to the
product of 2-sided turnover (column b) and the average spread paid (column c).
As the typical anomaly turns over 20% of its long portfolio and 20% of its short
portfolio each month, the total 2-sided turnover is about 40%. Multiplying this
turnover by the average paid post-publication spread of 85 bps (column c) leads to
a return reduction of about 30 bps, completely eliminating the post-publication
gross return.

The large impact of trading costs may be surprising, since decimalization
implies that the quoted spread on many stocks is just one penny. Dividing $0.01

TABLE 2

Zeroing In on the Average Anomaly’s Expected Return

Table 2 estimates the averagenet return (e) of 204anomaly long-short portfolios after accounting for effectivebid–ask spreads
and stale data. All figures are in bps per month except for turnover, which is in percent per month. Figures average across
months and then across anomalies, with standard errors in parentheses. Panel A examines the original papers’
implementations. Panels B and C examine constrained cost-optimized implementations (Section II.C). Columns a–d report
an approximate net return decomposition. Anomalies are drawn from Chen and Zimmermann’s (2022) predictors. After
accounting for trading costs and stale data, the expected return is approximately 0.

a b c d ≈ b � c e = a � d

Gross Return Turnover (2-Sided) Ave. Spread Paid Return Reduction Net Return

Panel A. Original Paper Implementations

In-sample 68 39 206 74 �7
(3) (3) (6) (7) (6)

Post-publication 28 40 85 30 �1
(4) (3) (4) (3) (5)

Post-pub and post-2005 19 41 68 24 �5
(2) (4) (2) (2) (3)

Panel B. Cost-Mitigated Implementation Selected to Maximize In-Sample Net Return

In-sample 61 16 137 17 44
(3) (2) (6) (1) (3)

Post-publication 16 17 51 7 9
(3) (2) (4) (1) (3)

Post-Pub and Post�2005 9 17 40 5 4
(2) (2) (3) (1) (2)

Panel C. Cost-Mitigated, Value-Weighted Implementations Only, Selected In-Sample

In-sample 47 18 78 12 35
(3) (2) (3) (1) (3)

Post-publication 5 20 21 4 1
(3) (2) (2) (1) (3)

Post-Pub and Post-2005 1 20 15 3 �2
(3) (2) (1) (1) (3)
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by the typical share price of $20 leads to a tiny spread of 5 bps, far from the 83 bps
post-publication spread paid in Table 2.

Trading costs are extremely right-skewed, however, and anomaly strategies
require trading stocks from all over the liquidity spectrum. Thus, the typical spread
paid by an anomaly strategy is more similar to the mean spread, and much larger
than the modal spread one typically sees at a brokerage.

This skewness is seen in Figure 4, which compares distributions of spreads in
2014. NYSE spreads (dash-dotted line) display a mode at around 5 basis points,
consistent with the tiny spread implied by decimalization. The NYSE contains
many stocks with much larger spreads, however, as seen in the long right tail of the
distribution. Indeed, about 20% of NYSE stocks have effective spreads in excess
of 20 bps.

Anomaly portfolios load up on this right tail. The distribution of spreads paid
by academic implementations in 2014 (solid line) shares the same mode as the
NYSE distribution, but the peak is only half as tall, and the missing mass is shifted
into the right tail. As a result, the mean spread paid by anomaly strategies in 2014 is
67 bps, more than 4 times the average NYSE spread of 16 bps.

While academic portfolios tend to trade stocks that are more illiquid than the
NYSE, their trading costs are similar to that of the broad universe of stocks. Indeed,
the anomaly paid spread distribution (solid line) lines up closely with the distribu-
tion for all stocks (dashed line), and is significantly shifted to the left compared with
the distribution for the Russell 2000 (dotted line).

Returning to Table 2, the “in-sample” row shows that academic implementa-
tions are not even profitable in-sample. Compared to post-publication results,
turnover is about the same in-sample, but the average spread paid is more than
twice as large, and thus the return reduction more than doubles to 74 bps per month.
This return reduction completely wipes out the in-sample gross return of 68 bps per
month. Thus, one may consider academic strategies to be too naive, so we inves-
tigate cost-mitigated implementations in what follows.

FIGURE 4

Distribution of Spreads Paid by Academic Implementations in 2014

In Figure 4, we compare the effective spreads paid by academic implementations with those of all stocks, NYSE stocks, and
Russell 2000 stocks. “Paid by anomaly portfolios” pools across all trades implied by 204 academic implementations in 2014.
Other distributions are pooled across all stock months in 2014. Academic implementations trade stocks across the entire
liquidity spectrum, resulting in large trading costs despite the near-zero modal spreads of recent years.
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B. The Average Cost-Mitigated Anomaly

Our cost mitigations are very effective in-sample. Panel B of Table 2 shows
that, relative to the academic implementation, cost optimization improves in-sample
net returns by 51 bps per month, leading to a noteworthy 44 bps net return. This
improvement comes from a 59% decrease in turnover and a 33% decrease in the
spreads paid, while the lost gross returns are just 7 bps per month (68–61 bps).
Figures C1 and C2 (Appendix C) provide additional details on our cost optimization.

Post-publication, however, the mean net return is just 9 bps per month. This
negligible return comes from the fact that the gross return drops to just 16 bps
post-publication. Thus, even with a miniscule return reduction of 7 bps, the net
return is tiny.

Figure 5 provides a more graphic view of this deterioration. This figure shows
our estimates as an event study: we average net returns across 204 anomalies within
each month relative to publication (light line). The extreme volatility of the light
line is a reminder that anomalies are not at all sure bets.

The dark line shows the trailing 5-year moving average net return, once again
averaging across 204 anomalies. This moving average declines sharply around
publication, dropping from about 45 bps 5 years before publication to around
10 bps afterward.

Returning to Table 2, the “Post-Pub & Post-2005” row further isolates
expected returns by accounting for the change in trading technologies that hap-
pened during the early 2000s. This change saw an explosion in trading volume and
institutional activity, which implies that the data pre-2005 is unlikely to be
representative of the future (Chordia et al. (2014)). We account for this change
by limiting the data to anomaly months that are both post-publication and post-
2005.14 In this more refined isolation, the typical anomaly is expected to return
only 4 bps per month, with a standard error of just 2 bps.

FIGURE 5

Event-Time Net Returns for Cost-Mitigated Implementations

In Figure 5, for a given month relative to publication, light lines plot the mean net return across all anomalies. Dark lines show
the trailing 5-year moving average of mean returns, and dashed lines show 2 standard error confidence bounds. Cost
mitigation is effective before publication, but net returns become tiny afterward.
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Even this tiny 4 bps per month may be unachievable on larger scales,
as Panel B of Table 2 examines portfolio implementations that allow for equal
weighting. Limiting implementations to those that use value-weighting leads
to a negative �2 bps per month of expected returns (Panel C).

IV. Zeroing In on the Strongest Anomalies

We’ve seen that the average anomaly’s expected return is effectively zero.
But what should we expect from the strongest anomalies? This section presents
our second main result: The strongest anomalies’ expected returns are only around
10 bps per month.

To examine the strongest anomalies, we need to deal with data-mining bias.
Data-mining bias comes from the fact that sample mean return of predictor i in
recent data can be broken down into two components

ri = μiþ εi,(1)

where ri is the samplemean, μi is the true expected return, and εi is a zeromean noise
term due to sampling variability. If we focus on anomalies where ri is larger than the
80th percentile r80, we get a biased estimate of μi:

E rijri > r80ð Þ=E μijri > r80ð ÞþE εijri > r80ð Þ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
>0

:(2)

The noise term E εijri > r80ð Þ is positive because mining for large mean
returns also selects for large realizations of noise, leading to an upward bias in
E rijri > r80ð Þ, compared to the true return E μijri > r80ð Þ.

We examine two approaches to removing the bias E εijri > r80ð Þ. Section IV.A
uses out-of-sample tests, and Section IV.B uses an empirical Bayesian adjustment.
Though the methods differ, they lead to similar results.

Throughout this section, we refer to “post-publication and post-2005,” so to
simplify exposition we abbreviate this expression as “post-pub05.”

A. Data-Mining Adjustments Using Out-of-Sample Tests

A simple way to remove the bias in equation (2) is with out-of-sample tests.
One can regress post-pub05 mean returns ri on the in-sample mean returns

ri = αþβri,ISþδi,(3)

and since monthly returns have near-zero autocorrelation (cov ri,IS, δið Þ = 0) we
have an unbiased estimator

E rijri,ISð Þ=bαþbβri,IS,(4)

where bα and bβ are OLS estimates of equation (3). McLean and Pontiff’s (2016)
main table can be understood as a refinement of these equations. We then have an
unbiased estimate of the strongest mean returns by conditioning equation (4) on a
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large ri,IS. By applying various refinements of the mean return (a la Figure 1),
we can zero in on the strongest anomalies.

Figure 6 shows the results. Graph A begins by regressing post-publication
gross returns on in-sample gross returns, using the original papers’ strategies. We
find a slope of 44%, replicating MP’s result that gross returns decay by roughly
50% post-publication (see also Chen and Zimmermann (2020)). As the 90th per-
centile in-sample gross return is 127 bps per month, this slope implies that the 90th
percentile anomaly still has a respectable post-publication gross return of about
56 bps per month after adjusting for data-mining bias.

Graph B shows that expected returns are much smaller after controlling for
stale data, however. This panel limits the post-publication data to observations
that are also post-2005, and produces a slope of 28%. Thus, a large chunk of the
post-publication profitability found by MP and others likely comes from obser-
vations that pre-date the modern era of information technology.

Graph C adds trading cost adjustments by replacing gross returns with net
returns. The slope drops to 25%, but this decay is difficult to interpret, as many
of the in-sample net returns are negative. Like Graphs A and B, Graph C uses the

FIGURE 6

Post-Publication Performance Decay Net of Costs and Stale Data

Eachmarker in Figure 6 is one anomaly. Fit line is OLS with zero intercept, but allowing for an intercept leads to similar results.
Graph A replicates the fact that the original implementations’ returns decay by roughly 50% post-publication (McLean and
Pontiff (2016), Chen and Zimmermann (2020)). Decay increases to 72% if stale (pre-2005) data is excluded from post-
publication performance (Graph B). Decay increases to 93% after trading costs (Graph D), showing even the strongest
anomalies have tiny expected returns. Cost mitigation is necessary when accounting for trading costs becausemany original
strategies have negative net returns even in-sample (Graph C).
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original papers’ implementations (following MP), leading to large trading costs
and many anomalies with negative net returns.

Thus, to effectively study anomaly decay, we need to use cost-mitigated
implementations. Graph D shows regressions of post-publication and post-2005
net returns on in-sample net returns where all returns come from the cost mitigation
described in Section II.C. The slope drops to 7%, implying a 93% decay in future
performance relative to in-sample performance. As the 90th percentile cost-
mitigated in-sample net return is 91 bps per month, this regression implies that
the strongest anomalies earn expected returns of around 6 bps per month, once
data-mining is accounted for.

For robustness, Table 3 examines anomaly sorts. Just as portfolio sorts are
a nonparametric version of Fama–Macbeth regressions, the anomaly sorts in
Table 3 are a nonparametric form of MP’s regressions. The table also extends the
sorting variable beyond in-sample net returns by checking the in-sample net
Sharpe ratio and in-sample turnover for predictive power.15

The table shows that predictability of post-pub05 net returns is weak regard-
less of the in-sample performance measure. In implementations that allow for
equal-weighting (Panel A of Table 3), the best net returns come from using the
net Sharpe ratio, with the top quartile producing expected returns of 10.5 bps per
month. However, the net returns from this sort are nonmonotonic, and none of the
predictors produces a reliable pattern in expected returns. Indeed, turnover actually

TABLE 3

The Best Expected Returns Using Out-of-Sample Tests

In Table 3, to account for data-mining bias, we sort anomalies based on in-sample statistics and examine average net returns
post-publication and post-2005. All portfolio implementations use cost mitigation following Section II.C. Parentheses denote
standard errors. Panel B restricts implementations to value-weighting. There are no robust predictors of post-publication and
post-2005 performance, indicating that even the best anomalies have approximately zero expected return.

Post-Pub Post-05 Net Return (bps Monthly)

In-Sample Predictor

Predictor Quartile

1 (Worst) 2 3 4 (Best)

Panel A. Including Equal-Weighted Implementations

Net return 7.5 �0.9 3.1 9.5
(4.2) (5.5) (4.5) (5.3)

Net sharpe 8.2 �0.0 0.5 10.5
(5.6) (5.2) (4.1) (4.6)

1/Turnover 8.7 6.8 3.7 0.2
(4.7) (6.5) (4.3) (3.9)

Panel B. Value-Weighted Implementations Only

Net return �0.5 0.7 �9.7 2.1
(4.7) (6.5) (4.9) (5.0)

Net sharpe �1.3 1.9 �9.1 1.1
(4.9) (6.6) (5.1) (4.4)

1/Turnover 1.1 �4.9 1.4 �5.2
(5.0) (6.2) (4.1) (5.8)

15In earlier versions of this article, we also find that in-sample return reduction leads to similar
results.
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predicts net returns with the wrong sign, with high turnover implying lower
net returns.

Predictability is even worse when using only value-weighted implementations
(Panel B of Table 3). Under this restriction, the in-sample net return is the best
predictor, and it produces only 2.1 bps per month in its top quartile. Anomalies with
low in-sample turnover actually produce negative net returns post-publication and
post-2005 (when implementations are restricted to value-weighting).

Overall, post-pub05 mean net returns show little predictability in out-of-
sample tests. Taken together, these results lead us to conclude that the strongest
anomalies offer at most 10 bps per month, once data-mining bias is accounted for.

B. Data-Mining Adjustments Using “Empirical Bayes”

As an alternative data-mining adjustment, we study an “empirical Bayes”
estimator. Empirical Bayes has been shown to effectively remove data-mining bias
in a variety of settings (Efron (2011), Azevedo et al. (2019), Chen andZimmermann
(2020), and Liu, Moon, and Schorfheide (2020)).

Empirical Bayes estimation can be motivated by equation (2). Data-mining
bias comes from the noise termE εijri > r80ð Þ. Thus, one can remove bias by directly
estimating E μijri > r80ð Þ. In other words, what the econometrician really wishes
to know is μi for the strongest anomalies, and thus our goal is not the conditional
sample mean E rijri > r80ð Þ, but the conditional expectation of true returns
E μijri > r80ð Þ. Given an estimated model, Bayes rule provides the logic for com-
puting this expectation. To generate an estimated model, we specify a DGP and fit it
to empirical data using frequentist methods. This combination of empirical fre-
quentist methods and Bayesian logic gives the name “empirical Bayes.”

We first develop the adjustment and then examine adjusted expected returns.
Throughout this section, we refer to mean returns that are post-publication, post-
2005, and net of trading costs. For ease of reading, we drop all of the qualifiers
in what follows (“Sharpe ratio” refers to the post-publication, post-2005, net
Sharpe ratio).

1. Empirical Bayes Model and Estimation

Suppose the Sharpe ratio for predictor i is normally distributed around the true
Sharpe ratio

ri
σi
�N

μi
σi
, SE SRið Þ

� �
,(5)

where σi is the volatility of net returns and SE SRið Þ is the standard error for Sharpe
ratio i. The normal distribution is justified by the central limit theorem and the fact
that the sample sizes are in the order of hundreds.

Modeling Sharpe ratios rather thanmean returns effectively rescales portfolios
to have the same volatility. We find that modeling mean returns leads to even
smaller expected returns, consistent with the relatively strong performance of net
Sharpe ratios as in Table 3.
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We assume σi is observed. This assumption can be justified by the small
standard error in sample volatility for samples of 360months.16 Under this assump-
tion and the standard assumption of zero autocorrelation in monthly returns,
SE SRið Þ=SE rið Þ=σi = 1=

ffiffiffiffiffi
Ti

p
.

True Sharpe ratios are location-scale t-distributed
μi
σi
� t μSR, σSR, νSRð Þ,(6)

where μSR is the location (mean), σSR is the scale (dispersion), νSR is the degrees
of freedom parameter. This bell-shaped distribution is consistent with the data
(Figure 7). Using a t-distribution allows for fat tails and thus the idea that there
may be a few predictors that are truly exceptional.

Equations (5) and (6) summarize the model. The model has just three param-
eters: μSR, σSR, and νSR. For simplicity, we fix νSR at different values to examine
how our results change.

Given νSR, method of moments implies a simple estimate (Xie, Kou, and
Brown (2012))17

FIGURE 7

Distribution of Cost-Mitigated Mean Net Returns Post-Publication and Post-2005

Each acronym in Figure 7 represents one anomaly. For full references, see https://github.com/OpenSourceAP/CrossSection/
blob/master/SignalDoc.csv. The distribution closely resembles the null of no predictability, leading to the large data-mining
adjustments in Table 4.
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p χT�1. Then the
standard error of bσi = 0:037s for a sample size of 30 years.

17To see this, note

E ri=σi�μSRð Þ2
h i

=E μi=σi�μSRð Þ2þ μi=σi�μSRð Þδiþ δ2i

h i
,(7)

where δi is a noise term. The cross term drops out, and then population moments are replaced by sample
moments to arrive at (8). Restricting the parameter set to positive σ2SR results in the max operation.
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bσSR � 1

N

XN
i= 1

ri
σi
,(8)

bσ2SR � max
νSR�2

νSR

� �
1

N

XN
i= 1

ri
σi
�bμSR� �2

� 1

N

XN
i = 1

1

Ti

" #
, 0

( )
:(9)

Intuitively, the grand mean μSR is estimated using the average of all Sharpe
ratios, and the dispersion σ2SR is estimated as the dispersion in Sharpe ratios

1
N

PN
i = 1

ri
σi
�bμSR� �2

that cannot be accounted for by noise 1
N

PN
i = 1

1
Ti
. The factor

νSR�2
νSR

� �
adjusts for the assumed fat tail parameter νSR. Like other method of

moments estimators, weak dependence is sufficient for consistency (Wooldridge
(1994)), and the fact that anomaly correlations cluster around zero implies weak
dependence (McLean and Pontiff (2016), Chen and Zimmermann (2020), and
Chen (2021)).

With estimated parameters in hand, we calculate the bias-adjusted expected
return for predictor i with

bμi �E bμi
σi
jri, σi, bμSR, bσSR, νSR� 	

σi:(10)

That is, the bias adjusted return is the conditional expectation of the true
Sharpe ratio given all available information, rescaled by volatility.

Equation (10) is free of data-mining bias, even for predictors with large ri.
This phenomenon happens because bμSR and bσSR are estimated from the entire
distribution of predictors, and thus equation (10) conditions on a thorough explo-
ration of the data. In other words, evaluating equation (10) at large ri is equivalent
to simulating a large set of predictors, selecting only those with large ri, and then
computing the mean μi.

18

The mechanics of the adjustment can be seen in the special case νSR !∞.
In this case, normal-normal updating formulas imply

bμi =bsibμSRσiþ 1�bsið Þri,(11)

where the “shrinkage” bsi is given by

bsi � 1=Tibσ2SRþ1=Ti

:(12)

Intuitively, we shrink large ri toward the grand mean bμSRσi. Predictors with
smaller samples are shrunk more, as they are more vulnerable to data-mining bias.
The overall shrinkage is determined by bσSR, where in the extreme case that there

18This property is related to selection “paradoxes” in Bayesian inference (Dawid (1994), Senn
(2008)), though we note that empirical Bayes methods are actually frequentist from a philosophical
perspective.
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is no dispersion in true Sharpe ratios, shrinkage is 100%. Equation (11) shows our
estimator is closely related to the celebrated James and Stein (1961) estimator. Thus,
similar estimators can also be derived from quadratic loss arguments, as well as
Galtonian reverse regression (Stigler (1990)).

2. Empirical Bayes Results

Table 4 describes the estimation results and bias adjusted returns. Panel A
shows our baseline cost optimizations, which allow for equal weighting. Assuming
true Sharpe ratios are normally distributed, (νSR = 100), the standard deviation of
true Sharpe ratios is 0.15 (annualized). Considering that the mean standard error on
the observed net Sharpe ratio is about 0.30, this implies that the bias adjustment is
very large (equation (11)). Indeed, 90th percentile adjusted net post-pub05 returns
are only about 13 bps per month. Assuming that true Sharpe ratios are fat-tailed
(νSR = 4) has almost no effect on the results. These results are quantitatively close to
those from our predictability-based adjustment (Table 3).

Bias adjustments for implementations that use only value-weighting (Panel B)
are even stronger. Though the dispersion in the true Sharpe ratios is a bit higher than
in Panel A, the mean true Sharpe ratio falls to zero, as the mean net return when
restricted to value-weighting is �2 bps per month (Table 2). As a result, the 90th
percentile of adjusted net returns is still only about 10 bps per month.

To understand the intuition, it helps to examine the distribution of post-pub05
net returns. Figure 7 plots this distribution. Some anomalies have notable net
returns. Cash to assets (Cash), the Mohanram G-score (MS), and momentum for
young firms (FirmAgeM) all produce net returns in excess of 80 bps per month in
this recent sample.

TABLE 4

The Best Expected Returns Using Empirical Bayes

Table 4 shows the large mean net returns in post-publication and post-2005 (post-pub05) samples for data-mining using
empirical Bayes. Bootstrapped standard errors are in parentheses. Adjustments assume Sharpe ratios are the sumof the true
Sharpe ratio and an error term, and true Sharpe ratios are t-distributed with d.o.f. νSR, scale σSR, and mean μSR. Given νSR, we
estimate σSR and μSR by method of moments (equation (8)). Adjusted expected returns are computed from the conditional
expectation of trueSharpe ratios (equation (10)). Even the strongest anomalies haveexpected returns of only about 10bpsper
month, consistent with Table 3.

Panel A. Including Equal-Weighting Implementations

Parameters (Annualized) Bias-Adjusted Net Return (bps Monthly)

Assumed Estimated Percentile

νSR bσSR bμSR 50 70 80 90

100 0.15 0.05 4.7 8.7 10.1 13.4
(0.06) (0.03) (2.5) (3.5) (3.9) (5.9)

4 0.10 0.05 4.7 7.9 9.4 12.0
(0.05) (0.03) (2.5) (3.2) (3.6) (5.1)

Panel B. Value-Weighted Implementations Only

Parameters (Annualized) Post-Pub05 Net Return (bps Monthly)

Assumed Estimated Percentile

νSR bσSR bμSR 50 70 80 90

100 0.22 �0.01 �0.5 5.6 8.3 13.0
(0.04) (0.03) (3.1) (3.4) (3.8) (4.9)

4 0.15 �0.01 �0.7 3.9 6.1 10.7
(0.03) (0.03) (3.1) (3.2) (3.6) (4.5)
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However, the distribution of anomalies is centered around zero, with a left tail
that is comparable in size to the right tail. Indeed, only 14 out of 204 anomalies
produce t-stats > 2.0 in absolute value, not far from the 10 implied by a model in
which there is no predictability (σSR = μSR = 0Þ. As a result, luck can account for
most of the heterogeneity in post-pub05 performance, andBayesian formulas imply
that exceptional mean returns should be shrunk to be close to zero (equation (11)).

V. Zeroing In on Combination Strategies

Our main results examine trading on single anomalies. This restriction is
required to make sharp inferences in the short post-information technology sample.
It also dramatically simplifies the analysis, as there are an extremely large number
of ways to trade on multiple anomalies. For example, there are 3 billion ways to
choose 5 anomalies from the 204 in our data set.

In this section, we zero in on the expected returns of strategies that combine
many anomalies. These strategies sort stocks on the expected gross return implied
by some linear models and then apply cost mitigation. Though these combinations
are simple, we will see that they perform comparably with more sophisticated
algorithms in previous papers.

A. Data Handling for Combining Anomalies

We restrict our analysis to anomalies that were published in 2005 or earlier.
This restriction reduces the number of anomalies from 204 to 103, but ensures that
our post-2005 results do not inherit look-ahead bias from the original studies.
Notably, the existing literature on anomaly combination does not apply this restric-
tion (Green et al. (2017), DeMiguel et al. (2020), and Freyberger et al. (2020)).

We also drop anomalies that are discrete or dominated by missing values at
the stock level. In particular, we require the anomaly characteristic is observed for
50% of stocks with market cap observations in Jan. 1975. Dropping discrete
anomalies reduces the list to 79 anomalies, and the missing value screen reduces
the list to 58 anomalies. DeMiguel et al. (2020) also find that requiring nonmissing
observations requires dropping many anomalies.

To focus on moderate-to-high liquidity stocks, we drop stocks with market
cap below the 20th percentile in the current month. This screen is also used by
DeMiguel et al. (2020) and Brandt, Santa-Clara, and Valkanov (2009). It also eases
comparison with Green et al. (2017) and Freyberger et al. (2020), who use a similar
screen in a subset of their results.

After these screens,we transform each anomaly characteristic by ranking stocks
within each month, dividing by the number of stocks, and then subtracting 0.5.
This transformation implies that each characteristic lies in the interval �0:5, þ0:5½ �
and eliminates sensitivity to outliers. This normalization is also used in Kelly
et al. (2019), and a similar normalization is used in Freyberger et al. (2020).19

19In contrast, Green et al. (2017) and DeMiguel et al. (2020) winsorize all variables and then
standardize to have mean zero and unit standard deviation. We did not choose this approach as some
anomaly characteristics are sometimes transformed with logs (e.g., B/M in Fama and French (1992)) and
it is unclear if a log or other transformation should be used.
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We also impute missing values as zero, which is equivalent to imputing the raw
characteristics with the cross-sectional medians (after imposing the missing value
and other screens).

B. Methods for Combining Anomalies

Our combination strategies use a linear model of expected gross returns

Et ri,tþ1ð Þ= β0þ
XJ
j= 1

βjxi,j,t,(13)

where ri,tþ1 is the gross return of stock i in month tþ1, J is the total number of
predictors, βj is the coefficient for predictor j, and xi,j,t is the rank of the jth anomaly
characteristic for stock i in month t.

We examine four ways of fitting equation (13):

1. Fama–Macbeth regressions of future returns on characteristics: This well-
understood method serves as our benchmark anomaly combination.

A potential weakness of Fama–Macbeth is that it may overfit expected returns
as the number of characteristics we use is large. This concern may be minor in the
pre-2005 sample, but the fact that predictability has declined sharply in recent data
suggests that regularization might improve performance.

2. Weighted Average Rank: We assume Et ri,tþ1ð Þ is the weighted average of the
characteristic rank xi,j,t across anomalies j, where the weight for anomaly j is the
mean gross long-short return from sorting on anomaly j over the past 120months
of data.20

This assumption can be thought of as a form of model averaging, where each
portfolio sort is thought of as a single model of expected returns. Taking the
weighted average of ranks is then equivalent to taking the simple average of each
individual-anomaly expected returns. Model averaging has been shown to improve
equity premium forecasting and can be thought of as an easy-to-use regularization
method (Rapach, Strauss, and Zhou (2010), Rapach and Zhou (2013)).

3. Instrumented Principle Component Analysis (IPCA): This method, proposed by
Kelly et al. (2019), combines equilibrium factor models with characteristics-
based expected return measurement. It jointly estimates stock-level expected
returns, stock-level factor exposures, and latent factors, while using character-
istics data as instruments.

We use the version of their model that imposes the equilibrium condition that
all cross-sectional variation in expected returns is due to factor exposure. This
approach may outperform Fama–Macbeth if an equilibrium pricing restriction
holds. Moreover, as we assume the number of latent factors is only 5, this method
can also be thought of as a regularization method.

20The past 120month requirement is imposed for consistency with the other fittingmethods.We find
that using a longer sample leads to better performance for this algorithm, bringing its performance closer
to the other algorithms, but the overall results are similar.
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4. LASSO regression:Weighted average rank and IPCA can be thought of as dense
regularization methods, as they draw on information found throughout all
anomalies. But if the true structure of predictability is focused on select anom-
alies, then a method that imposes this structure will be more statistically effi-
cient. LASSO regularization is a technique that imposes this structure.

We choose the LASSO penalty (often called λ) tominimize theMSE estimated
by 5-fold cross-validation (James, Witten, Hastie, and Tibshirani (2013)).

Further details of the model fitting are in our replication code, provided at
https://github.com/velikov-mihail/Chen-Velikov.

Using these four fitting methods, we form “out-of-sample” trading strategies.
For each month beginning in Jan. 1985, we fit equation (13) using the past
120 months of data. We then sort stocks on the fitted expected return

PJ
j = 1βjxi,j,t

and form a long-short portfolio that is held for 1 month.
We examine two methods for forming the long-short portfolio. The first

method simply goes long stocks in the top decile of bEt ri,tþ1ð Þ and short stocks in
the bottom decile, with equal weighting in each leg. This method aids comparison
with Green et al. (2017) and Freyberger et al. (2020), who also examine equal-
weighted long-short decile portfolios formed on fitted expected returns with small
cap screens.

The second method applies constrained cost-optimization following Section II.C.
We examine 21 cost-mitigated implementations building on Novy-Marx and
Velikov (2019) and then select the technique that produces the highest net return
in the 1985–2005 sample. This cost optimization is applied for each of the four
model-fitting methods, allowing the cost mitigation to depend on the type of
regularization used. Importantly, we do not use post-2005 data in this optimization,
implying that the mean returns post-2005 should be free from look-ahead bias.

C. Results from Combining Anomalies

Table 5 shows the results. Each panel shows the performance of one fitting
method, broken down into the 1985–2005 and 2006–2020 subsamples.

Panel A of Table 5 begins with equal-weighted decile sorts based on
Fama–Macbeth regressions. This simple approach produces an extremely large
gross return of 374 bps per month in the 1985–2005 sample, despite the fact that we
exclude stocks below the 20th percentile of market cap. This gross return exceeds
the 280 bps gross return found by Green et al. (2017) using similar methods on a
similar sample, suggesting that the Chen and Zimmermann (2022) data set contains
more predictive power than the Green et al. (2017) data.

Investors should not expect 374 bps per month, however, as this return
accounts for neither trading costs nor stale data. Trading costs reduce the net return
to 188 per month, even with cost mitigation. Then removing the stale data from
2005 or earlier, the net return drops to only 21 bps per month.

Other fitting methods show the same patterns, as seen in Panels B–D of
Table 5. Whether we use the weighted average rank, IPCA, or LASSO, cost
mitigation nets around 180 bps per month in the 1985–2005 sample, but this
net return drops to around zero post-2005. Indeed, the 21 bps per month obtained
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by Fama–Macbeth represents the highest mean return among the cost-mitigated
combination strategies in the post-2005 data.

Interestingly, Table 5 shows that cost-mitigated strategies consistently underper-
form their unmitigated counterparts in the post-2005 sample. This underperformance
is far from statistically significant, however, at roughly 10 bps permonth, representing

TABLE 5

Performance of Long–Short Strategies that Combine Anomalies

Table 5 sorts stocks on the expected gross return implied by various models using the 58 predictors that are published
pre-2006 and satisfy availability and continuity conditions. Fits use the past 120 months of data, and stocks below the 20th
percentile market cap are dropped. Combination strategies net nearly 200 bps pre-2006, but net returns are at best around
20 bps per month post-2005. Gross and net returns are bps per month. Turnover is 2-sided (%monthly). Parentheses denote
standard errors.

Gross Turnover Net

Panel A. Fama–MacBeth

Equal-weighted decile sorts on fitted expected returns
1985–2005 374 64 86

(35) (35)

2006–2020 80 55 31
(35) (35)

With cost mitigation selected to maximize net return in 1985–2005
1985–2005 246 13 188

(34) (34)

2006–2020 31 12 21
(35) (35)

Panel B. Average Rank

Equal-weighted decile sorts on fitted expected returns
1985–2005 276 28 149

(47) (47)

2006–2020 4 26 �22
(42) (42)

With cost mitigation selected to maximize net return in 1985–2005
1985–2005 240 14 177

(46) (46)

2006–2020 �27 15 �41
(40) (40)

Panel C. IPCA

Equal-weighted decile sorts on fitted expected returns
1985–2005 379 63 94

(39) (39)

2006–2020 46 44 3
(36) (36)

With cost mitigation selected to maximize net return in 1985–2005
1985–2005 242 12 185

(37) (37)

2006–2020 12 10 2
(34) (34)

Panel D. LASSO

Equal-weighted decile sorts on fitted expected returns
1985–2005 375 53 128

(37) (37)

2006–2020 74 41 37
(29) (29)

With cost mitigation selected to maximize net return in 1985–2005
1985–2005 243 12 187

(36) (36)

2006–2020 28 11 18
(28) (29)
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only about one quarter of a standard error. Nevertheless, this underperformance is
striking because cost mitigation far outperforms in the 1985–2005 sample. These
results are consistent with the idea that arbitrageurs trademore on the liquid anomaly
strategies, disproportionately reducing the net returns for liquid stocks.

Figure 8 takes a closer look by plotting the performance of a $1 investment in
the combination strategies beginning in 1985. The figure shows that the impressive
gains in the earlier sample flatten out post-2005. The inflection point occurs around
2003, suggesting that the precise choice of the 2005 cutoff matters little.

The figure also shows an interesting change in cyclicality post-2005.While the
combination strategies suffered little to no losses around the 2001 dot-com crash, all
strategies suffered large losses just after the 2008–2009 financial crisis and the 2020
coronavirus market crash. These results echo Daniel and Moskowitz’s (2016)
finding that momentum crashes following market declines.

Readers familiar with the trading cost literature may wonder how our results
compare with those of DeMiguel et al. (DMNU) (2020). In a seminal contribution,
DMNU show how “trading diversification” can improve performance when com-
bining anomalies. As trading diversification effects should be found whenever

FIGURE 8

Cumulative Return of $1 Invested in Combination Strategies

Figure 8 sorts stocks on the expected gross return implied by variousmodels using 58 predictors that are published pre-2006
and satisfy availability and continuity conditions. Fits use the past 120 months of data and stocks below the 20th percentile
market cap are dropped. Graph A shows results without cost mitigation. Graph B optimizes costs using data from 1985–
2005. For comparison, “DMNU” shows the market-neutral component of DeMiguel et al.’s (2020) regularized out-of-sample
portfolio, scaled to have the same volatility as our Fama–Macbeth strategy. For all strategies, impressive gains flatten out
around 2003, and the 2005 cutoff matters little.
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trading signals are not perfectly correlated (DMNU’s Proposition 3), these effects
are surely found in our results too.

To take a closer look at this issue, Figure 8 compares the performance of
our combination strategies to DMNU’s regularized out-of-sample portfolio.
Since DMNU’s portfolio combines the CRSP index with a set of “long-short”
weights that sum to zero, we subtract the CRSP index to make the DMNU
returns comparable to ours. We also normalize the volatility of this portfolio to
match that of our Fama–Macbeth based strategy. Since DMNU’s portfolio starts
in 1987, we start this portfolio with the same dollar value as the average value of
our four strategies in 1987.21

The figure shows that DMNU’s optimal portfolio far outperforms our unmit-
igated combination strategies in the 1987–2005 sample.22 This outperformance
does not persist after 2005 however. Like our combination strategies, DMNU’s
portfolio seems to reach an inflection point in the early 2000s, after which its gains
flatten to a slope similar to our combination strategies.

A couple of caveats are required in this comparison. The first is that
our combination strategies draw on the Chen and Zimmermann (2022) data set,
which seems to have more predictive power than the Green et al. (2017) charac-
teristics used by DMNU (see discussion above). The second is that the DMNU
results use direct trading costs based on Hasbrouck’s (2009) low-frequency Gibbs
measure (see Brandt et al. (2009)), which tends to imply higher trading costs
relative to our combined trading cost measure (Figure 2). Nevertheless, the fact
that performance is much worse in more recent data is robust and helps square our
findings with the large Sharpe ratio found by DMNU.

Overall, our results suggest that even combining anomalies will lead to little
or no economic profits going forward. Combination strategies net nearly 200 bps
per month in the early sample. But after the information technology revolution, the
best combinations net only around 20 bps per month.

VI. Reconciliation with Related Papers

In contrast to our results, some recent papers find that anomaly profits still
exist after trading costs. In this section, we show that our results differ largely
because we account for stale pre-2006 data.

A. Reconciliation with Novy-Marx and Velikov (2016) Findings

In contrast to our findings, Novy-Marx and Velikov (2016) (NV) find that
anomalies with low to moderate turnover generate significant net returns. Our
studies differ, however, in that NV’s study examines a smaller selection of the “best
known, strongest performing anomalies” and does not aim to isolate the returns
seen inmore recent data. Table 6 shows that using a comprehensive set of anomalies
or focusing on more recent data leads to lower net returns.

21We are grateful to Victor DeMiguel, Alberto Martin-Utrera, and Raman Uppal for sharing their
data and making this analysis possible.

22Our cost-mitigated strategies exhibit look-ahead bias in the pre-2006 data, which makes them not
comparable to DMNU’s out-of-sample optimizations.
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The table begins by reproducing the results of NV. Column 1 uses the anomaly
characteristics listed in NV’s Table 2 instead of the CZ data, as well as the portfolio
implementation and trading cost measure used by NV. As in NV, this method leads
to moderate net returns of 30–35 bps per month over the full sample for all but the
highest turnover anomalies.

Column 2 shows that limiting the data to the post-publication and post-2005
sample renders these strategies unprofitable. In this more recent sample, low
turnover anomalies have negative gross returns of �20 bps per month, and mid
turnover anomalies gross only 27 bps per month. As a result, all turnover groups
earn negative net returns in more recent data.

Column 3 shows that expanding the anomalies data to Chen and Zimmermann’s
(2022) comprehensive data set (CZ) also leads to weaker performance. Applying
the methods used in NV to the 168 continuous CZ anomalies leads to gross returns
of 20 and 54 bps per month for low and mid turnover anomalies, respectively,
about 20 bps smaller than the gross returns for NV’s anomalies. Accordingly, the
net returns of the larger anomaly set are smaller by about 20 bps per month,
leading to negligible or negative net returns for all turnover groups. Intuitively, the
anomalies in the broader zoo are significantly weaker than the strongest anomalies
studied in NV.

In contrast, the measure of effective spreads has relatively little effect. Com-
paring columns 4 and 5, we see that the Gibbs trading cost measure implies much
more negative net returns for high turnover anomalies, but its effects on mid- and
low-turnover anomalies are more limited. As a result, using the Gibbs measure still
implies that anomalies have near-zero net returns.

TABLE 6

Reconciliation with Novy-Marx and Velikov (2016)

In Table 6, we vary the anomaly selection, implementation, sample period, and direct cost measurement to reconcile with
Novy-Marx and Velikov (NV) (2016). Returns are in bps per month. NV (2016) anomalies are 23 of the “best known, and
strongest performing anomalies.” CZ (Forth) anomalies are 204 anomalies covering the majority of the literature. Column 3
limits the CZ anomalies to continuous ones, in order to apply decile sorts. Low turnover is below 10%,mid turnover is between
10% and 50%, and high turnover is above 50% (1-sided, monthly). Anomaly selection and sample period both contribute to
the lower net returns found in our results compared to NV (2016).

1 2 3 4 5

Anomaly Selection NV (2016) NV (2016) CZ (Forth) CZ (Forth) CZ (Forth)

Implementation VW NYSE Deciles Original Paper

Sample Full Post-Pub05 Full Post-Pub05 Post-Pub05

Direct Costs Gibbs Gibbs Gibbs Gibbs Combined

Panel A. Mean Gross Return (bps monthly)

Low turnover 36 �20 20 11 11
Medium turnover 78 27 54 28 28
High turnover 96 45 58 30 30
All 68 15 34 19 19

Panel B. Mean Net Return (bps monthly)

Low turnover 28 �25 12 1 4
Medium turnover 34 �1 12 �16 �3
High turnover �35 �39 �60 �92 �46
All 14 �19 3 �17 �5

994 Journal of Financial and Quantitative Analysis

https://doi.org/10.1017/S0022109022000874  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0022109022000874


B. Reconciliation with Institutional Trading Cost Studies

Trading costs depend on the trader under consideration. This issue is
highlighted in Frazzini et al. (2015) (FIM), who argue that size, value, and momen-
tum are quite profitable for a large institutional investor that they study. Briere et al.
(2019) (BLNR) find similar results using ANcerno data, which covers more than
500 global institutional investors. These authors argue that their measured profits
are larger than those in studies that focus on average effective spreads (e.g.,
Lesmond et al. (2004), Novy-Marx and Velikov (2016)) because these spreads
are likely higher than the spreads paid by large and sophisticated institutions.

Extending this argument, one might conjecture that our results would change
significantly if we measured trading costs following FIM and BLNR. In this
subsection, we present evidence suggesting that our results would not change
significantly. In particular, we show our trading costs turn out to be quite similar to
those found by FIM and BLNR, once the sample period and anomaly selection are
accounted for.

Table 7 examines the performance of size, B/M, and momentum as measured
by our methods (“Cost-Mitigated”) and compares it to FIM and BLNR. Impor-
tantly, we subset performance measurement based on two subsamples: 2006–2020
and 1998–2013. The 2006–2020 sample is equivalent to the post-publication and

TABLE 7

Reconciliation with Institutional Trading Cost Studies

In Table 7, returns are in bps per month. Parentheses denote standard errors. The “Cost-Mitigated” column uses our
calculations. FIM (2015) is from Table IV of Frazzini et al. (2015), BLNR (2019) is from Table 7 of Briere et al. (2019), and
PW (2020) is from Table 2 (NS =100) of Patton and Weller (2020). These studies measure costs with institutional executions
rather than the aggregate TAQ data we use. Performance is similar across studies if the sample period is controlled for,
however, performance is much worse in the 2006–2020 sample. Individual anomaly performance is highly sensitive to the
sample period, and thuswe needmany anomalies to estimate expected returns post-2005, aswedo in Tables 2 and 4.

Panel A. Size

Return Cost-Mitigated FIM (2015) BLNR (2019) PW (2020)

(bps p.m.) 2006–2020 1998–2013 1998–2013 1999–2011 1993–2016

Gross �10.9 55.1 66.5 44.8 16.3
(30.2) (37.9) (22.1) (28.1) (20.2)

Net �14.5 48.2 54.3 43.4 18.3
(30.1) (37.9) (21.9) (19.9)

Panel B. B/M

Return Cost-Mitigated FIM (2015) BLNR (2019) PW (2020)

(bps p.m.) 2006–2020 1998–2013 1998–2013 1999–2011 1993–2016

Gross �3.7 58.7 40.5 25.3 45.3
(20.6) (28.6) (36.2) (31.2) (23.4)

Net �8.8 49.0 29.3 23.3 19.3
(20.8) (28.8) (36.6) (23.2)

Panel C. Momentum

Return Cost-Mitigated FIM (2015) BLNR (2019) PW (2020)

(bps p.m.) 2006–2020 1998–2013 1998–2013 1999–2011 1993–2016

Gross 6.1 22.4 18.8 45.9 50.1
(67.4) (74.6) (47.1) (47.4) (31.3)

Net 0.3 11.5 �6.4 23.1 14.4
(67.4) (74.4) (45.8) (32.0)
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post-2005 sample for these anomalies, as all of them are published before 2006.
The 1998–2013 sample period is selected to match FIM’s sample, and is similar to
BLNR’s 1999–2011 sample period.

The table shows that size, B/M, and momentum are all unprofitable in the
2006–2020 sample, even before trading costs. The gross returns of these anomalies
are�11,�4, andþ 6 bps permonth, respectively, over this recent sample. Thus, the
TAQ effective spreads we use have a minimal effect on our conclusion about the
poor expected returns of these classic anomalies.

Performance looks much different in FIM’s 1998–2013 sample period, how-
ever. Here, size and B/M have notable gross returns, and thus our calculations
produce net returns of 48 and 49 bps per month for these anomalies, respectively.
This measurement is quantitatively close to FIM’s finding of 54 and 29 bps per
month for size and B/M, respectively, and close to BLNR’s estimates of 43 and
23 bps per month. Our estimates find momentum nets only 12 bps per month
between 1998 and 2013, but FIM also find that momentum performs poorly here
too. Indeed, they find negative returns over this sample period.

The similarity in net returns is likely due to offsetting effects from trading cost
measurement. Our costs use the average effective spread, which are likely higher
than spreads used by FIM and BLNR, but we omit price impact, leading to opposite
effects. Which effect dominates depends on details including the assumed size of
the trades. It turns out that the size of trades assumed by FIM and BLNR lead to net
returns that are quite similar to what we find – as long as the sample period is taken
into account.

A caveat in this comparison is that FIM and BLNR’s results suggest that
a sophisticated institution may still be able to profitably trade on anomalies by
strategically using limit orders, if the institution is satisfied with a smaller portfolio
than the ones assumed by FIM and BLNR.

Table 7 also compares our net returns for size, B/M, and momentum to those
measured by Patton and Weller (2020) (PW). We focus on their 1993–2016 results
for closer comparability with the sample period used by FIM and BLNR. In this
sample period, PW’s net returns are typically smaller than those found by FIMAnd
BLNR, but they remain positive. Accordingly, PW’s net returns are also smaller
than those found in our 1998–2013 sample, perhaps because mutual funds seem to
avoid short positions (An, Huang, Lou, and Shi (2021)).

Overall, these results highlight the importance of isolating the sample period
and accounting for many anomalies when trying to make inference on expected
returns. The performance of individual anomalies can change dramatically between
older and more recent samples, and the standard error on an individual anomaly is
on the order of 50 bps per month over a 15 year sample. However, by aggregated
information across many anomalies, one canmakemore precise estimates, as we do
in our main results.

VII. Conclusion

We zero in on the expected returns of anomalies by accounting for trading
costs and the staleness of historical data. Net of these effects, the expected return on
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even the best anomalies is effectively zero. Indeed, we find that even combining
anomalies lead to meager net returns in recent data.

These results come from applying data-mining adjustments to data that
includes high-frequency trading costs and a very large set of anomalies. High-
frequency data is necessary as low-frequency spreads are biased upward in recent
years. A large set of anomalies is required as individual anomaly returns are very
noisy after excluding stale data. Finally, data-mining adjustments are required
to control for the bias that comes from selecting the best anomalies. Compared
to Frazzini et al. (2015), Novy-Marx and Velikov (2016), and DeMiguel et al.
(2020), our study is unique in combining these data sets and methods.

Taken with other recent papers, our results provide a complete accounting
for the average return on the anomaly zoo. Previous papers show that about 15% of
the average gross return is due to publication bias (McLean and Pontiff (2016),
Chen and Zimmermann (2020)). We find that trading costs account for another
40% and that the remaining net returns (45%) are traded away over time, consis-
tent with the idea that mispricing is removed as information proliferates and
technology improves (Chordia et al. (2014), McLean and Pontiff (2016)).

This decomposition paints a picture of a dynamic equilibrium process,
but one more in line with Lo’s (2004) adaptive market hypothesis or “efficiently
inefficient” markets (Grossman and Stiglitz (1980), Gârleanu and Pedersen
(2018)) than standard dynamic equilibriummodels (e.g., Campbell and Cochrane
(1999)). Every month, researchers find imperfections in the existing market
equilibrium. As information about predictability diffuses and trading technology
improves, the net returns of these imperfections are traded away, leading to a new
equilibrium.

Appendix A. Details of High-Frequency Data

The HF effective spread for the kth trade of a given stock is

EFFECTIVE_SPREAD½ �k = 2∣ log Pkð Þ� log Mkð Þ∣,(A-1)

wherePk is the price of the kth trade andMk is themidpoint of thematched consolidated
best bid and offer (BBO) quote.

Daily TAQ (DTAQ) and Monthly TAQ (MTAQ) spreads come from daily
dollar-weighted average spreads from WRDS Intraday Indicators (WRDS IID).
DTAQ observations follow Holden and Jacobsen (2014) (EFFECTIVESPREAD_
PERCENT_DW). For MTAQ observations before 1999, we assume a 1 second quote
delay (ESPREADPCT_VW1), and a 0 second delay (ESPREADPCT_VW0) other-
wise. We do not use WRDS IID’s interpolated MTAQ spreads because we found
that they have much lower pooled correlations with DTAQ spreads, perhaps because
we examine all stocks rather than the volume-stratified sample used in Holden and
Jacobsen (2014).

WRDS applies its own data screens followingHolden and Jacobsen (2014), but we
found that some outliers remain. To remove these remaining outliers, we remove firm-
day effective spreads if the effective spread exceeds 40%, the daily average quoted
spread exceeds 40%, or the effective spread exceeds four times the daily average quoted
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spread. For data availability reasons, we use time weighting for the daily quoted spreads
(QSPREADPCT_TW_M for MTAQ and QUOTEDSPREAD_PERCENT_TW
for DTAQ).

We coalesce DTAQ and MTAQ spreads at the firm-day level, favoring DTAQ
when it is available. The daily spreads are then converted to monthly by simple
averaging across daily observations.

ISSM daily spreads use our own calculations from the raw ISSM intraday data.
We screen the data following Holden and Jacobsen (2014). Quotes are excluded if any
of the following hold:

• Time is before 9:00 am or after 4:00 pm
• if mode in (C, D, F, G, I, L, N, P, S, V, X, Z)
• BID>OFR and BID>0 and OFR > 0
• BID>0 and OFR = 0
• OFR-BID>5 and BID>0 and OFR > 0
• OFR ≤ 0 or missing
• BID ≤ 0 or missing
• OFRSIZE ≤ 0 or missing
• BIDSIZE ≤ 0 or missing.

NASDAQ listed stocks from 1987 to 1989 and NYSE listed stocks in 1986 are
not subject to the size filters as they are all missing ofrsize and bidsize. Trades are kept
if all of the following hold

• TIME is after 9:30 am and before 4:00 pm
• PRICE > 0
• TYPE = T
• COND not in (C, L, N, R, O, Z) and SIZE > 0
• From TAQ and correction field is zero

For ISSM, we use a 2-second quote delay. As with the TAQ spreads, we compute
dollar-weighted averages within each day, and then simple average across days to covert
to monthly.

Appendix B. Details of Low-Frequency Spreads

Three of our four proxies build off of Roll’s (1984) classic microstructure model.
The Roll model assumes that the true value of a stock follows a random walk, and that
the observed trade prices deviate from the true value by the effective spread. The fourth
proxy uses a completely different framework: the Kyle and Obizhaeva (2016) micro-
structure invariance hypothesis. All 4 proxies have been shown to be highly correlated
with HF spreads.

The LF proxies we use are as follows:

• Hasbrouck’s (2009) Gibbs sampler estimate of the Roll model (Gibbs)

Hasbrouck (2009) estimates the Roll model using Bayesian methods
(Gibbs sampler) and daily closing prices. Identification comes from the “bid–
ask bounce” – the phenomenon in which buyer-initiated trades tend to occur at
higher prices than seller-initiated trades. Bid–ask bounce induces a negative serial
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correlation in transaction prices, which is stronger for stocks that are more
expensive to trade. The Bayesian approach ensures that the measured serial
correlation is negative, and thus the estimated spread is well defined. Our Gibbs
proxy is estimated using annual samples, following the approach recommended
by Hasbrouck (2009).

Gibbs forms the basis for transaction costs in several other studies of portfolio
returns, including Brandt et al. (2009), Hand and Green (2011), Novy-Marx and
Velikov (2016), DeMiguel et al. (2020), and Freyberger et al. (2020).

• Corwin and Schultz’s (2012) High-Low Spread (HL)
Corwin and Schultz (2012) estimate the Roll model from daily high and low

prices (hence, HL) that are available in CRSP. Identification comes from the fact
that the daily high-low ratio reflects both spreads and return volatility, but these
two components decay at different rates. Thus, the comparison of 1-day and
2-day price ranges provides information about the effective spread.

HL is used in many studies including Karnaukh et al. (2015), Koch et al.
(2016), McLean and Pontiff (2016), and Chen and Zimmermann (2020).

• Abdi and Ranaldo’s (2017) Close-High-Low (CHL)
Abdi and Ranaldo’s (2017) CHL proxy estimates the Roll model using daily

closing prices aswell as the daily high and low (hence, CHL). Abdi andRanaldo’s
identification builds off the insight that the average of the daily high and low
prices (the midpoint) contains important information about the true price. Abdi
and Ranaldo (2017) show that CHL outperforms both Gibbs and HL using a
number of empirical tests.

• Volume-over-Volatility (VoV), based on Kyle and Obizhaeva’s (2016) microstruc-
ture invariance hypothesis

Our last LF proxy takes a rather different approach. Rather than build off
of Roll (1984), VoV is based on Kyle and Obizhaeva’s (2016) microstructure
invariance hypothesis. In particular, we use Fong et al.’s (2017) (FHT’s) imple-
mentation:

VoV½ �i,t =
8:0 STD_DEV_OF_DAILY_RETURNS½ �23

MEAN_REAL_DAILY_DOLLAR_VOLUME½ �13
,(B-1)

where VoV½ �i,t is the proxy for effective spread for stock i in month t, the 2
3 and 1

3
exponents are predictions of Kyle and Obizhaeva’s (2016) invariance hypothesis, and
the 8.0 coefficient was chosen by FHT to fit the average monthly TAQ effective spread
in their U.S. sample. Nominal dollar volume is converted to real dollar volume using
the CPI.

The invariance hypothesis is that the distribution of transaction costs is the same
across assets and time periods when expressed in terms of “business time,” that is, the
speed with which “bets” arrive at the market. This hypothesis leads to the prediction that
the constant term in trading costs (alternatively, the bid–ask spread) is proportional to
the RHS of equation (B-1). Fong et al. (2017) find that VoV is the best-performing
LF proxy among many proxies in terms of correlations and RMSE with respect to
TAQ spreads.
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We set tomissing LF spreads if the required CRSP data is commonlymissing in the
exchange-year (see CRSP documentation). We set to missing Gibbs and VoV spreads
for NASDAQ stocks before 1983 because this sample lacks volume data. We set to
missing HL and CHL spreads for NASDAQ stocks before 1993 because daily high and
low prices are missing for NASDAQ SmallCap Market. Note that in CRSP, the askhi
and bidlo fields are not missing but negative for this subsample, indicating that the askhi
is an ask rather than a high price. Last, we set all LF spreads tomissing for AMEX stocks
prior to 1963 because volume, daily high, and daily low are all predominantly missing
prior to this date.

HL andCHL,we use themost recent observation of high and low prices for days in
which stocks do not trade. As noted inCorwin and Schultz (2012) andAbdi andRanaldo
(2017), on days inwhich stocks do not trade CRSP provides closing quoted spreads, and
closing quoted spreads are very highly correlated with effective HF spreads in the recent
sample. In these cases, we do not use the closing quoted spread in order to make
interpretation of our LF proxy average simple.

The LF proxies require multiple firm-day observations to compute a spread
for a given firm-month.We follow the original papers and do not compute the proxy if
the data is insufficient. Specifically, HL requires 12 daily observations, CHL requires
12 eligible days following the definition in Abdi and Ranaldo (2017), VoV requires
5 positive volume and 11 nonzero return observations, andGibbs requires the sampler
to converge.

We compute an LF average if we have at least one LF proxy with data. In 12.24%
of observations, all LF and HF spreads are missing data. These missing observations
have little effect on our main results, however, as only 0.27% of post-1993 observations
are missing, and 90% of our anomalies are published after 1993. If ISSM, TAQ, and the
LF spreads are all missing, we match the firm to the nearest firm with available data in
terms of Euclidean distance of market equity rank and idiosyncratic volatility rank. If
idiosyncratic volatility is missing, we use just the market equity rank. This data-filling
procedure follows Novy-Marx and Velikov (2016).

Appendix C. Details of Cost Optimization

Figures C1 andC2 show that our cost mitigation is effective in-sample. The figures
show the distribution of in-sample net returns before (Figure C1) and after (Figure C2)
cost mitigation.

Figure C1 shows that net returns before cost mitigation feature a long left tail.
While most anomalies have positive net returns ranging between 0 and 60 bps per
month, many anomalies have very negative net returns of�50 to�300 bps. Averaging
across all anomalies leads to near-zero net return in Table 2.

Anomalies with above-median turnover are shown in bold. These high turnover
anomalies occupy the vast majority of the left tail of net returns. These high turnover
anomalies include many momentum anomalies, but also include a variety of unre-
lated anomalies like real estate and order backlog. Persistent anomaly signals like
B/M and size are little affected by bid–ask spreads and occupy the right tail of this
distribution.

Cost mitigation should be very helpful with this left tail of net returns. Indeed,
Figure C2 shows that the left tail is essential gone after cost optimization, and net returns
center around 40–50 bps per month.
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The best net returns are often reached with equal weighting, however. In
Figure C2, these are shown in the nonbold font, while value-weighted anomalies are
shown in bold. Thus, in our main results, we examine two types of cost-optimization,
one that allows for equal-weighting and another that enforces value-weighting.

FIGURE C1

Distribution of Net Returns: In-Sample, Before Cost Optimization

In Figure C1, we adjust anomaly returns for effective bid–ask spreads (Figure 3). Portfolios are implemented following the
original papers as described in Chen and Zimmermann (2022). Anomalies with 2-sided turnover>30% per month are shown
in bold. Hash marks indicate larger bins. Academic anomaly strategies are on average unprofitable even in sample, due in
part to a long left tail in net returns.
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FIGURE C2

Cost Optimization Results: Distribution of Net Returns: In-Sample

For each anomaly in Figure 2, we examine up to 21 cost-mitigated implementations based on restricting trading to liquid
stocks, reducing rebalancing, and buy/hold spreads (see Section II.C). We then select the implementation that produces the
highest in-sample net return, including the original implementation if the original is best. Bold anomalies are value-weighted.
Cost mitigation leads to notably positive net returns in-sample, though this performance sometimes requires equal-weighting.
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