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Lattices 

The best evidence we have for confinement in a non-Abelian gauge theory 
of the strong interactions comes by way of Wilson's (1974) formulation 
on a space-time lattice. At first this prescription seems a little peculiar 
because the vacuum is not a crystal. Indeed, experimentalists work daily 
with relativistic particles showing no deviations from the continuous 
symmetries ofthe Lorentz group. Why, then, have theorists in recent years 
spent so much time describing field theory on the scaffolding of a space-time 
lattice? 

The lattice represents a mathematical trick. It provides a cutoff removing 
the ultraviolet infinities so rampant in quantum field theory. As with any 
regulator, it must be removed after renormalization. Physics can only be 
extracted in the continuum limit, where the lattice spacing is taken to zero. 

But infinities and the resulting need for renormalization have been with 
us since the beginnings of relativistic quantum mechanics. The program 
for electrodynamics has had immense success without recourse to discrete 
space. Why reject the time-honored perturbative renormalization pro
cedures in favor of a new cutoff scheme? 

We are driven to the lattice by the rather unique feature of confinement 
in the strong interactions. This phenomenon is inherently non-perturbative. 
The free theory with vanishing coupling constant has no resemblance to 
the observed physical world. Renormalization group arguments, to be 
presented in detail in later chapters, indicate severe essential singularities 
when hadronic properties are regarded as functions of the gauge coupling. 
This contrasts sharply with the great successes of quantum electrodynamics, 
where perturbation theory was central. Most conventional regularization 
schemes are based on the Feynman expansion; some process is calculated 
until a divergence is met in a particular diagram, and this divergence is 
then removed. To go beyond the diagrammatic approach, one needs a 
non-perturbative cutoff. Herein lies the main virtue of the lattice, which 
directly eliminates all wavelengths less than twice the lattice spacing. This 
occurs before any expansions or approximations are begun. 

On a lattice, a field theory becomes mathematically well-defined and can 
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be studied in various ways. Lattice perturbation theory, although somewhat 
awkward, recovers all the conventional results of other regularization 
schemes. Discrete space-time, however, is particularly well-suited for a 
strong coupling expansion. Remarkably, confinement is automatic in this 
limit where the theory reduces to one of quarks on the ends of strings with 
a finite energy per unit length. Most recent research has concentrated on 
showing that this phenomenon survives the continuum limit. 

A lattice formulation emphasizes the close connections between field 
theory and statistical mechanics. Indeed, the strong coupling treatment is 
equivalent to a high temperature expansion. The deep ties between these 
disciplines are manifest in the Feynman path integral formulation of 
quantum mechanics (Feynman, 1948; Dirac, 1933, 1945). In Euclidian 
space, a path integral is equivalent to a partition function for an analogous 
statistical system. The square of the field theoretical coupling constant 
corresponds directly to the temperature. Thus, the particle physicist has 
available the full technology of the condensed matter theorist. 

Confinement is natural in the strong coupling limit of the lattice theory; 
however, this is not the region of direct physical interest, for which a 
continuum limit is necessary. The coupling constant on the lattice represents 
a bare coupling at a length scale of the lattice spacing. Non-Abelian gauge 
theories possess the property of asymptotic freedom, which means that in 
the short distance limit the effective coupling goes to zero. This remarkable 
phenomenon allows predictions for the observed scaling behavior in deeply 
inelastic collisions. Indeed, this was one of the original motivations for a 
non-Abelian gauge theory of the strong interactions. The consequence for 
the lattice theory, however, is that the bare coupling must be taken to zero 
as the lattice spacing decreases towards the continuum limit. Thus we 
are inevitably led out of the high temperature regime and into a low 
temperature domain. Along the way in a general statistical system one 
might expect to encounter phase transitions. Such qualitative shifts in the 
physical characteristics of a system can only hamper the task of showing 
confinement in the non-Abelian theory. In later chapters we will present 
evidence that such troublesome transitions can be avoided in the four
dimensional SU(3) gauge theory of the nuclear force. 

Although our ultimate goal with lattice gauge theory is an understanding 
of hadronic physics, many interesting phenomena arise which are peculiar 
to the lattice. We will see non-trivial phase structure occurring in a variety 
of models, some of which do not correspond to any continuum field 
theory. The lattice formulation is highly non-unique and thereby spurious 
transitions can be alternately introduced and removed. We will also see 
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that the statistical mechanics of gauge models displays curious analogies 
with magnetic systems in half the number of space-time dimensions. Even 
quantum electrodynamics shows interesting structure in certain lattice 
formulations. This rich spectrum of phenomena has led to the recent 
popularity of lattice field theories and motivates this book. 
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